//! An algorithm to find a path to refer to a certain item. use std::{cmp::Ordering, iter}; use hir_expand::name::{known, AsName, Name}; use rustc_hash::FxHashSet; use crate::{ db::DefDatabase, item_scope::ItemInNs, nameres::DefMap, path::{ModPath, PathKind}, visibility::Visibility, ModuleDefId, ModuleId, }; /// Find a path that can be used to refer to a certain item. This can depend on /// *from where* you're referring to the item, hence the `from` parameter. pub fn find_path( db: &dyn DefDatabase, item: ItemInNs, from: ModuleId, prefer_no_std: bool, ) -> Option { let _p = profile::span("find_path"); find_path_inner(db, item, from, None, prefer_no_std) } pub fn find_path_prefixed( db: &dyn DefDatabase, item: ItemInNs, from: ModuleId, prefix_kind: PrefixKind, prefer_no_std: bool, ) -> Option { let _p = profile::span("find_path_prefixed"); find_path_inner(db, item, from, Some(prefix_kind), prefer_no_std) } const MAX_PATH_LEN: usize = 15; #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub enum PrefixKind { /// Causes paths to always start with either `self`, `super`, `crate` or a crate-name. /// This is the same as plain, just that paths will start with `self` iprepended f the path /// starts with an identifier that is not a crate. BySelf, /// Causes paths to ignore imports in the local module. Plain, /// Causes paths to start with `crate` where applicable, effectively forcing paths to be absolute. ByCrate, } impl PrefixKind { #[inline] fn prefix(self) -> PathKind { match self { PrefixKind::BySelf => PathKind::Super(0), PrefixKind::Plain => PathKind::Plain, PrefixKind::ByCrate => PathKind::Crate, } } #[inline] fn is_absolute(&self) -> bool { self == &PrefixKind::ByCrate } } /// Attempts to find a path to refer to the given `item` visible from the `from` ModuleId fn find_path_inner( db: &dyn DefDatabase, item: ItemInNs, from: ModuleId, prefixed: Option, prefer_no_std: bool, ) -> Option { // - if the item is a builtin, it's in scope if let ItemInNs::Types(ModuleDefId::BuiltinType(builtin)) = item { return Some(ModPath::from_segments(PathKind::Plain, Some(builtin.as_name()))); } let def_map = from.def_map(db); let crate_root = def_map.crate_root(db); // - if the item is a module, jump straight to module search if let ItemInNs::Types(ModuleDefId::ModuleId(module_id)) = item { let mut visited_modules = FxHashSet::default(); return find_path_for_module( db, &def_map, &mut visited_modules, crate_root, from, module_id, MAX_PATH_LEN, prefixed, prefer_no_std || db.crate_supports_no_std(crate_root.krate), ); } // - if the item is already in scope, return the name under which it is let scope_name = find_in_scope(db, &def_map, from, item); if prefixed.is_none() { if let Some(scope_name) = scope_name { return Some(ModPath::from_segments(PathKind::Plain, Some(scope_name))); } } // - if the item is in the prelude, return the name from there if let value @ Some(_) = find_in_prelude(db, &crate_root.def_map(db), &def_map, item, from) { return value; } if let Some(ModuleDefId::EnumVariantId(variant)) = item.as_module_def_id() { // - if the item is an enum variant, refer to it via the enum if let Some(mut path) = find_path_inner( db, ItemInNs::Types(variant.parent.into()), from, prefixed, prefer_no_std, ) { let data = db.enum_data(variant.parent); path.push_segment(data.variants[variant.local_id].name.clone()); return Some(path); } // If this doesn't work, it seems we have no way of referring to the // enum; that's very weird, but there might still be a reexport of the // variant somewhere } let mut visited_modules = FxHashSet::default(); calculate_best_path( db, &def_map, &mut visited_modules, crate_root, MAX_PATH_LEN, item, from, prefixed, prefer_no_std || db.crate_supports_no_std(crate_root.krate), scope_name, ) } fn find_path_for_module( db: &dyn DefDatabase, def_map: &DefMap, visited_modules: &mut FxHashSet, crate_root: ModuleId, from: ModuleId, module_id: ModuleId, max_len: usize, prefixed: Option, prefer_no_std: bool, ) -> Option { if max_len == 0 { return None; } // Base cases: // - if the item is already in scope, return the name under which it is let scope_name = find_in_scope(db, def_map, from, ItemInNs::Types(module_id.into())); if prefixed.is_none() { if let Some(scope_name) = scope_name { return Some(ModPath::from_segments(PathKind::Plain, Some(scope_name))); } } // - if the item is the crate root, return `crate` if module_id == crate_root { return Some(ModPath::from_segments(PathKind::Crate, None)); } // - if relative paths are fine, check if we are searching for a parent if prefixed.filter(PrefixKind::is_absolute).is_none() { if let modpath @ Some(_) = find_self_super(def_map, module_id, from) { return modpath; } } // - if the item is the crate root of a dependency crate, return the name from the extern prelude let root_def_map = crate_root.def_map(db); for (name, &def_id) in root_def_map.extern_prelude() { if module_id == def_id { let name = scope_name.unwrap_or_else(|| name.clone()); let name_already_occupied_in_type_ns = def_map .with_ancestor_maps(db, from.local_id, &mut |def_map, local_id| { def_map[local_id] .scope .type_(&name) .filter(|&(id, _)| id != ModuleDefId::ModuleId(def_id)) }) .is_some(); let kind = if name_already_occupied_in_type_ns { cov_mark::hit!(ambiguous_crate_start); PathKind::Abs } else { PathKind::Plain }; return Some(ModPath::from_segments(kind, Some(name))); } } if let value @ Some(_) = find_in_prelude(db, &root_def_map, &def_map, ItemInNs::Types(module_id.into()), from) { return value; } calculate_best_path( db, def_map, visited_modules, crate_root, max_len, ItemInNs::Types(module_id.into()), from, prefixed, prefer_no_std, scope_name, ) } fn find_in_scope( db: &dyn DefDatabase, def_map: &DefMap, from: ModuleId, item: ItemInNs, ) -> Option { def_map.with_ancestor_maps(db, from.local_id, &mut |def_map, local_id| { def_map[local_id].scope.name_of(item).map(|(name, _)| name.clone()) }) } /// Returns single-segment path (i.e. without any prefix) if `item` is found in prelude and its /// name doesn't clash in current scope. fn find_in_prelude( db: &dyn DefDatabase, root_def_map: &DefMap, local_def_map: &DefMap, item: ItemInNs, from: ModuleId, ) -> Option { let prelude_module = root_def_map.prelude()?; // Preludes in block DefMaps are ignored, only the crate DefMap is searched let prelude_def_map = prelude_module.def_map(db); let prelude_scope = &prelude_def_map[prelude_module.local_id].scope; let (name, vis) = prelude_scope.name_of(item)?; if !vis.is_visible_from(db, from) { return None; } // Check if the name is in current scope and it points to the same def. let found_and_same_def = local_def_map.with_ancestor_maps(db, from.local_id, &mut |def_map, local_id| { let per_ns = def_map[local_id].scope.get(name); let same_def = match item { ItemInNs::Types(it) => per_ns.take_types()? == it, ItemInNs::Values(it) => per_ns.take_values()? == it, ItemInNs::Macros(it) => per_ns.take_macros()? == it, }; Some(same_def) }); if found_and_same_def.unwrap_or(true) { Some(ModPath::from_segments(PathKind::Plain, Some(name.clone()))) } else { None } } fn find_self_super(def_map: &DefMap, item: ModuleId, from: ModuleId) -> Option { if item == from { // - if the item is the module we're in, use `self` Some(ModPath::from_segments(PathKind::Super(0), None)) } else if let Some(parent_id) = def_map[from.local_id].parent { // - if the item is the parent module, use `super` (this is not used recursively, since `super::super` is ugly) let parent_id = def_map.module_id(parent_id); if item == parent_id { Some(ModPath::from_segments(PathKind::Super(1), None)) } else { None } } else { None } } fn calculate_best_path( db: &dyn DefDatabase, def_map: &DefMap, visited_modules: &mut FxHashSet, crate_root: ModuleId, max_len: usize, item: ItemInNs, from: ModuleId, mut prefixed: Option, prefer_no_std: bool, scope_name: Option, ) -> Option { if max_len <= 1 { return None; } let mut best_path = None; // Recursive case: // - otherwise, look for modules containing (reexporting) it and import it from one of those if item.krate(db) == Some(from.krate) { let mut best_path_len = max_len; // Item was defined in the same crate that wants to import it. It cannot be found in any // dependency in this case. for (module_id, name) in find_local_import_locations(db, item, from) { if !visited_modules.insert(module_id) { cov_mark::hit!(recursive_imports); continue; } if let Some(mut path) = find_path_for_module( db, def_map, visited_modules, crate_root, from, module_id, best_path_len - 1, prefixed, prefer_no_std, ) { path.push_segment(name); let new_path = match best_path { Some(best_path) => select_best_path(best_path, path, prefer_no_std), None => path, }; best_path_len = new_path.len(); best_path = Some(new_path); } } } else { // Item was defined in some upstream crate. This means that it must be exported from one, // too (unless we can't name it at all). It could *also* be (re)exported by the same crate // that wants to import it here, but we always prefer to use the external path here. let crate_graph = db.crate_graph(); let extern_paths = crate_graph[from.krate].dependencies.iter().filter_map(|dep| { let import_map = db.import_map(dep.crate_id); import_map.import_info_for(item).and_then(|info| { // Determine best path for containing module and append last segment from `info`. // FIXME: we should guide this to look up the path locally, or from the same crate again? let mut path = find_path_for_module( db, def_map, visited_modules, crate_root, from, info.container, max_len - 1, prefixed, prefer_no_std, )?; cov_mark::hit!(partially_imported); path.push_segment(info.path.segments.last()?.clone()); Some(path) }) }); for path in extern_paths { let new_path = match best_path { Some(best_path) => select_best_path(best_path, path, prefer_no_std), None => path, }; best_path = Some(new_path); } } if let Some(module) = item.module(db) { if module.def_map(db).block_id().is_some() && prefixed.is_some() { cov_mark::hit!(prefixed_in_block_expression); prefixed = Some(PrefixKind::Plain); } } match prefixed.map(PrefixKind::prefix) { Some(prefix) => best_path.or_else(|| { scope_name.map(|scope_name| ModPath::from_segments(prefix, Some(scope_name))) }), None => best_path, } } fn select_best_path(old_path: ModPath, new_path: ModPath, prefer_no_std: bool) -> ModPath { const STD_CRATES: [Name; 3] = [known::std, known::core, known::alloc]; match (old_path.segments().first(), new_path.segments().first()) { (Some(old), Some(new)) if STD_CRATES.contains(old) && STD_CRATES.contains(new) => { let rank = match prefer_no_std { false => |name: &Name| match name { name if name == &known::core => 0, name if name == &known::alloc => 0, name if name == &known::std => 1, _ => unreachable!(), }, true => |name: &Name| match name { name if name == &known::core => 2, name if name == &known::alloc => 1, name if name == &known::std => 0, _ => unreachable!(), }, }; let nrank = rank(new); let orank = rank(old); match nrank.cmp(&orank) { Ordering::Less => old_path, Ordering::Equal => { if new_path.len() < old_path.len() { new_path } else { old_path } } Ordering::Greater => new_path, } } _ => { if new_path.len() < old_path.len() { new_path } else { old_path } } } } // FIXME: Remove allocations /// Finds locations in `from.krate` from which `item` can be imported by `from`. fn find_local_import_locations( db: &dyn DefDatabase, item: ItemInNs, from: ModuleId, ) -> Vec<(ModuleId, Name)> { let _p = profile::span("find_local_import_locations"); // `from` can import anything below `from` with visibility of at least `from`, and anything // above `from` with any visibility. That means we do not need to descend into private siblings // of `from` (and similar). let def_map = from.def_map(db); // Compute the initial worklist. We start with all direct child modules of `from` as well as all // of its (recursive) parent modules. let data = &def_map[from.local_id]; let mut worklist = data.children.values().map(|child| def_map.module_id(*child)).collect::>(); // FIXME: do we need to traverse out of block expressions here? for ancestor in iter::successors(from.containing_module(db), |m| m.containing_module(db)) { worklist.push(ancestor); } let def_map = def_map.crate_root(db).def_map(db); let mut seen: FxHashSet<_> = FxHashSet::default(); let mut locations = Vec::new(); while let Some(module) = worklist.pop() { if !seen.insert(module) { continue; // already processed this module } let ext_def_map; let data = if module.krate == from.krate { if module.block.is_some() { // Re-query the block's DefMap ext_def_map = module.def_map(db); &ext_def_map[module.local_id] } else { // Reuse the root DefMap &def_map[module.local_id] } } else { // The crate might reexport a module defined in another crate. ext_def_map = module.def_map(db); &ext_def_map[module.local_id] }; if let Some((name, vis)) = data.scope.name_of(item) { if vis.is_visible_from(db, from) { let is_private = match vis { Visibility::Module(private_to) => private_to.local_id == module.local_id, Visibility::Public => false, }; let is_original_def = match item.as_module_def_id() { Some(module_def_id) => data.scope.declarations().any(|it| it == module_def_id), None => false, }; // Ignore private imports. these could be used if we are // in a submodule of this module, but that's usually not // what the user wants; and if this module can import // the item and we're a submodule of it, so can we. // Also this keeps the cached data smaller. if !is_private || is_original_def { locations.push((module, name.clone())); } } } // Descend into all modules visible from `from`. for (ty, vis) in data.scope.types() { if let ModuleDefId::ModuleId(module) = ty { if vis.is_visible_from(db, from) { worklist.push(module); } } } } locations } #[cfg(test)] mod tests { use base_db::fixture::WithFixture; use hir_expand::hygiene::Hygiene; use syntax::ast::AstNode; use crate::test_db::TestDB; use super::*; /// `code` needs to contain a cursor marker; checks that `find_path` for the /// item the `path` refers to returns that same path when called from the /// module the cursor is in. fn check_found_path_(ra_fixture: &str, path: &str, prefix_kind: Option) { let (db, pos) = TestDB::with_position(ra_fixture); let module = db.module_at_position(pos); let parsed_path_file = syntax::SourceFile::parse(&format!("use {path};")); let ast_path = parsed_path_file.syntax_node().descendants().find_map(syntax::ast::Path::cast).unwrap(); let mod_path = ModPath::from_src(&db, ast_path, &Hygiene::new_unhygienic()).unwrap(); let def_map = module.def_map(&db); let resolved = def_map .resolve_path( &db, module.local_id, &mod_path, crate::item_scope::BuiltinShadowMode::Module, ) .0 .take_types() .unwrap(); let found_path = find_path_inner(&db, ItemInNs::Types(resolved), module, prefix_kind, false); assert_eq!(found_path, Some(mod_path), "{prefix_kind:?}"); } fn check_found_path( ra_fixture: &str, unprefixed: &str, prefixed: &str, absolute: &str, self_prefixed: &str, ) { check_found_path_(ra_fixture, unprefixed, None); check_found_path_(ra_fixture, prefixed, Some(PrefixKind::Plain)); check_found_path_(ra_fixture, absolute, Some(PrefixKind::ByCrate)); check_found_path_(ra_fixture, self_prefixed, Some(PrefixKind::BySelf)); } #[test] fn same_module() { check_found_path( r#" struct S; $0 "#, "S", "S", "crate::S", "self::S", ); } #[test] fn enum_variant() { check_found_path( r#" enum E { A } $0 "#, "E::A", "E::A", "crate::E::A", "self::E::A", ); } #[test] fn sub_module() { check_found_path( r#" mod foo { pub struct S; } $0 "#, "foo::S", "foo::S", "crate::foo::S", "self::foo::S", ); } #[test] fn super_module() { check_found_path( r#" //- /main.rs mod foo; //- /foo.rs mod bar; struct S; //- /foo/bar.rs $0 "#, "super::S", "super::S", "crate::foo::S", "super::S", ); } #[test] fn self_module() { check_found_path( r#" //- /main.rs mod foo; //- /foo.rs $0 "#, "self", "self", "crate::foo", "self", ); } #[test] fn crate_root() { check_found_path( r#" //- /main.rs mod foo; //- /foo.rs $0 "#, "crate", "crate", "crate", "crate", ); } #[test] fn same_crate() { check_found_path( r#" //- /main.rs mod foo; struct S; //- /foo.rs $0 "#, "crate::S", "crate::S", "crate::S", "crate::S", ); } #[test] fn different_crate() { check_found_path( r#" //- /main.rs crate:main deps:std $0 //- /std.rs crate:std pub struct S; "#, "std::S", "std::S", "std::S", "std::S", ); } #[test] fn different_crate_renamed() { check_found_path( r#" //- /main.rs crate:main deps:std extern crate std as std_renamed; $0 //- /std.rs crate:std pub struct S; "#, "std_renamed::S", "std_renamed::S", "std_renamed::S", "std_renamed::S", ); } #[test] fn partially_imported() { cov_mark::check!(partially_imported); // Tests that short paths are used even for external items, when parts of the path are // already in scope. check_found_path( r#" //- /main.rs crate:main deps:syntax use syntax::ast; $0 //- /lib.rs crate:syntax pub mod ast { pub enum ModuleItem { A, B, C, } } "#, "ast::ModuleItem", "syntax::ast::ModuleItem", "syntax::ast::ModuleItem", "syntax::ast::ModuleItem", ); check_found_path( r#" //- /main.rs crate:main deps:syntax $0 //- /lib.rs crate:syntax pub mod ast { pub enum ModuleItem { A, B, C, } } "#, "syntax::ast::ModuleItem", "syntax::ast::ModuleItem", "syntax::ast::ModuleItem", "syntax::ast::ModuleItem", ); } #[test] fn same_crate_reexport() { check_found_path( r#" mod bar { mod foo { pub(super) struct S; } pub(crate) use foo::*; } $0 "#, "bar::S", "bar::S", "crate::bar::S", "self::bar::S", ); } #[test] fn same_crate_reexport_rename() { check_found_path( r#" mod bar { mod foo { pub(super) struct S; } pub(crate) use foo::S as U; } $0 "#, "bar::U", "bar::U", "crate::bar::U", "self::bar::U", ); } #[test] fn different_crate_reexport() { check_found_path( r#" //- /main.rs crate:main deps:std $0 //- /std.rs crate:std deps:core pub use core::S; //- /core.rs crate:core pub struct S; "#, "std::S", "std::S", "std::S", "std::S", ); } #[test] fn prelude() { check_found_path( r#" //- /main.rs crate:main deps:std $0 //- /std.rs crate:std pub mod prelude { pub mod rust_2018 { pub struct S; } } "#, "S", "S", "S", "S", ); } #[test] fn shadowed_prelude() { check_found_path( r#" //- /main.rs crate:main deps:std struct S; $0 //- /std.rs crate:std pub mod prelude { pub mod rust_2018 { pub struct S; } } "#, "std::prelude::rust_2018::S", "std::prelude::rust_2018::S", "std::prelude::rust_2018::S", "std::prelude::rust_2018::S", ); } #[test] fn imported_prelude() { check_found_path( r#" //- /main.rs crate:main deps:std use S; $0 //- /std.rs crate:std pub mod prelude { pub mod rust_2018 { pub struct S; } } "#, "S", "S", "S", "S", ); } #[test] fn enum_variant_from_prelude() { let code = r#" //- /main.rs crate:main deps:std $0 //- /std.rs crate:std pub mod prelude { pub mod rust_2018 { pub enum Option { Some(T), None } pub use Option::*; } } "#; check_found_path(code, "None", "None", "None", "None"); check_found_path(code, "Some", "Some", "Some", "Some"); } #[test] fn shortest_path() { check_found_path( r#" //- /main.rs pub mod foo; pub mod baz; struct S; $0 //- /foo.rs pub mod bar { pub struct S; } //- /baz.rs pub use crate::foo::bar::S; "#, "baz::S", "baz::S", "crate::baz::S", "self::baz::S", ); } #[test] fn discount_private_imports() { check_found_path( r#" //- /main.rs mod foo; pub mod bar { pub struct S; } use bar::S; //- /foo.rs $0 "#, // crate::S would be shorter, but using private imports seems wrong "crate::bar::S", "crate::bar::S", "crate::bar::S", "crate::bar::S", ); } #[test] fn import_cycle() { check_found_path( r#" //- /main.rs pub mod foo; pub mod bar; pub mod baz; //- /bar.rs $0 //- /foo.rs pub use super::baz; pub struct S; //- /baz.rs pub use super::foo; "#, "crate::foo::S", "crate::foo::S", "crate::foo::S", "crate::foo::S", ); } #[test] fn prefer_std_paths_over_alloc() { check_found_path( r#" //- /main.rs crate:main deps:alloc,std $0 //- /std.rs crate:std deps:alloc pub mod sync { pub use alloc::sync::Arc; } //- /zzz.rs crate:alloc pub mod sync { pub struct Arc; } "#, "std::sync::Arc", "std::sync::Arc", "std::sync::Arc", "std::sync::Arc", ); } #[test] fn prefer_core_paths_over_std() { check_found_path( r#" //- /main.rs crate:main deps:core,std #![no_std] $0 //- /std.rs crate:std deps:core pub mod fmt { pub use core::fmt::Error; } //- /zzz.rs crate:core pub mod fmt { pub struct Error; } "#, "core::fmt::Error", "core::fmt::Error", "core::fmt::Error", "core::fmt::Error", ); // Should also work (on a best-effort basis) if `no_std` is conditional. check_found_path( r#" //- /main.rs crate:main deps:core,std #![cfg_attr(not(test), no_std)] $0 //- /std.rs crate:std deps:core pub mod fmt { pub use core::fmt::Error; } //- /zzz.rs crate:core pub mod fmt { pub struct Error; } "#, "core::fmt::Error", "core::fmt::Error", "core::fmt::Error", "core::fmt::Error", ); } #[test] fn prefer_alloc_paths_over_std() { check_found_path( r#" //- /main.rs crate:main deps:alloc,std #![no_std] $0 //- /std.rs crate:std deps:alloc pub mod sync { pub use alloc::sync::Arc; } //- /zzz.rs crate:alloc pub mod sync { pub struct Arc; } "#, "alloc::sync::Arc", "alloc::sync::Arc", "alloc::sync::Arc", "alloc::sync::Arc", ); } #[test] fn prefer_shorter_paths_if_not_alloc() { check_found_path( r#" //- /main.rs crate:main deps:megaalloc,std $0 //- /std.rs crate:std deps:megaalloc pub mod sync { pub use megaalloc::sync::Arc; } //- /zzz.rs crate:megaalloc pub struct Arc; "#, "megaalloc::Arc", "megaalloc::Arc", "megaalloc::Arc", "megaalloc::Arc", ); } #[test] fn builtins_are_in_scope() { let code = r#" $0 pub mod primitive { pub use u8; } "#; check_found_path(code, "u8", "u8", "u8", "u8"); check_found_path(code, "u16", "u16", "u16", "u16"); } #[test] fn inner_items() { check_found_path( r#" fn main() { struct Inner {} $0 } "#, "Inner", "Inner", "Inner", "Inner", ); } #[test] fn inner_items_from_outer_scope() { check_found_path( r#" fn main() { struct Struct {} { $0 } } "#, "Struct", "Struct", "Struct", "Struct", ); } #[test] fn inner_items_from_inner_module() { cov_mark::check!(prefixed_in_block_expression); check_found_path( r#" fn main() { mod module { struct Struct {} } { $0 } } "#, "module::Struct", "module::Struct", "module::Struct", "module::Struct", ); } #[test] fn outer_items_with_inner_items_present() { check_found_path( r#" mod module { pub struct CompleteMe; } fn main() { fn inner() {} $0 } "#, // FIXME: these could use fewer/better prefixes "module::CompleteMe", "crate::module::CompleteMe", "crate::module::CompleteMe", "crate::module::CompleteMe", ) } #[test] fn from_inside_module() { // This worked correctly, but the test suite logic was broken. cov_mark::check!(submodule_in_testdb); check_found_path( r#" mod baz { pub struct Foo {} } mod bar { fn bar() { $0 } } "#, "crate::baz::Foo", "crate::baz::Foo", "crate::baz::Foo", "crate::baz::Foo", ) } #[test] fn from_inside_module_with_inner_items() { check_found_path( r#" mod baz { pub struct Foo {} } mod bar { fn bar() { fn inner() {} $0 } } "#, "crate::baz::Foo", "crate::baz::Foo", "crate::baz::Foo", "crate::baz::Foo", ) } #[test] fn recursive_pub_mod_reexport() { cov_mark::check!(recursive_imports); check_found_path( r#" fn main() { let _ = 22_i32.as_name$0(); } pub mod name { pub trait AsName { fn as_name(&self) -> String; } impl AsName for i32 { fn as_name(&self) -> String { format!("Name: {}", self) } } pub use crate::name; } "#, "name::AsName", "name::AsName", "crate::name::AsName", "self::name::AsName", ); } #[test] fn extern_crate() { check_found_path( r#" //- /main.rs crate:main deps:dep $0 //- /dep.rs crate:dep "#, "dep", "dep", "dep", "dep", ); check_found_path( r#" //- /main.rs crate:main deps:dep fn f() { fn inner() {} $0 } //- /dep.rs crate:dep "#, "dep", "dep", "dep", "dep", ); } #[test] fn prelude_with_inner_items() { check_found_path( r#" //- /main.rs crate:main deps:std fn f() { fn inner() {} $0 } //- /std.rs crate:std pub mod prelude { pub mod rust_2018 { pub enum Option { None } pub use Option::*; } } "#, "None", "None", "None", "None", ); } }