use rustc::hir; use rustc::lint::*; use utils::{span_lint_and_then, span_lint, snippet_opt, SpanlessEq, get_trait_def_id, implements_trait}; use utils::{higher, sugg}; /// **What it does:** This lint checks for `+=` operations and similar. /// /// **Why is this bad?** Projects with many developers from languages without those operations may /// find them unreadable and not worth their weight. /// /// **Known problems:** Types implementing `OpAssign` don't necessarily implement `Op`. /// /// **Example:** /// ``` /// a += 1; /// ``` declare_restriction_lint! { pub ASSIGN_OPS, "any assignment operation" } /// **What it does:** Check for `a = a op b` or `a = b commutative_op a` patterns. /// /// **Why is this bad?** These can be written as the shorter `a op= b`. /// /// **Known problems:** While forbidden by the spec, `OpAssign` traits may have implementations that differ from the regular `Op` impl. /// /// **Example:** /// /// ``` /// let mut a = 5; /// ... /// a = a + b; /// ``` declare_lint! { pub ASSIGN_OP_PATTERN, Warn, "assigning the result of an operation on a variable to that same variable" } #[derive(Copy, Clone, Default)] pub struct AssignOps; impl LintPass for AssignOps { fn get_lints(&self) -> LintArray { lint_array!(ASSIGN_OPS, ASSIGN_OP_PATTERN) } } impl LateLintPass for AssignOps { fn check_expr(&mut self, cx: &LateContext, expr: &hir::Expr) { match expr.node { hir::ExprAssignOp(op, ref lhs, ref rhs) => { span_lint_and_then(cx, ASSIGN_OPS, expr.span, "assign operation detected", |db| { let lhs = &sugg::Sugg::hir(cx, lhs, ".."); let rhs = &sugg::Sugg::hir(cx, rhs, ".."); db.span_suggestion(expr.span, "replace it with", format!("{} = {}", lhs, sugg::make_binop(higher::binop(op.node), lhs, rhs))); }); } hir::ExprAssign(ref assignee, ref e) => { if let hir::ExprBinary(op, ref l, ref r) = e.node { let lint = |assignee: &hir::Expr, rhs: &hir::Expr| { let ty = cx.tcx.expr_ty(assignee); if ty.walk_shallow().next().is_some() { return; // implements_trait does not work with generics } let rty = cx.tcx.expr_ty(rhs); if rty.walk_shallow().next().is_some() { return; // implements_trait does not work with generics } macro_rules! ops { ($op:expr, $cx:expr, $ty:expr, $rty:expr, $($trait_name:ident:$full_trait_name:ident),+) => { match $op { $(hir::$full_trait_name => { let [krate, module] = ::utils::paths::OPS_MODULE; let path = [krate, module, concat!(stringify!($trait_name), "Assign")]; let trait_id = if let Some(trait_id) = get_trait_def_id($cx, &path) { trait_id } else { return; // useless if the trait doesn't exist }; implements_trait($cx, $ty, trait_id, vec![$rty]) },)* _ => false, } } } if ops!(op.node, cx, ty, rty, Add: BiAdd, Sub: BiSub, Mul: BiMul, Div: BiDiv, Rem: BiRem, And: BiAnd, Or: BiOr, BitAnd: BiBitAnd, BitOr: BiBitOr, BitXor: BiBitXor, Shr: BiShr, Shl: BiShl) { if let (Some(snip_a), Some(snip_r)) = (snippet_opt(cx, assignee.span), snippet_opt(cx, rhs.span)) { span_lint_and_then(cx, ASSIGN_OP_PATTERN, expr.span, "manual implementation of an assign operation", |db| { db.span_suggestion(expr.span, "replace it with", format!("{} {}= {}", snip_a, op.node.as_str(), snip_r)); }); } else { span_lint(cx, ASSIGN_OP_PATTERN, expr.span, "manual implementation of an assign operation"); } } }; // a = a op b if SpanlessEq::new(cx).ignore_fn().eq_expr(assignee, l) { lint(assignee, r); } // a = b commutative_op a if SpanlessEq::new(cx).ignore_fn().eq_expr(assignee, r) { match op.node { hir::BiAdd | hir::BiMul | hir::BiAnd | hir::BiOr | hir::BiBitXor | hir::BiBitAnd | hir::BiBitOr => { lint(assignee, l); } _ => {} } } } } _ => {} } } }