//! A number of passes which remove various redundancies in the CFG. //! //! The `SimplifyCfg` pass gets rid of unnecessary blocks in the CFG, whereas the `SimplifyLocals` //! gets rid of all the unnecessary local variable declarations. //! //! The `SimplifyLocals` pass is kinda expensive and therefore not very suitable to be run often. //! Most of the passes should not care or be impacted in meaningful ways due to extra locals //! either, so running the pass once, right before codegen, should suffice. //! //! On the other side of the spectrum, the `SimplifyCfg` pass is considerably cheap to run, thus //! one should run it after every pass which may modify CFG in significant ways. This pass must //! also be run before any analysis passes because it removes dead blocks, and some of these can be //! ill-typed. //! //! The cause of this typing issue is typeck allowing most blocks whose end is not reachable have //! an arbitrary return type, rather than having the usual () return type (as a note, typeck's //! notion of reachability is in fact slightly weaker than MIR CFG reachability - see #31617). A //! standard example of the situation is: //! //! ```rust //! fn example() { //! let _a: char = { return; }; //! } //! ``` //! //! Here the block (`{ return; }`) has the return type `char`, rather than `()`, but the MIR we //! naively generate still contains the `_a = ()` write in the unreachable block "after" the //! return. use crate::transform::{MirPass, MirSource}; use rustc::mir::visit::{MutVisitor, MutatingUseContext, PlaceContext, Visitor}; use rustc::mir::*; use rustc::ty::{self, TyCtxt}; use rustc_index::bit_set::BitSet; use rustc_index::vec::{Idx, IndexVec}; use std::borrow::Cow; pub struct SimplifyCfg { label: String, } impl SimplifyCfg { pub fn new(label: &str) -> Self { SimplifyCfg { label: format!("SimplifyCfg-{}", label) } } } pub fn simplify_cfg(body: &mut BodyAndCache<'_>) { CfgSimplifier::new(body).simplify(); remove_dead_blocks(body); // FIXME: Should probably be moved into some kind of pass manager body.basic_blocks_mut().raw.shrink_to_fit(); } impl<'tcx> MirPass<'tcx> for SimplifyCfg { fn name(&self) -> Cow<'_, str> { Cow::Borrowed(&self.label) } fn run_pass(&self, _tcx: TyCtxt<'tcx>, _src: MirSource<'tcx>, body: &mut BodyAndCache<'tcx>) { debug!("SimplifyCfg({:?}) - simplifying {:?}", self.label, body); simplify_cfg(body); } } pub struct CfgSimplifier<'a, 'tcx> { basic_blocks: &'a mut IndexVec>, pred_count: IndexVec, } impl<'a, 'tcx> CfgSimplifier<'a, 'tcx> { pub fn new(body: &'a mut BodyAndCache<'tcx>) -> Self { let mut pred_count = IndexVec::from_elem(0u32, body.basic_blocks()); // we can't use mir.predecessors() here because that counts // dead blocks, which we don't want to. pred_count[START_BLOCK] = 1; for (_, data) in traversal::preorder(body) { if let Some(ref term) = data.terminator { for &tgt in term.successors() { pred_count[tgt] += 1; } } } let basic_blocks = body.basic_blocks_mut(); CfgSimplifier { basic_blocks, pred_count } } pub fn simplify(mut self) { self.strip_nops(); let mut start = START_BLOCK; let mut merged_blocks = Vec::new(); loop { let mut changed = false; self.collapse_goto_chain(&mut start, &mut changed); for bb in self.basic_blocks.indices() { if self.pred_count[bb] == 0 { continue; } debug!("simplifying {:?}", bb); let mut terminator = self.basic_blocks[bb].terminator.take().expect("invalid terminator state"); for successor in terminator.successors_mut() { self.collapse_goto_chain(successor, &mut changed); } let mut inner_changed = true; while inner_changed { inner_changed = false; inner_changed |= self.simplify_branch(&mut terminator); inner_changed |= self.merge_successor(&mut merged_blocks, &mut terminator); changed |= inner_changed; } let merged_block_count = merged_blocks.iter().map(|&i| self.basic_blocks[i].statements.len()).sum(); if merged_block_count > 0 { let mut statements = std::mem::take(&mut self.basic_blocks[bb].statements); statements.reserve(merged_block_count); for &from in &merged_blocks { statements.append(&mut self.basic_blocks[from].statements); } self.basic_blocks[bb].statements = statements; } merged_blocks.clear(); self.basic_blocks[bb].terminator = Some(terminator); changed |= inner_changed; } if !changed { break; } } if start != START_BLOCK { debug_assert!(self.pred_count[START_BLOCK] == 0); self.basic_blocks.swap(START_BLOCK, start); self.pred_count.swap(START_BLOCK, start); // pred_count == 1 if the start block has no predecessor _blocks_. if self.pred_count[START_BLOCK] > 1 { for (bb, data) in self.basic_blocks.iter_enumerated_mut() { if self.pred_count[bb] == 0 { continue; } for target in data.terminator_mut().successors_mut() { if *target == start { *target = START_BLOCK; } } } } } } // Collapse a goto chain starting from `start` fn collapse_goto_chain(&mut self, start: &mut BasicBlock, changed: &mut bool) { let mut terminator = match self.basic_blocks[*start] { BasicBlockData { ref statements, terminator: ref mut terminator @ Some(Terminator { kind: TerminatorKind::Goto { .. }, .. }), .. } if statements.is_empty() => terminator.take(), // if `terminator` is None, this means we are in a loop. In that // case, let all the loop collapse to its entry. _ => return, }; let target = match terminator { Some(Terminator { kind: TerminatorKind::Goto { ref mut target }, .. }) => { self.collapse_goto_chain(target, changed); *target } _ => unreachable!(), }; self.basic_blocks[*start].terminator = terminator; debug!("collapsing goto chain from {:?} to {:?}", *start, target); *changed |= *start != target; if self.pred_count[*start] == 1 { // This is the last reference to *start, so the pred-count to // to target is moved into the current block. self.pred_count[*start] = 0; } else { self.pred_count[target] += 1; self.pred_count[*start] -= 1; } *start = target; } // merge a block with 1 `goto` predecessor to its parent fn merge_successor( &mut self, merged_blocks: &mut Vec, terminator: &mut Terminator<'tcx>, ) -> bool { let target = match terminator.kind { TerminatorKind::Goto { target } if self.pred_count[target] == 1 => target, _ => return false, }; debug!("merging block {:?} into {:?}", target, terminator); *terminator = match self.basic_blocks[target].terminator.take() { Some(terminator) => terminator, None => { // unreachable loop - this should not be possible, as we // don't strand blocks, but handle it correctly. return false; } }; merged_blocks.push(target); self.pred_count[target] = 0; true } // turn a branch with all successors identical to a goto fn simplify_branch(&mut self, terminator: &mut Terminator<'tcx>) -> bool { match terminator.kind { TerminatorKind::SwitchInt { .. } => {} _ => return false, }; let first_succ = { if let Some(&first_succ) = terminator.successors().nth(0) { if terminator.successors().all(|s| *s == first_succ) { let count = terminator.successors().count(); self.pred_count[first_succ] -= (count - 1) as u32; first_succ } else { return false; } } else { return false; } }; debug!("simplifying branch {:?}", terminator); terminator.kind = TerminatorKind::Goto { target: first_succ }; true } fn strip_nops(&mut self) { for blk in self.basic_blocks.iter_mut() { blk.statements .retain(|stmt| if let StatementKind::Nop = stmt.kind { false } else { true }) } } } pub fn remove_dead_blocks(body: &mut BodyAndCache<'_>) { let mut seen = BitSet::new_empty(body.basic_blocks().len()); for (bb, _) in traversal::preorder(body) { seen.insert(bb.index()); } let basic_blocks = body.basic_blocks_mut(); let num_blocks = basic_blocks.len(); let mut replacements: Vec<_> = (0..num_blocks).map(BasicBlock::new).collect(); let mut used_blocks = 0; for alive_index in seen.iter() { replacements[alive_index] = BasicBlock::new(used_blocks); if alive_index != used_blocks { // Swap the next alive block data with the current available slot. Since // alive_index is non-decreasing this is a valid operation. basic_blocks.raw.swap(alive_index, used_blocks); } used_blocks += 1; } basic_blocks.raw.truncate(used_blocks); for block in basic_blocks { for target in block.terminator_mut().successors_mut() { *target = replacements[target.index()]; } } } pub struct SimplifyLocals; impl<'tcx> MirPass<'tcx> for SimplifyLocals { fn run_pass(&self, tcx: TyCtxt<'tcx>, source: MirSource<'tcx>, body: &mut BodyAndCache<'tcx>) { trace!("running SimplifyLocals on {:?}", source); let locals = { let read_only_cache = read_only!(body); let mut marker = DeclMarker { locals: BitSet::new_empty(body.local_decls.len()), body }; marker.visit_body(read_only_cache); // Return pointer and arguments are always live marker.locals.insert(RETURN_PLACE); for arg in body.args_iter() { marker.locals.insert(arg); } marker.locals }; let map = make_local_map(&mut body.local_decls, locals); // Update references to all vars and tmps now LocalUpdater { map, tcx }.visit_body(body); body.local_decls.shrink_to_fit(); } } /// Construct the mapping while swapping out unused stuff out from the `vec`. fn make_local_map( vec: &mut IndexVec, mask: BitSet, ) -> IndexVec> { let mut map: IndexVec> = IndexVec::from_elem(None, &*vec); let mut used = Local::new(0); for alive_index in mask.iter() { map[alive_index] = Some(used); if alive_index != used { vec.swap(alive_index, used); } used.increment_by(1); } vec.truncate(used.index()); map } struct DeclMarker<'a, 'tcx> { pub locals: BitSet, pub body: &'a Body<'tcx>, } impl<'a, 'tcx> Visitor<'tcx> for DeclMarker<'a, 'tcx> { fn visit_local(&mut self, local: &Local, ctx: PlaceContext, location: Location) { // Ignore storage markers altogether, they get removed along with their otherwise unused // decls. // FIXME: Extend this to all non-uses. if ctx.is_storage_marker() { return; } // Ignore stores of constants because `ConstProp` and `CopyProp` can remove uses of many // of these locals. However, if the local is still needed, then it will be referenced in // another place and we'll mark it as being used there. if ctx == PlaceContext::MutatingUse(MutatingUseContext::Store) || ctx == PlaceContext::MutatingUse(MutatingUseContext::Projection) { let block = &self.body.basic_blocks()[location.block]; if location.statement_index != block.statements.len() { let stmt = &block.statements[location.statement_index]; if let StatementKind::Assign(box (p, Rvalue::Use(Operand::Constant(c)))) = &stmt.kind { match c.literal.val { // Keep assignments from unevaluated constants around, since the evaluation // may report errors, even if the use of the constant is dead code. ty::ConstKind::Unevaluated(..) => {} _ => { if !p.is_indirect() { trace!("skipping store of const value {:?} to {:?}", c, p); return; } } } } } } self.locals.insert(*local); } } struct LocalUpdater<'tcx> { map: IndexVec>, tcx: TyCtxt<'tcx>, } impl<'tcx> MutVisitor<'tcx> for LocalUpdater<'tcx> { fn tcx(&self) -> TyCtxt<'tcx> { self.tcx } fn visit_basic_block_data(&mut self, block: BasicBlock, data: &mut BasicBlockData<'tcx>) { // Remove unnecessary StorageLive and StorageDead annotations. data.statements.retain(|stmt| match &stmt.kind { StatementKind::StorageLive(l) | StatementKind::StorageDead(l) => self.map[*l].is_some(), StatementKind::Assign(box (place, _)) => self.map[place.local].is_some(), _ => true, }); self.super_basic_block_data(block, data); } fn visit_local(&mut self, l: &mut Local, _: PlaceContext, _: Location) { *l = self.map[*l].unwrap(); } fn process_projection_elem(&mut self, elem: &PlaceElem<'tcx>) -> Option> { match elem { PlaceElem::Index(local) => Some(PlaceElem::Index(self.map[*local].unwrap())), _ => None, } } }