import syntax::ast; import driver::session::session; import lib::llvm::{ValueRef, TypeRef}; import back::abi; import base::{call_memmove, INIT, copy_val, load_if_immediate, get_tydesc, sub_block, do_spill_noroot, dest, non_gc_box_cast, move_val, lval_owned}; import syntax::codemap::span; import shape::llsize_of; import build::*; import common::*; import util::ppaux::ty_to_str; // Boxed vector types are in some sense currently a "shorthand" for a box // containing an unboxed vector. This expands a boxed vector type into such an // expanded type. It doesn't respect mutability, but that doesn't matter at // this point. fn expand_boxed_vec_ty(tcx: ty::ctxt, t: ty::t) -> ty::t { let unit_ty = ty::sequence_element_type(tcx, t); let unboxed_vec_ty = ty::mk_mut_unboxed_vec(tcx, unit_ty); match ty::get(t).struct { ty::ty_estr(ty::vstore_uniq) | ty::ty_evec(_, ty::vstore_uniq) => { ty::mk_imm_uniq(tcx, unboxed_vec_ty) } ty::ty_estr(ty::vstore_box) | ty::ty_evec(_, ty::vstore_box) => { ty::mk_imm_box(tcx, unboxed_vec_ty) } _ => tcx.sess.bug(~"non boxed-vec type \ in tvec::expand_boxed_vec_ty") } } fn get_fill(bcx: block, vptr: ValueRef) -> ValueRef { let _icx = bcx.insn_ctxt("tvec::get_fill"); Load(bcx, GEPi(bcx, vptr, ~[0u, abi::vec_elt_fill])) } fn set_fill(bcx: block, vptr: ValueRef, fill: ValueRef) { Store(bcx, fill, GEPi(bcx, vptr, ~[0u, abi::vec_elt_fill])); } fn get_alloc(bcx: block, vptr: ValueRef) -> ValueRef { Load(bcx, GEPi(bcx, vptr, ~[0u, abi::vec_elt_alloc])) } fn get_bodyptr(bcx: block, vptr: ValueRef) -> ValueRef { non_gc_box_cast(bcx, GEPi(bcx, vptr, ~[0u, abi::box_field_body])) } fn get_dataptr(bcx: block, vptr: ValueRef) -> ValueRef { let _icx = bcx.insn_ctxt("tvec::get_dataptr"); GEPi(bcx, vptr, ~[0u, abi::vec_elt_elems, 0u]) } fn pointer_add(bcx: block, ptr: ValueRef, bytes: ValueRef) -> ValueRef { let _icx = bcx.insn_ctxt("tvec::pointer_add"); let old_ty = val_ty(ptr); let bptr = PointerCast(bcx, ptr, T_ptr(T_i8())); return PointerCast(bcx, InBoundsGEP(bcx, bptr, ~[bytes]), old_ty); } fn alloc_raw(bcx: block, unit_ty: ty::t, fill: ValueRef, alloc: ValueRef, heap: heap) -> result { let _icx = bcx.insn_ctxt("tvec::alloc_uniq"); let ccx = bcx.ccx(); let vecbodyty = ty::mk_mut_unboxed_vec(bcx.tcx(), unit_ty); let vecsize = Add(bcx, alloc, llsize_of(ccx, ccx.opaque_vec_type)); let {bcx, box, body} = base::malloc_general_dyn(bcx, vecbodyty, heap, vecsize); Store(bcx, fill, GEPi(bcx, body, ~[0u, abi::vec_elt_fill])); Store(bcx, alloc, GEPi(bcx, body, ~[0u, abi::vec_elt_alloc])); return {bcx: bcx, val: box}; } fn alloc_uniq_raw(bcx: block, unit_ty: ty::t, fill: ValueRef, alloc: ValueRef) -> result { alloc_raw(bcx, unit_ty, fill, alloc, heap_exchange) } fn alloc_vec(bcx: block, unit_ty: ty::t, elts: uint, heap: heap) -> result { let _icx = bcx.insn_ctxt("tvec::alloc_uniq"); let ccx = bcx.ccx(); let llunitty = type_of::type_of(ccx, unit_ty); let unit_sz = llsize_of(ccx, llunitty); let fill = Mul(bcx, C_uint(ccx, elts), unit_sz); let alloc = if elts < 4u { Mul(bcx, C_int(ccx, 4), unit_sz) } else { fill }; let {bcx: bcx, val: vptr} = alloc_raw(bcx, unit_ty, fill, alloc, heap); return {bcx: bcx, val: vptr}; } fn duplicate_uniq(bcx: block, vptr: ValueRef, vec_ty: ty::t) -> result { let _icx = bcx.insn_ctxt("tvec::duplicate_uniq"); let fill = get_fill(bcx, get_bodyptr(bcx, vptr)); let unit_ty = ty::sequence_element_type(bcx.tcx(), vec_ty); let {bcx, val: newptr} = alloc_uniq_raw(bcx, unit_ty, fill, fill); let data_ptr = get_dataptr(bcx, get_bodyptr(bcx, vptr)); let new_data_ptr = get_dataptr(bcx, get_bodyptr(bcx, newptr)); call_memmove(bcx, new_data_ptr, data_ptr, fill); let bcx = if ty::type_needs_drop(bcx.tcx(), unit_ty) { iter_vec_raw(bcx, new_data_ptr, vec_ty, fill, base::take_ty) } else { bcx }; return rslt(bcx, newptr); } fn make_drop_glue_unboxed(bcx: block, vptr: ValueRef, vec_ty: ty::t) -> block { let _icx = bcx.insn_ctxt("tvec::make_drop_glue_unboxed"); let tcx = bcx.tcx(), unit_ty = ty::sequence_element_type(tcx, vec_ty); if ty::type_needs_drop(tcx, unit_ty) { iter_vec_unboxed(bcx, vptr, vec_ty, base::drop_ty) } else { bcx } } enum evec_elements { individual_evec(~[@ast::expr]), repeating_evec(@ast::expr, uint) } fn trans_evec(bcx: block, elements: evec_elements, vst: ast::vstore, id: ast::node_id, dest: dest) -> block { let _icx = bcx.insn_ctxt("tvec::trans_evec"); let ccx = bcx.ccx(); let mut bcx = bcx; // Handle the ignored case. if dest == base::ignore { match elements { individual_evec(args) => { for vec::each(args) |arg| { bcx = base::trans_expr(bcx, arg, base::ignore); } } repeating_evec(element, _) => { bcx = base::trans_expr(bcx, element, base::ignore); } } return bcx; } // Figure out the number of elements we need. let count; match elements { individual_evec(args) => count = args.len(), repeating_evec(_, len) => count = len } let vec_ty = node_id_type(bcx, id); let unit_ty = ty::sequence_element_type(bcx.tcx(), vec_ty); let llunitty = type_of::type_of(ccx, unit_ty); let unit_sz = llsize_of(ccx, llunitty); let mut {bcx, val, dataptr} = match vst { ast::vstore_fixed(_) => { // Destination should be pre-allocated for us. let v = match dest { base::save_in(v) => { PointerCast(bcx, v, T_ptr(llunitty)) } _ => { bcx.ccx().sess.bug(~"bad dest for vstore_fixed \ in tvec::trans_evec"); } }; {bcx: bcx, val: v, dataptr: v} } ast::vstore_slice(_) => { // Make a fake type to use for the cleanup let ty = ty::mk_evec(bcx.tcx(), {ty: unit_ty, mutbl: ast::m_mutbl}, ty::vstore_fixed(count)); let llty = T_ptr(type_of::type_of(bcx.ccx(), ty)); let n = C_uint(ccx, count); let vp = base::arrayalloca(bcx, llunitty, n); // Cast to the fake type we told cleanup to expect. let vp0 = BitCast(bcx, vp, llty); add_clean(bcx, vp0, ty); let len = Mul(bcx, n, unit_sz); let p = base::alloca(bcx, T_struct(~[T_ptr(llunitty), ccx.int_type])); Store(bcx, vp, GEPi(bcx, p, ~[0u, abi::slice_elt_base])); Store(bcx, len, GEPi(bcx, p, ~[0u, abi::slice_elt_len])); {bcx: bcx, val: p, dataptr: vp} } ast::vstore_uniq => { let {bcx, val} = alloc_vec(bcx, unit_ty, count, heap_exchange); add_clean_free(bcx, val, heap_exchange); let dataptr = get_dataptr(bcx, get_bodyptr(bcx, val)); {bcx: bcx, val: val, dataptr: dataptr} } ast::vstore_box => { let {bcx, val} = alloc_vec(bcx, unit_ty, count, heap_shared); add_clean_free(bcx, val, heap_shared); let dataptr = get_dataptr(bcx, get_bodyptr(bcx, val)); {bcx: bcx, val: val, dataptr: dataptr} } }; // Store the individual elements. let mut i = 0u, temp_cleanups = ~[val]; debug!{"trans_evec: v: %s, dataptr: %s", val_str(ccx.tn, val), val_str(ccx.tn, dataptr)}; match elements { individual_evec(args) => { for vec::each(args) |e| { let lleltptr = InBoundsGEP(bcx, dataptr, ~[C_uint(ccx, i)]); bcx = base::trans_expr_save_in(bcx, e, lleltptr); add_clean_temp_mem(bcx, lleltptr, unit_ty); vec::push(temp_cleanups, lleltptr); i += 1u; } } repeating_evec(e, len) => { // We make temporary space in the hope that this will be // friendlier to LLVM alias analysis. let lltmpspace = base::alloca(bcx, llunitty); bcx = base::trans_expr_save_in(bcx, e, lltmpspace); add_clean_temp_mem(bcx, lltmpspace, unit_ty); vec::push(temp_cleanups, lltmpspace); for len.timesi |i| { let lleltptr = InBoundsGEP(bcx, dataptr, ~[C_uint(ccx, i)]); if i == len - 1 { // Move the last one in. bcx = move_val(bcx, INIT, lleltptr, lval_owned(bcx, lltmpspace), unit_ty); } else { // Copy all but the last one in. let llval = load_if_immediate(bcx, lltmpspace, unit_ty); bcx = copy_val(bcx, INIT, lleltptr, llval, unit_ty); } add_clean_temp_mem(bcx, lleltptr, unit_ty); vec::push(temp_cleanups, lleltptr); } } } for vec::each(temp_cleanups) |cln| { revoke_clean(bcx, cln); } match vst { ast::vstore_fixed(_) => { // We wrote into the destination in the fixed case. return bcx; } ast::vstore_slice(_) => { return base::store_in_dest(bcx, Load(bcx, val), dest); } _ => { return base::store_in_dest(bcx, val, dest); } } } fn trans_vstore(bcx: block, e: @ast::expr, v: ast::vstore, dest: dest) -> block { match e.node { ast::expr_lit(@{node: ast::lit_str(s), span: _}) => { return trans_estr(bcx, s, some(v), dest); } ast::expr_vec(es, mutbl) => { return trans_evec(bcx, individual_evec(es), v, e.id, dest); } ast::expr_repeat(element, count_expr, mutbl) => { let count = ty::eval_repeat_count(bcx.tcx(), count_expr, e.span); return trans_evec(bcx, repeating_evec(element, count), v, e.id, dest); } _ => { bcx.sess().span_bug(e.span, ~"vstore on non-sequence type"); } } } fn get_base_and_len(cx: block, v: ValueRef, e_ty: ty::t) -> (ValueRef, ValueRef) { let ccx = cx.ccx(); let tcx = ccx.tcx; let vec_ty = ty::type_autoderef(tcx, e_ty); let unit_ty = ty::sequence_element_type(tcx, vec_ty); let llunitty = type_of::type_of(ccx, unit_ty); let unit_sz = llsize_of(ccx, llunitty); let vstore = match ty::get(vec_ty).struct { ty::ty_estr(vst) | ty::ty_evec(_, vst) => vst, _ => ty::vstore_uniq }; match vstore { ty::vstore_fixed(n) => { let base = GEPi(cx, v, ~[0u, 0u]); let n = if ty::type_is_str(e_ty) { n + 1u } else { n }; let len = Mul(cx, C_uint(ccx, n), unit_sz); (base, len) } ty::vstore_slice(_) => { let base = Load(cx, GEPi(cx, v, ~[0u, abi::slice_elt_base])); let len = Load(cx, GEPi(cx, v, ~[0u, abi::slice_elt_len])); (base, len) } ty::vstore_uniq | ty::vstore_box => { debug!{"get_base_and_len: %s", val_str(ccx.tn, v)}; let body = tvec::get_bodyptr(cx, v); (tvec::get_dataptr(cx, body), tvec::get_fill(cx, body)) } } } fn trans_estr(bcx: block, s: @~str, vstore: option, dest: dest) -> block { let _icx = bcx.insn_ctxt("tvec::trans_estr"); if dest == base::ignore { return bcx; } let ccx = bcx.ccx(); let c = match vstore { some(ast::vstore_fixed(_)) => { // "hello"/_ => "hello"/5 => ~[i8 x 6] in llvm debug!{"trans_estr: fixed: %s", *s}; C_postr(*s) } some(ast::vstore_slice(_)) | none => { // "hello" => (*i8, 6u) in llvm debug!{"trans_estr: slice '%s'", *s}; C_estr_slice(ccx, *s) } some(ast::vstore_uniq) => { let cs = PointerCast(bcx, C_cstr(ccx, *s), T_ptr(T_i8())); let len = C_uint(ccx, str::len(*s)); let c = Call(bcx, ccx.upcalls.str_new_uniq, ~[cs, len]); PointerCast(bcx, c, T_unique_ptr(T_unique(ccx, T_vec(ccx, T_i8())))) } some(ast::vstore_box) => { let cs = PointerCast(bcx, C_cstr(ccx, *s), T_ptr(T_i8())); let len = C_uint(ccx, str::len(*s)); let c = Call(bcx, ccx.upcalls.str_new_shared, ~[cs, len]); PointerCast(bcx, c, T_box_ptr(T_box(ccx, T_vec(ccx, T_i8())))) } }; debug!{"trans_estr: type: %s", val_str(ccx.tn, c)}; base::store_in_dest(bcx, c, dest) } type val_and_ty_fn = fn@(block, ValueRef, ty::t) -> result; type iter_vec_block = fn(block, ValueRef, ty::t) -> block; fn iter_vec_raw(bcx: block, data_ptr: ValueRef, vec_ty: ty::t, fill: ValueRef, f: iter_vec_block) -> block { let _icx = bcx.insn_ctxt("tvec::iter_vec_raw"); let unit_ty = ty::sequence_element_type(bcx.tcx(), vec_ty); // Calculate the last pointer address we want to handle. // FIXME (#2536): Optimize this when the size of the unit type is // statically known to not use pointer casts, which tend to confuse // LLVM. let data_end_ptr = pointer_add(bcx, data_ptr, fill); // Now perform the iteration. let header_cx = sub_block(bcx, ~"iter_vec_loop_header"); Br(bcx, header_cx.llbb); let data_ptr = Phi(header_cx, val_ty(data_ptr), ~[data_ptr], ~[bcx.llbb]); let not_yet_at_end = ICmp(header_cx, lib::llvm::IntULT, data_ptr, data_end_ptr); let body_cx = sub_block(header_cx, ~"iter_vec_loop_body"); let next_cx = sub_block(header_cx, ~"iter_vec_next"); CondBr(header_cx, not_yet_at_end, body_cx.llbb, next_cx.llbb); let body_cx = f(body_cx, data_ptr, unit_ty); AddIncomingToPhi(data_ptr, InBoundsGEP(body_cx, data_ptr, ~[C_int(bcx.ccx(), 1)]), body_cx.llbb); Br(body_cx, header_cx.llbb); return next_cx; } fn iter_vec_uniq(bcx: block, vptr: ValueRef, vec_ty: ty::t, fill: ValueRef, f: iter_vec_block) -> block { let _icx = bcx.insn_ctxt("tvec::iter_vec_uniq"); let data_ptr = get_dataptr(bcx, get_bodyptr(bcx, vptr)); iter_vec_raw(bcx, data_ptr, vec_ty, fill, f) } fn iter_vec_unboxed(bcx: block, body_ptr: ValueRef, vec_ty: ty::t, f: iter_vec_block) -> block { let _icx = bcx.insn_ctxt("tvec::iter_vec_unboxed"); let fill = get_fill(bcx, body_ptr); let dataptr = get_dataptr(bcx, body_ptr); return iter_vec_raw(bcx, dataptr, vec_ty, fill, f); } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: //