use std::cell::{Cell, RefCell}; use rustc::ty::{Ty, layout::Size}; use rustc::hir; use super::{ MemoryAccess, MemoryKind, MiriMemoryKind, RangeMap, EvalResult, AllocId, Pointer, }; pub type Timestamp = u64; /// Information about a potentially mutable borrow #[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)] pub enum Mut { /// A unique, mutable reference Uniq(Timestamp), /// Any raw pointer, or a shared borrow with interior mutability Raw, } impl Mut { #[inline(always)] fn is_raw(self) -> bool { match self { Mut::Raw => true, _ => false, } } } /// Information about any kind of borrow #[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)] pub enum Borrow { /// A mutable borrow, a raw pointer, or a shared borrow with interior mutability Mut(Mut), /// A shared borrow without interior mutability Frz(Timestamp) } impl Borrow { #[inline(always)] fn is_uniq(self) -> bool { match self { Borrow::Mut(Mut::Uniq(_)) => true, _ => false, } } } /// An item in the borrow stack #[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)] pub enum BorStackItem { /// Defines which references are permitted to mutate *if* the location is not frozen Mut(Mut), /// A barrier, tracking the function it belongs to by its index on the call stack #[allow(dead_code)] // for future use FnBarrier(usize) } impl Default for Borrow { fn default() -> Self { Borrow::Mut(Mut::Raw) } } /// What kind of reference are we talking about? #[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)] pub enum RefKind { Mut, Shr, Raw, } impl From> for RefKind { fn from(mutbl: Option) -> Self { match mutbl { None => RefKind::Raw, Some(hir::MutMutable) => RefKind::Mut, Some(hir::MutImmutable) => RefKind::Shr, } } } /// Extra global machine state #[derive(Clone, Debug)] pub struct State { clock: Cell } impl State { pub fn new() -> State { State { clock: Cell::new(0) } } } /// Extra per-location state #[derive(Clone, Debug)] struct Stack { borrows: Vec, // used as a stack frozen_since: Option, } impl Default for Stack { fn default() -> Self { Stack { borrows: vec![BorStackItem::Mut(Mut::Raw)], frozen_since: None, } } } /// Extra per-allocation state #[derive(Clone, Debug, Default)] pub struct Stacks { stacks: RefCell>, } /// Core operations impl<'tcx> Stack { /// Check if `bor` is currently active. We accept a `Raw` on a frozen location /// because this could be a shared (re)borrow. If you want to mutate, this /// is not the right function to call! fn check(&self, bor: Borrow) -> bool { match bor { Borrow::Frz(acc_t) => // Must be frozen at least as long as the `acc_t` says. self.frozen_since.map_or(false, |loc_t| loc_t <= acc_t), Borrow::Mut(acc_m) => // Raw pointers are fine with frozen locations. This is important because &Cell is raw! if self.frozen_since.is_some() { acc_m.is_raw() } else { self.borrows.last().map_or(false, |&loc_itm| loc_itm == BorStackItem::Mut(acc_m)) } } } /// Check if `bor` could be activated by unfreezing and popping. /// This should be in sync with `reactivate`! fn reactivatable(&self, bor: Borrow) -> bool { if self.check(bor) { return true; } let acc_m = match bor { Borrow::Frz(_) => return false, Borrow::Mut(acc_m) => acc_m }; // This is where we would unfreeze. for &itm in self.borrows.iter().rev() { match itm { BorStackItem::FnBarrier(_) => return false, BorStackItem::Mut(loc_m) => { if loc_m == acc_m { return true; } // Go on looking. } } } // Nothing to be found. false } /// Reactive `bor` for this stack. If `force_mut` is set, we want to aggressively /// unfreeze this location (because we are about to mutate, so a frozen `Raw` is not okay). fn reactivate(&mut self, bor: Borrow, force_mut: bool) -> EvalResult<'tcx> { // Unless mutation is bound to happen, do NOT change anything if `bor` is already active. // In particular, if it is a `Mut(Raw)` and we are frozen, this should be a NOP. if !force_mut && self.check(bor) { return Ok(()); } let acc_m = match bor { Borrow::Frz(since) => if force_mut { return err!(MachineError(format!("Using a shared borrow for mutation"))) } else { return err!(MachineError(format!( "Location should be frozen since {} but {}", since, match self.frozen_since { None => format!("it is not frozen at all"), Some(since) => format!("it is only frozen since {}", since), } ))) } Borrow::Mut(acc_m) => acc_m, }; // We definitely have to unfreeze this, even if we use the topmost item. if self.frozen_since.is_some() { trace!("reactivate: Unfreezing"); } self.frozen_since = None; // Pop until we see the one we are looking for. while let Some(&itm) = self.borrows.last() { match itm { BorStackItem::FnBarrier(_) => { return err!(MachineError(format!("Trying to reactivate a borrow that lives behind a barrier"))); } BorStackItem::Mut(loc_m) => { if loc_m == acc_m { return Ok(()); } trace!("reactivate: Popping {:?}", itm); self.borrows.pop(); } } } // Nothing to be found. err!(MachineError(format!("Borrow-to-reactivate does not exist on the stack"))) } /// Initiate `bor`; mostly this means freezing or pushing. fn initiate(&mut self, bor: Borrow) -> EvalResult<'tcx> { match bor { Borrow::Frz(t) => { match self.frozen_since { None => { trace!("initiate: Freezing"); self.frozen_since = Some(t); } Some(since) => { trace!("initiate: Already frozen"); assert!(since <= t); } } } Borrow::Mut(m) => { match self.frozen_since { None => { trace!("initiate: Pushing {:?}", bor); self.borrows.push(BorStackItem::Mut(m)) } Some(_) if m.is_raw() => // We only ever initiate right after activating the ref we come from. // If the source ref is fine being frozen, then a raw ref we create // from it is fine with this as well. trace!("initiate: Initiating a raw on a frozen location, not doing a thing"), Some(_) => return err!(MachineError(format!("Trying to mutate frozen location"))) } } } Ok(()) } } impl State { fn increment_clock(&self) -> Timestamp { let val = self.clock.get(); self.clock.set(val+1); val } } /// Higher-level operations impl<'tcx> Stacks { pub fn memory_accessed( &self, ptr: Pointer, size: Size, access: MemoryAccess, ) -> EvalResult<'tcx> { trace!("memory_accessed({:?}) with tag {:?}: {:?}, size {}", access, ptr.tag, ptr, size.bytes()); let mut stacks = self.stacks.borrow_mut(); for stack in stacks.iter_mut(ptr.offset, size) { // FIXME: Compare this with what the blog post says. stack.reactivate(ptr.tag, /*force_mut*/access == MemoryAccess::Write)?; } Ok(()) } pub fn memory_deallocated( &mut self, ptr: Pointer, ) -> EvalResult<'tcx> { trace!("memory_deallocated with tag {:?}: {:?}", ptr.tag, ptr); let stacks = self.stacks.get_mut(); for stack in stacks.iter_mut_all() { // This is like mutating. stack.reactivate(ptr.tag, /*force_mut*/true)?; } Ok(()) } fn reborrow( &self, ptr: Pointer, size: Size, new_bor: Borrow, permit_redundant: bool, ) -> EvalResult<'tcx> { let mut stacks = self.stacks.borrow_mut(); for stack in stacks.iter_mut(ptr.offset, size) { if permit_redundant && stack.check(new_bor) { // The new borrow is already active! This can happen when creating multiple // shared references from the same mutable reference. Do nothing. trace!("reborrow: New borrow {:?} is already active, not doing a thing", new_bor); } else { // If we are creating a uniq ref, we certainly want to unfreeze. // Even if we are doing so from a raw. // Notice that if this is a local, whenever we access it directly the // tag here will be the bottommost `Uniq` for that local. That `Uniq` // never is accessible by the program, so it will not be used by any // other access. IOW, whenever we directly use a local this will pop // everything else off the stack, invalidating all previous pointers // and, in particular, *all* raw pointers. This subsumes the explicit // `reset` which the blog post [1] says to perform when accessing a local. // // [1] https://www.ralfj.de/blog/2018/08/07/stacked-borrows.html stack.reactivate(ptr.tag, /*force_mut*/new_bor.is_uniq())?; stack.initiate(new_bor)?; } } Ok(()) } /// Pushes the first borrow to the stacks, must be a mutable one. pub fn first_borrow( &mut self, r#mut: Mut, size: Size ) { for stack in self.stacks.get_mut().iter_mut(Size::ZERO, size) { assert!(stack.borrows.len() == 1 && stack.frozen_since.is_none()); assert_eq!(stack.borrows.pop().unwrap(), BorStackItem::Mut(Mut::Raw)); stack.borrows.push(BorStackItem::Mut(r#mut)); } } } pub trait EvalContextExt<'tcx> { fn tag_for_pointee( &self, pointee_ty: Ty<'tcx>, ref_kind: RefKind, ) -> Borrow; fn tag_reference( &self, ptr: Pointer, pointee_ty: Ty<'tcx>, size: Size, ref_kind: RefKind, ) -> EvalResult<'tcx, Borrow>; fn tag_dereference( &self, ptr: Pointer, pointee_ty: Ty<'tcx>, size: Size, ref_kind: RefKind, ) -> EvalResult<'tcx, Borrow>; fn tag_new_allocation( &mut self, id: AllocId, kind: MemoryKind, ) -> Borrow; } impl<'a, 'mir, 'tcx> EvalContextExt<'tcx> for super::MiriEvalContext<'a, 'mir, 'tcx> { fn tag_for_pointee( &self, pointee_ty: Ty<'tcx>, ref_kind: RefKind, ) -> Borrow { let time = self.machine.stacked_borrows.increment_clock(); match ref_kind { RefKind::Mut => Borrow::Mut(Mut::Uniq(time)), RefKind::Shr => // FIXME This does not do enough checking when only part of the data has // interior mutability. When the type is `(i32, Cell)`, we want the // first field to be frozen but not the second. if self.type_is_freeze(pointee_ty) { Borrow::Frz(time) } else { // Shared reference with interior mutability. Borrow::Mut(Mut::Raw) }, RefKind::Raw => Borrow::Mut(Mut::Raw), } } /// Called for place-to-value conversion. fn tag_reference( &self, ptr: Pointer, pointee_ty: Ty<'tcx>, size: Size, ref_kind: RefKind, ) -> EvalResult<'tcx, Borrow> { let new_bor = self.tag_for_pointee(pointee_ty, ref_kind); trace!("tag_reference: Creating new reference ({:?}) for {:?} (pointee {}, size {}): {:?}", ref_kind, ptr, pointee_ty, size.bytes(), new_bor); // Make sure this reference is not dangling or so self.memory().check_bounds(ptr, size, false)?; // Update the stacks. We cannot use `get_mut` becuse this might be immutable // memory. let alloc = self.memory().get(ptr.alloc_id).expect("We checked that the ptr is fine!"); let permit_redundant = ref_kind == RefKind::Shr; // redundant shared refs are okay alloc.extra.reborrow(ptr, size, new_bor, permit_redundant)?; Ok(new_bor) } /// Called for value-to-place conversion. /// /// Note that this does NOT mean that all this memory will actually get accessed/referenced! /// We could be in the middle of `&(*var).1`. fn tag_dereference( &self, ptr: Pointer, pointee_ty: Ty<'tcx>, size: Size, ref_kind: RefKind, ) -> EvalResult<'tcx, Borrow> { // In principle we should not have to do anything here. However, with transmutes involved, // it can happen that the tag of `ptr` does not actually match `ref_kind`, and we // should adjust for that. // Notably, the compiler can introduce such transmutes by optimizing away `&[mut]*`. // That can transmute a raw ptr to a (shared/mut) ref, and a mut ref to a shared one. match (ref_kind, ptr.tag) { (RefKind::Raw, _) => { // Don't use the tag, this is a raw access! Even if there is a tag, // that means transmute happened and we ignore the tag. // Also don't do any further validation, this is raw after all. return Ok(Borrow::Mut(Mut::Raw)); } (RefKind::Mut, Borrow::Mut(Mut::Uniq(_))) | (RefKind::Shr, Borrow::Frz(_)) | (RefKind::Shr, Borrow::Mut(Mut::Raw)) => { // Expected combinations. Nothing to do. // FIXME: We probably shouldn't accept this if we got a raw shr without // interior mutability. } (RefKind::Mut, Borrow::Mut(Mut::Raw)) => { // Raw transmuted to mut ref. Keep this as raw access. // We cannot reborrow here; there might be a raw in `&(*var).1` where // `var` is an `&mut`. The other field of the struct might be already frozen, // also using `var`, and that would be okay. } (RefKind::Shr, Borrow::Mut(Mut::Uniq(_))) => { // A mut got transmuted to shr. High time we freeze this location! // Make this a delayed reborrow. Redundant reborows to shr are okay, // so we do not have to be worried about doing too much. trace!("tag_dereference: Lazy freezing of {:?}", ptr); return self.tag_reference(ptr, pointee_ty, size, ref_kind); } (RefKind::Mut, Borrow::Frz(_)) => { // This is just invalid. // If we ever allow this, we have to consider what we do when a turn a // `Raw`-tagged `&mut` into a raw pointer pointing to a frozen location. // We probably do not want to allow that, but we have to allow // turning a `Raw`-tagged `&` into a raw ptr to a frozen location. return err!(MachineError(format!("Encountered mutable reference with frozen tag {:?}", ptr.tag))) } } // Even if we don't touch the tag, this operation is only okay if we *could* // activate it. Also it must not be dangling. self.memory().check_bounds(ptr, size, false)?; let alloc = self.memory().get(ptr.alloc_id).expect("We checked that the ptr is fine!"); let mut stacks = alloc.extra.stacks.borrow_mut(); // We need `iter_mut` because `iter` would skip gaps! for stack in stacks.iter_mut(ptr.offset, size) { // We accept &mut to a frozen location here, that is just normal. There might // be shared reborrows that we are about to invalidate with this access. // We cannot invalidate them aggressively here because the deref might also be // to just create more shared refs. if !stack.reactivatable(ptr.tag) { return err!(MachineError(format!("Encountered {:?} reference with non-reactivatable tag {:?}", ref_kind, ptr.tag))) } } // All is good. Ok(ptr.tag) } fn tag_new_allocation( &mut self, id: AllocId, kind: MemoryKind, ) -> Borrow { let r#mut = match kind { MemoryKind::Stack => { // New unique borrow let time = self.machine.stacked_borrows.increment_clock(); Mut::Uniq(time) } _ => { // Raw for everything else Mut::Raw } }; // Make this the active borrow for this allocation let alloc = self.memory_mut().get_mut(id).expect("This is a new allocation, it must still exist"); let size = Size::from_bytes(alloc.bytes.len() as u64); alloc.extra.first_borrow(r#mut, size); Borrow::Mut(r#mut) } }