// Copyright 2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! The AST pointer //! //! Provides `P`, a frozen owned smart pointer, as a replacement for `@T` in //! the AST. //! //! # Motivations and benefits //! //! * **Identity**: sharing AST nodes is problematic for the various analysis //! passes (e.g. one may be able to bypass the borrow checker with a shared //! `ExprAddrOf` node taking a mutable borrow). The only reason `@T` in the //! AST hasn't caused issues is because of inefficient folding passes which //! would always deduplicate any such shared nodes. Even if the AST were to //! switch to an arena, this would still hold, i.e. it couldn't use `&'a T`, //! but rather a wrapper like `P<'a, T>`. //! //! * **Immutability**: `P` disallows mutating its inner `T`, unlike `Box` //! (unless it contains an `Unsafe` interior, but that may be denied later). //! This mainly prevents mistakes, but can also enforces a kind of "purity". //! //! * **Efficiency**: folding can reuse allocation space for `P` and `Vec`, //! the latter even when the input and output types differ (as it would be the //! case with arenas or a GADT AST using type parameters to toggle features). //! //! * **Maintainability**: `P` provides a fixed interface - `Deref`, //! `and_then` and `map` - which can remain fully functional even if the //! implementation changes (using a special thread-local heap, for example). //! Moreover, a switch to, e.g. `P<'a, T>` would be easy and mostly automated. use std::fmt::{self, Display, Debug}; use std::iter::FromIterator; use std::ops::Deref; use std::{ptr, slice, vec}; use serialize::{Encodable, Decodable, Encoder, Decoder}; /// An owned smart pointer. #[derive(Hash, PartialEq, Eq, PartialOrd, Ord)] pub struct P { ptr: Box } #[allow(non_snake_case)] /// Construct a `P` from a `T` value. pub fn P(value: T) -> P { P { ptr: Box::new(value) } } impl P { /// Move out of the pointer. /// Intended for chaining transformations not covered by `map`. pub fn and_then(self, f: F) -> U where F: FnOnce(T) -> U, { f(*self.ptr) } /// Transform the inner value, consuming `self` and producing a new `P`. pub fn map(mut self, f: F) -> P where F: FnOnce(T) -> T, { unsafe { let p = &mut *self.ptr; // FIXME(#5016) this shouldn't need to drop-fill to be safe. ptr::write(p, f(ptr::read_and_drop(p))); } self } } impl Deref for P { type Target = T; fn deref<'a>(&'a self) -> &'a T { &*self.ptr } } impl Clone for P { fn clone(&self) -> P { P((**self).clone()) } } impl Debug for P { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { Debug::fmt(&**self, f) } } impl Display for P { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { Display::fmt(&**self, f) } } impl fmt::Pointer for P { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Pointer::fmt(&self.ptr, f) } } impl Decodable for P { fn decode(d: &mut D) -> Result, D::Error> { Decodable::decode(d).map(P) } } impl Encodable for P { fn encode(&self, s: &mut S) -> Result<(), S::Error> { (**self).encode(s) } } impl fmt::Debug for P<[T]> { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { self.ptr.fmt(fmt) } } impl P<[T]> { pub fn new() -> P<[T]> { P::empty() } pub fn empty() -> P<[T]> { P { ptr: Default::default() } } #[inline(never)] pub fn from_vec(v: Vec) -> P<[T]> { P { ptr: v.into_boxed_slice() } } #[inline(never)] pub fn into_vec(self) -> Vec { self.ptr.into_vec() } pub fn as_slice<'a>(&'a self) -> &'a [T] { &*self.ptr } pub fn move_iter(self) -> vec::IntoIter { self.into_vec().into_iter() } pub fn map U>(&self, f: F) -> P<[U]> { self.iter().map(f).collect() } } impl Deref for P<[T]> { type Target = [T]; fn deref(&self) -> &[T] { self.as_slice() } } impl Default for P<[T]> { fn default() -> P<[T]> { P::empty() } } impl Clone for P<[T]> { fn clone(&self) -> P<[T]> { P::from_vec(self.to_vec()) } } impl From> for P<[T]> { fn from(v: Vec) -> Self { P::from_vec(v) } } impl Into> for P<[T]> { fn into(self) -> Vec { self.into_vec() } } impl FromIterator for P<[T]> { fn from_iter>(iter: I) -> P<[T]> { P::from_vec(iter.into_iter().collect()) } } impl IntoIterator for P<[T]> { type Item = T; type IntoIter = vec::IntoIter; fn into_iter(self) -> Self::IntoIter { self.into_vec().into_iter() } } impl<'a, T> IntoIterator for &'a P<[T]> { type Item = &'a T; type IntoIter = slice::Iter<'a, T>; fn into_iter(self) -> Self::IntoIter { self.ptr.into_iter() } } impl Encodable for P<[T]> { fn encode(&self, s: &mut S) -> Result<(), S::Error> { Encodable::encode(&**self, s) } } impl Decodable for P<[T]> { fn decode(d: &mut D) -> Result, D::Error> { Ok(P::from_vec(match Decodable::decode(d) { Ok(t) => t, Err(e) => return Err(e) })) } }