// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. /*! Composable external iterators The `Iterator` trait defines an interface for objects which implement iteration as a state machine. Algorithms like `zip` are provided as `Iterator` implementations which wrap other objects implementing the `Iterator` trait. */ use cmp; use iter::Times; use num::{Zero, One}; use option::{Option, Some, None}; use ops::{Add, Mul}; use cmp::Ord; use clone::Clone; use uint; /// Conversion from an `Iterator` pub trait FromIterator> { /// Build a container with elements from an external iterator. fn from_iterator(iterator: &mut T) -> Self; } /// A type growable from an `Iterator` implementation pub trait Extendable>: FromIterator { /// Extend a container with the elements yielded by an iterator fn extend(&mut self, iterator: &mut T); } /// An interface for dealing with "external iterators". These types of iterators /// can be resumed at any time as all state is stored internally as opposed to /// being located on the call stack. pub trait Iterator { /// Advance the iterator and return the next value. Return `None` when the end is reached. fn next(&mut self) -> Option; /// Return a lower bound and upper bound on the remaining length of the iterator. /// /// The common use case for the estimate is pre-allocating space to store the results. fn size_hint(&self) -> (uint, Option) { (0, None) } } /// A range iterator able to yield elements from both ends pub trait DoubleEndedIterator: Iterator { /// Yield an element from the end of the range, returning `None` if the range is empty. fn next_back(&mut self) -> Option; } /// An object implementing random access indexing by `uint` /// /// A `RandomAccessIterator` should be either infinite or a `DoubleEndedIterator`. pub trait RandomAccessIterator: Iterator { /// Return the number of indexable elements. At most `std::uint::max_value` /// elements are indexable, even if the iterator represents a longer range. fn indexable(&self) -> uint; /// Return an element at an index fn idx(&self, index: uint) -> Option; } /// Iterator adaptors provided for every `DoubleEndedIterator` implementation. /// /// In the future these will be default methods instead of a utility trait. pub trait DoubleEndedIteratorUtil { /// Flip the direction of the iterator fn invert(self) -> InvertIterator; } /// Iterator adaptors provided for every `DoubleEndedIterator` implementation. /// /// In the future these will be default methods instead of a utility trait. impl> DoubleEndedIteratorUtil for T { /// Flip the direction of the iterator #[inline] fn invert(self) -> InvertIterator { InvertIterator{iter: self} } } /// An double-ended iterator with the direction inverted #[deriving(Clone)] pub struct InvertIterator { priv iter: T } impl> Iterator for InvertIterator { #[inline] fn next(&mut self) -> Option { self.iter.next_back() } #[inline] fn size_hint(&self) -> (uint, Option) { self.iter.size_hint() } } impl> DoubleEndedIterator for InvertIterator { #[inline] fn next_back(&mut self) -> Option { self.iter.next() } } /// Iterator adaptors provided for every `Iterator` implementation. The adaptor objects are also /// implementations of the `Iterator` trait. /// /// In the future these will be default methods instead of a utility trait. pub trait IteratorUtil { /// Chain this iterator with another, returning a new iterator which will /// finish iterating over the current iterator, and then it will iterate /// over the other specified iterator. /// /// # Example /// /// ~~~ {.rust} /// let a = [0]; /// let b = [1]; /// let mut it = a.iter().chain_(b.iter()); /// assert_eq!(it.next().get(), &0); /// assert_eq!(it.next().get(), &1); /// assert!(it.next().is_none()); /// ~~~ fn chain_>(self, other: U) -> ChainIterator; /// Creates an iterator which iterates over both this and the specified /// iterators simultaneously, yielding the two elements as pairs. When /// either iterator returns None, all further invocations of next() will /// return None. /// /// # Example /// /// ~~~ {.rust} /// let a = [0]; /// let b = [1]; /// let mut it = a.iter().zip(b.iter()); /// assert_eq!(it.next().get(), (&0, &1)); /// assert!(it.next().is_none()); /// ~~~ fn zip>(self, other: U) -> ZipIterator; // FIXME: #5898: should be called map /// Creates a new iterator which will apply the specified function to each /// element returned by the first, yielding the mapped element instead. /// /// # Example /// /// ~~~ {.rust} /// let a = [1, 2]; /// let mut it = a.iter().transform(|&x| 2 * x); /// assert_eq!(it.next().get(), 2); /// assert_eq!(it.next().get(), 4); /// assert!(it.next().is_none()); /// ~~~ fn transform<'r, B>(self, f: &'r fn(A) -> B) -> MapIterator<'r, A, B, Self>; /// Creates an iterator which applies the predicate to each element returned /// by this iterator. Only elements which have the predicate evaluate to /// `true` will be yielded. /// /// # Example /// /// ~~~ {.rust} /// let a = [1, 2]; /// let mut it = a.iter().filter(|&x| *x > 1); /// assert_eq!(it.next().get(), &2); /// assert!(it.next().is_none()); /// ~~~ fn filter<'r>(self, predicate: &'r fn(&A) -> bool) -> FilterIterator<'r, A, Self>; /// Creates an iterator which both filters and maps elements. /// If the specified function returns None, the element is skipped. /// Otherwise the option is unwrapped and the new value is yielded. /// /// # Example /// /// ~~~ {.rust} /// let a = [1, 2]; /// let mut it = a.iter().filter_map(|&x| if x > 1 {Some(2 * x)} else {None}); /// assert_eq!(it.next().get(), 4); /// assert!(it.next().is_none()); /// ~~~ fn filter_map<'r, B>(self, f: &'r fn(A) -> Option) -> FilterMapIterator<'r, A, B, Self>; /// Creates an iterator which yields a pair of the value returned by this /// iterator plus the current index of iteration. /// /// # Example /// /// ~~~ {.rust} /// let a = [100, 200]; /// let mut it = a.iter().enumerate(); /// assert_eq!(it.next().get(), (0, &100)); /// assert_eq!(it.next().get(), (1, &200)); /// assert!(it.next().is_none()); /// ~~~ fn enumerate(self) -> EnumerateIterator; /// Creates an iterator which invokes the predicate on elements until it /// returns false. Once the predicate returns false, all further elements are /// yielded. /// /// # Example /// /// ~~~ {.rust} /// let a = [1, 2, 3, 2, 1]; /// let mut it = a.iter().skip_while(|&a| *a < 3); /// assert_eq!(it.next().get(), &3); /// assert_eq!(it.next().get(), &2); /// assert_eq!(it.next().get(), &1); /// assert!(it.next().is_none()); /// ~~~ fn skip_while<'r>(self, predicate: &'r fn(&A) -> bool) -> SkipWhileIterator<'r, A, Self>; /// Creates an iterator which yields elements so long as the predicate /// returns true. After the predicate returns false for the first time, no /// further elements will be yielded. /// /// # Example /// /// ~~~ {.rust} /// let a = [1, 2, 3, 2, 1]; /// let mut it = a.iter().take_while(|&a| *a < 3); /// assert_eq!(it.next().get(), &1); /// assert_eq!(it.next().get(), &2); /// assert!(it.next().is_none()); /// ~~~ fn take_while<'r>(self, predicate: &'r fn(&A) -> bool) -> TakeWhileIterator<'r, A, Self>; /// Creates an iterator which skips the first `n` elements of this iterator, /// and then it yields all further items. /// /// # Example /// /// ~~~ {.rust} /// let a = [1, 2, 3, 4, 5]; /// let mut it = a.iter().skip(3); /// assert_eq!(it.next().get(), &4); /// assert_eq!(it.next().get(), &5); /// assert!(it.next().is_none()); /// ~~~ fn skip(self, n: uint) -> SkipIterator; // FIXME: #5898: should be called take /// Creates an iterator which yields the first `n` elements of this /// iterator, and then it will always return None. /// /// # Example /// /// ~~~ {.rust} /// let a = [1, 2, 3, 4, 5]; /// let mut it = a.iter().take_(3); /// assert_eq!(it.next().get(), &1); /// assert_eq!(it.next().get(), &2); /// assert_eq!(it.next().get(), &3); /// assert!(it.next().is_none()); /// ~~~ fn take_(self, n: uint) -> TakeIterator; /// Creates a new iterator which behaves in a similar fashion to foldl. /// There is a state which is passed between each iteration and can be /// mutated as necessary. The yielded values from the closure are yielded /// from the ScanIterator instance when not None. /// /// # Example /// /// ~~~ {.rust} /// let a = [1, 2, 3, 4, 5]; /// let mut it = a.iter().scan(1, |fac, &x| { /// *fac = *fac * x; /// Some(*fac) /// }); /// assert_eq!(it.next().get(), 1); /// assert_eq!(it.next().get(), 2); /// assert_eq!(it.next().get(), 6); /// assert_eq!(it.next().get(), 24); /// assert_eq!(it.next().get(), 120); /// assert!(it.next().is_none()); /// ~~~ fn scan<'r, St, B>(self, initial_state: St, f: &'r fn(&mut St, A) -> Option) -> ScanIterator<'r, A, B, Self, St>; /// Creates an iterator that maps each element to an iterator, /// and yields the elements of the produced iterators /// /// # Example /// /// ~~~ {.rust} /// let xs = [2u, 3]; /// let ys = [0u, 1, 0, 1, 2]; /// let mut it = xs.iter().flat_map_(|&x| Counter::new(0u, 1).take_(x)); /// // Check that `it` has the same elements as `ys` /// let mut i = 0; /// for it.advance |x: uint| { /// assert_eq!(x, ys[i]); /// i += 1; /// } /// ~~~ // FIXME: #5898: should be called `flat_map` fn flat_map_<'r, B, U: Iterator>(self, f: &'r fn(A) -> U) -> FlatMapIterator<'r, A, Self, U>; /// Creates an iterator that calls a function with a reference to each /// element before yielding it. This is often useful for debugging an /// iterator pipeline. /// /// # Example /// /// ~~~ {.rust} ///let xs = [1u, 4, 2, 3, 8, 9, 6]; ///let sum = xs.iter() /// .transform(|&x| x) /// .peek_(|&x| debug!("filtering %u", x)) /// .filter(|&x| x % 2 == 0) /// .peek_(|&x| debug!("%u made it through", x)) /// .sum(); ///println(sum.to_str()); /// ~~~ // FIXME: #5898: should be called `peek` fn peek_<'r>(self, f: &'r fn(&A)) -> PeekIterator<'r, A, Self>; /// An adaptation of an external iterator to the for-loop protocol of rust. /// /// # Example /// /// ~~~ {.rust} /// use std::iterator::Counter; /// /// for Counter::new(0, 10).advance |i| { /// printfln!("%d", i); /// } /// ~~~ fn advance(&mut self, f: &fn(A) -> bool) -> bool; /// Loops through the entire iterator, collecting all of the elements into /// a container implementing `FromIterator`. /// /// # Example /// /// ~~~ {.rust} /// let a = [1, 2, 3, 4, 5]; /// let b: ~[int] = a.iter().transform(|&x| x).collect(); /// assert!(a == b); /// ~~~ fn collect>(&mut self) -> B; /// Loops through the entire iterator, collecting all of the elements into /// a unique vector. This is simply collect() specialized for vectors. /// /// # Example /// /// ~~~ {.rust} /// let a = [1, 2, 3, 4, 5]; /// let b: ~[int] = a.iter().transform(|&x| x).to_owned_vec(); /// assert!(a == b); /// ~~~ fn to_owned_vec(&mut self) -> ~[A]; /// Loops through `n` iterations, returning the `n`th element of the /// iterator. /// /// # Example /// /// ~~~ {.rust} /// let a = [1, 2, 3, 4, 5]; /// let mut it = a.iter(); /// assert!(it.nth(2).get() == &3); /// assert!(it.nth(2) == None); /// ~~~ fn nth(&mut self, n: uint) -> Option; /// Loops through the entire iterator, returning the last element of the /// iterator. /// /// # Example /// /// ~~~ {.rust} /// let a = [1, 2, 3, 4, 5]; /// assert!(a.iter().last().get() == &5); /// ~~~ // FIXME: #5898: should be called `last` fn last_(&mut self) -> Option; /// Performs a fold operation over the entire iterator, returning the /// eventual state at the end of the iteration. /// /// # Example /// /// ~~~ {.rust} /// let a = [1, 2, 3, 4, 5]; /// assert!(a.iter().fold(0, |a, &b| a + b) == 15); /// ~~~ fn fold(&mut self, start: B, f: &fn(B, A) -> B) -> B; // FIXME: #5898: should be called len /// Counts the number of elements in this iterator. /// /// # Example /// /// ~~~ {.rust} /// let a = [1, 2, 3, 4, 5]; /// let mut it = a.iter(); /// assert!(it.len_() == 5); /// assert!(it.len_() == 0); /// ~~~ fn len_(&mut self) -> uint; /// Tests whether the predicate holds true for all elements in the iterator. /// /// # Example /// /// ~~~ {.rust} /// let a = [1, 2, 3, 4, 5]; /// assert!(a.iter().all(|&x| *x > 0)); /// assert!(!a.iter().all(|&x| *x > 2)); /// ~~~ fn all(&mut self, f: &fn(A) -> bool) -> bool; /// Tests whether any element of an iterator satisfies the specified /// predicate. /// /// # Example /// /// ~~~ {.rust} /// let a = [1, 2, 3, 4, 5]; /// let mut it = a.iter(); /// assert!(it.any(|&x| *x == 3)); /// assert!(!it.any(|&x| *x == 3)); /// ~~~ fn any(&mut self, f: &fn(A) -> bool) -> bool; /// Return the first element satisfying the specified predicate fn find_(&mut self, predicate: &fn(&A) -> bool) -> Option; /// Return the index of the first element satisfying the specified predicate fn position(&mut self, predicate: &fn(A) -> bool) -> Option; /// Count the number of elements satisfying the specified predicate fn count(&mut self, predicate: &fn(A) -> bool) -> uint; /// Return the element that gives the maximum value from the specfied function /// /// # Example /// /// ~~~ {.rust} /// let xs = [-3, 0, 1, 5, -10]; /// assert_eq!(*xs.iter().max_by(|x| x.abs()).unwrap(), -10); /// ~~~ fn max_by(&mut self, f: &fn(&A) -> B) -> Option; /// Return the element that gives the minimum value from the specfied function /// /// # Example /// /// ~~~ {.rust} /// let xs = [-3, 0, 1, 5, -10]; /// assert_eq!(*xs.iter().min_by(|x| x.abs()).unwrap(), 0); /// ~~~ fn min_by(&mut self, f: &fn(&A) -> B) -> Option; } /// Iterator adaptors provided for every `Iterator` implementation. The adaptor objects are also /// implementations of the `Iterator` trait. /// /// In the future these will be default methods instead of a utility trait. impl> IteratorUtil for T { #[inline] fn chain_>(self, other: U) -> ChainIterator { ChainIterator{a: self, b: other, flag: false} } #[inline] fn zip>(self, other: U) -> ZipIterator { ZipIterator{a: self, b: other} } // FIXME: #5898: should be called map #[inline] fn transform<'r, B>(self, f: &'r fn(A) -> B) -> MapIterator<'r, A, B, T> { MapIterator{iter: self, f: f} } #[inline] fn filter<'r>(self, predicate: &'r fn(&A) -> bool) -> FilterIterator<'r, A, T> { FilterIterator{iter: self, predicate: predicate} } #[inline] fn filter_map<'r, B>(self, f: &'r fn(A) -> Option) -> FilterMapIterator<'r, A, B, T> { FilterMapIterator { iter: self, f: f } } #[inline] fn enumerate(self) -> EnumerateIterator { EnumerateIterator{iter: self, count: 0} } #[inline] fn skip_while<'r>(self, predicate: &'r fn(&A) -> bool) -> SkipWhileIterator<'r, A, T> { SkipWhileIterator{iter: self, flag: false, predicate: predicate} } #[inline] fn take_while<'r>(self, predicate: &'r fn(&A) -> bool) -> TakeWhileIterator<'r, A, T> { TakeWhileIterator{iter: self, flag: false, predicate: predicate} } #[inline] fn skip(self, n: uint) -> SkipIterator { SkipIterator{iter: self, n: n} } // FIXME: #5898: should be called take #[inline] fn take_(self, n: uint) -> TakeIterator { TakeIterator{iter: self, n: n} } #[inline] fn scan<'r, St, B>(self, initial_state: St, f: &'r fn(&mut St, A) -> Option) -> ScanIterator<'r, A, B, T, St> { ScanIterator{iter: self, f: f, state: initial_state} } #[inline] fn flat_map_<'r, B, U: Iterator>(self, f: &'r fn(A) -> U) -> FlatMapIterator<'r, A, T, U> { FlatMapIterator{iter: self, f: f, subiter: None } } // FIXME: #5898: should be called `peek` #[inline] fn peek_<'r>(self, f: &'r fn(&A)) -> PeekIterator<'r, A, T> { PeekIterator{iter: self, f: f} } /// A shim implementing the `for` loop iteration protocol for iterator objects #[inline] fn advance(&mut self, f: &fn(A) -> bool) -> bool { loop { match self.next() { Some(x) => { if !f(x) { return false; } } None => { return true; } } } } #[inline] fn collect>(&mut self) -> B { FromIterator::from_iterator(self) } #[inline] fn to_owned_vec(&mut self) -> ~[A] { self.collect() } /// Return the `n`th item yielded by an iterator. #[inline] fn nth(&mut self, mut n: uint) -> Option { loop { match self.next() { Some(x) => if n == 0 { return Some(x) }, None => return None } n -= 1; } } /// Return the last item yielded by an iterator. #[inline] fn last_(&mut self) -> Option { let mut last = None; for self.advance |x| { last = Some(x); } last } /// Reduce an iterator to an accumulated value #[inline] fn fold(&mut self, init: B, f: &fn(B, A) -> B) -> B { let mut accum = init; loop { match self.next() { Some(x) => { accum = f(accum, x); } None => { break; } } } accum } /// Count the number of items yielded by an iterator #[inline] fn len_(&mut self) -> uint { self.fold(0, |cnt, _x| cnt + 1) } #[inline] fn all(&mut self, f: &fn(A) -> bool) -> bool { for self.advance |x| { if !f(x) { return false; } } true } #[inline] fn any(&mut self, f: &fn(A) -> bool) -> bool { for self.advance |x| { if f(x) { return true; } } false } /// Return the first element satisfying the specified predicate #[inline] fn find_(&mut self, predicate: &fn(&A) -> bool) -> Option { for self.advance |x| { if predicate(&x) { return Some(x) } } None } /// Return the index of the first element satisfying the specified predicate #[inline] fn position(&mut self, predicate: &fn(A) -> bool) -> Option { let mut i = 0; for self.advance |x| { if predicate(x) { return Some(i); } i += 1; } None } #[inline] fn count(&mut self, predicate: &fn(A) -> bool) -> uint { let mut i = 0; for self.advance |x| { if predicate(x) { i += 1 } } i } #[inline] fn max_by(&mut self, f: &fn(&A) -> B) -> Option { self.fold(None, |max: Option<(A, B)>, x| { let x_val = f(&x); match max { None => Some((x, x_val)), Some((y, y_val)) => if x_val > y_val { Some((x, x_val)) } else { Some((y, y_val)) } } }).map_consume(|(x, _)| x) } #[inline] fn min_by(&mut self, f: &fn(&A) -> B) -> Option { self.fold(None, |min: Option<(A, B)>, x| { let x_val = f(&x); match min { None => Some((x, x_val)), Some((y, y_val)) => if x_val < y_val { Some((x, x_val)) } else { Some((y, y_val)) } } }).map_consume(|(x, _)| x) } } /// A trait for iterators over elements which can be added together pub trait AdditiveIterator { /// Iterates over the entire iterator, summing up all the elements /// /// # Example /// /// ~~~ {.rust} /// let a = [1, 2, 3, 4, 5]; /// let mut it = a.iter().transform(|&x| x); /// assert!(it.sum() == 15); /// ~~~ fn sum(&mut self) -> A; } impl + Zero, T: Iterator> AdditiveIterator for T { #[inline] fn sum(&mut self) -> A { self.fold(Zero::zero::(), |s, x| s + x) } } /// A trait for iterators over elements whose elements can be multiplied /// together. pub trait MultiplicativeIterator { /// Iterates over the entire iterator, multiplying all the elements /// /// # Example /// /// ~~~ {.rust} /// use std::iterator::Counter; /// /// fn factorial(n: uint) -> uint { /// Counter::new(1u, 1).take_while(|&i| i <= n).product() /// } /// assert!(factorial(0) == 1); /// assert!(factorial(1) == 1); /// assert!(factorial(5) == 120); /// ~~~ fn product(&mut self) -> A; } impl + One, T: Iterator> MultiplicativeIterator for T { #[inline] fn product(&mut self) -> A { self.fold(One::one::(), |p, x| p * x) } } /// A trait for iterators over elements which can be compared to one another. /// The type of each element must ascribe to the `Ord` trait. pub trait OrdIterator { /// Consumes the entire iterator to return the maximum element. /// /// # Example /// /// ~~~ {.rust} /// let a = [1, 2, 3, 4, 5]; /// assert!(a.iter().max().get() == &5); /// ~~~ fn max(&mut self) -> Option; /// Consumes the entire iterator to return the minimum element. /// /// # Example /// /// ~~~ {.rust} /// let a = [1, 2, 3, 4, 5]; /// assert!(a.iter().min().get() == &1); /// ~~~ fn min(&mut self) -> Option; } impl> OrdIterator for T { #[inline] fn max(&mut self) -> Option { self.fold(None, |max, x| { match max { None => Some(x), Some(y) => Some(cmp::max(x, y)) } }) } #[inline] fn min(&mut self) -> Option { self.fold(None, |min, x| { match min { None => Some(x), Some(y) => Some(cmp::min(x, y)) } }) } } /// A trait for iterators that are clonable. pub trait ClonableIterator { /// Repeats an iterator endlessly /// /// # Example /// /// ~~~ {.rust} /// let a = Counter::new(1,1).take_(1); /// let mut cy = a.cycle(); /// assert_eq!(cy.next(), Some(1)); /// assert_eq!(cy.next(), Some(1)); /// ~~~ fn cycle(self) -> CycleIterator; } impl> ClonableIterator for T { #[inline] fn cycle(self) -> CycleIterator { CycleIterator{orig: self.clone(), iter: self} } } /// An iterator that repeats endlessly #[deriving(Clone)] pub struct CycleIterator { priv orig: T, priv iter: T, } impl> Iterator for CycleIterator { #[inline] fn next(&mut self) -> Option { match self.iter.next() { None => { self.iter = self.orig.clone(); self.iter.next() } y => y } } #[inline] fn size_hint(&self) -> (uint, Option) { // the cycle iterator is either empty or infinite match self.orig.size_hint() { sz @ (0, Some(0)) => sz, (0, _) => (0, None), _ => (uint::max_value, None) } } } /// An iterator which strings two iterators together #[deriving(Clone)] pub struct ChainIterator { priv a: T, priv b: U, priv flag: bool } impl, U: Iterator> Iterator for ChainIterator { #[inline] fn next(&mut self) -> Option { if self.flag { self.b.next() } else { match self.a.next() { Some(x) => return Some(x), _ => () } self.flag = true; self.b.next() } } #[inline] fn size_hint(&self) -> (uint, Option) { let (a_lower, a_upper) = self.a.size_hint(); let (b_lower, b_upper) = self.b.size_hint(); let lower = if uint::max_value - a_lower < b_lower { uint::max_value } else { a_lower + b_lower }; let upper = match (a_upper, b_upper) { (Some(x), Some(y)) if uint::max_value - x < y => Some(uint::max_value), (Some(x), Some(y)) => Some(x + y), _ => None }; (lower, upper) } } impl, U: DoubleEndedIterator> DoubleEndedIterator for ChainIterator { #[inline] fn next_back(&mut self) -> Option { match self.b.next_back() { Some(x) => Some(x), None => self.a.next_back() } } } impl, U: RandomAccessIterator> RandomAccessIterator for ChainIterator { #[inline] fn indexable(&self) -> uint { let (a, b) = (self.a.indexable(), self.b.indexable()); let total = a + b; if total < a || total < b { uint::max_value } else { total } } #[inline] fn idx(&self, index: uint) -> Option { let len = self.a.indexable(); if index < len { self.a.idx(index) } else { self.b.idx(index - len) } } } /// An iterator which iterates two other iterators simultaneously #[deriving(Clone)] pub struct ZipIterator { priv a: T, priv b: U } impl, U: Iterator> Iterator<(A, B)> for ZipIterator { #[inline] fn next(&mut self) -> Option<(A, B)> { match (self.a.next(), self.b.next()) { (Some(x), Some(y)) => Some((x, y)), _ => None } } #[inline] fn size_hint(&self) -> (uint, Option) { let (a_lower, a_upper) = self.a.size_hint(); let (b_lower, b_upper) = self.b.size_hint(); let lower = cmp::min(a_lower, b_lower); let upper = match (a_upper, b_upper) { (Some(x), Some(y)) => Some(cmp::min(x,y)), (Some(x), None) => Some(x), (None, Some(y)) => Some(y), (None, None) => None }; (lower, upper) } } /// An iterator which maps the values of `iter` with `f` pub struct MapIterator<'self, A, B, T> { priv iter: T, priv f: &'self fn(A) -> B } impl<'self, A, B, T: Iterator> Iterator for MapIterator<'self, A, B, T> { #[inline] fn next(&mut self) -> Option { match self.iter.next() { Some(a) => Some((self.f)(a)), _ => None } } #[inline] fn size_hint(&self) -> (uint, Option) { self.iter.size_hint() } } impl<'self, A, B, T: DoubleEndedIterator> DoubleEndedIterator for MapIterator<'self, A, B, T> { #[inline] fn next_back(&mut self) -> Option { match self.iter.next_back() { Some(a) => Some((self.f)(a)), _ => None } } } /// An iterator which filters the elements of `iter` with `predicate` pub struct FilterIterator<'self, A, T> { priv iter: T, priv predicate: &'self fn(&A) -> bool } impl<'self, A, T: Iterator> Iterator for FilterIterator<'self, A, T> { #[inline] fn next(&mut self) -> Option { for self.iter.advance |x| { if (self.predicate)(&x) { return Some(x); } else { loop } } None } #[inline] fn size_hint(&self) -> (uint, Option) { let (_, upper) = self.iter.size_hint(); (0, upper) // can't know a lower bound, due to the predicate } } impl<'self, A, T: DoubleEndedIterator> DoubleEndedIterator for FilterIterator<'self, A, T> { #[inline] fn next_back(&mut self) -> Option { loop { match self.iter.next_back() { None => return None, Some(x) => { if (self.predicate)(&x) { return Some(x); } else { loop } } } } } } /// An iterator which uses `f` to both filter and map elements from `iter` pub struct FilterMapIterator<'self, A, B, T> { priv iter: T, priv f: &'self fn(A) -> Option } impl<'self, A, B, T: Iterator> Iterator for FilterMapIterator<'self, A, B, T> { #[inline] fn next(&mut self) -> Option { for self.iter.advance |x| { match (self.f)(x) { Some(y) => return Some(y), None => () } } None } #[inline] fn size_hint(&self) -> (uint, Option) { let (_, upper) = self.iter.size_hint(); (0, upper) // can't know a lower bound, due to the predicate } } impl<'self, A, B, T: DoubleEndedIterator> DoubleEndedIterator for FilterMapIterator<'self, A, B, T> { #[inline] fn next_back(&mut self) -> Option { loop { match self.iter.next_back() { None => return None, Some(x) => { match (self.f)(x) { Some(y) => return Some(y), None => () } } } } } } /// An iterator which yields the current count and the element during iteration #[deriving(Clone)] pub struct EnumerateIterator { priv iter: T, priv count: uint } impl> Iterator<(uint, A)> for EnumerateIterator { #[inline] fn next(&mut self) -> Option<(uint, A)> { match self.iter.next() { Some(a) => { let ret = Some((self.count, a)); self.count += 1; ret } _ => None } } #[inline] fn size_hint(&self) -> (uint, Option) { self.iter.size_hint() } } /// An iterator which rejects elements while `predicate` is true pub struct SkipWhileIterator<'self, A, T> { priv iter: T, priv flag: bool, priv predicate: &'self fn(&A) -> bool } impl<'self, A, T: Iterator> Iterator for SkipWhileIterator<'self, A, T> { #[inline] fn next(&mut self) -> Option { let mut next = self.iter.next(); if self.flag { next } else { loop { match next { Some(x) => { if (self.predicate)(&x) { next = self.iter.next(); loop } else { self.flag = true; return Some(x) } } None => return None } } } } #[inline] fn size_hint(&self) -> (uint, Option) { let (_, upper) = self.iter.size_hint(); (0, upper) // can't know a lower bound, due to the predicate } } /// An iterator which only accepts elements while `predicate` is true pub struct TakeWhileIterator<'self, A, T> { priv iter: T, priv flag: bool, priv predicate: &'self fn(&A) -> bool } impl<'self, A, T: Iterator> Iterator for TakeWhileIterator<'self, A, T> { #[inline] fn next(&mut self) -> Option { if self.flag { None } else { match self.iter.next() { Some(x) => { if (self.predicate)(&x) { Some(x) } else { self.flag = true; None } } None => None } } } #[inline] fn size_hint(&self) -> (uint, Option) { let (_, upper) = self.iter.size_hint(); (0, upper) // can't know a lower bound, due to the predicate } } /// An iterator which skips over `n` elements of `iter`. #[deriving(Clone)] pub struct SkipIterator { priv iter: T, priv n: uint } impl> Iterator for SkipIterator { #[inline] fn next(&mut self) -> Option { let mut next = self.iter.next(); if self.n == 0 { next } else { let n = self.n; for n.times { match next { Some(_) => { next = self.iter.next(); loop } None => { self.n = 0; return None } } } self.n = 0; next } } #[inline] fn size_hint(&self) -> (uint, Option) { let (lower, upper) = self.iter.size_hint(); let lower = if lower >= self.n { lower - self.n } else { 0 }; let upper = match upper { Some(x) if x >= self.n => Some(x - self.n), Some(_) => Some(0), None => None }; (lower, upper) } } /// An iterator which only iterates over the first `n` iterations of `iter`. #[deriving(Clone)] pub struct TakeIterator { priv iter: T, priv n: uint } impl> Iterator for TakeIterator { #[inline] fn next(&mut self) -> Option { let next = self.iter.next(); if self.n != 0 { self.n -= 1; next } else { None } } #[inline] fn size_hint(&self) -> (uint, Option) { let (lower, upper) = self.iter.size_hint(); let lower = cmp::min(lower, self.n); let upper = match upper { Some(x) if x < self.n => Some(x), _ => Some(self.n) }; (lower, upper) } } /// An iterator to maintain state while iterating another iterator pub struct ScanIterator<'self, A, B, T, St> { priv iter: T, priv f: &'self fn(&mut St, A) -> Option, /// The current internal state to be passed to the closure next. state: St } impl<'self, A, B, T: Iterator, St> Iterator for ScanIterator<'self, A, B, T, St> { #[inline] fn next(&mut self) -> Option { self.iter.next().chain(|a| (self.f)(&mut self.state, a)) } #[inline] fn size_hint(&self) -> (uint, Option) { let (_, upper) = self.iter.size_hint(); (0, upper) // can't know a lower bound, due to the scan function } } /// An iterator that maps each element to an iterator, /// and yields the elements of the produced iterators /// pub struct FlatMapIterator<'self, A, T, U> { priv iter: T, priv f: &'self fn(A) -> U, priv subiter: Option, } impl<'self, A, T: Iterator, B, U: Iterator> Iterator for FlatMapIterator<'self, A, T, U> { #[inline] fn next(&mut self) -> Option { loop { for self.subiter.mut_iter().advance |inner| { for inner.advance |x| { return Some(x) } } match self.iter.next().map_consume(|x| (self.f)(x)) { None => return None, next => self.subiter = next, } } } } /// An iterator that calls a function with a reference to each /// element before yielding it. pub struct PeekIterator<'self, A, T> { priv iter: T, priv f: &'self fn(&A) } impl<'self, A, T: Iterator> Iterator for PeekIterator<'self, A, T> { #[inline] fn next(&mut self) -> Option { let next = self.iter.next(); match next { Some(ref a) => (self.f)(a), None => () } next } #[inline] fn size_hint(&self) -> (uint, Option) { self.iter.size_hint() } } impl<'self, A, T: DoubleEndedIterator> DoubleEndedIterator for PeekIterator<'self, A, T> { #[inline] fn next_back(&mut self) -> Option { let next = self.iter.next_back(); match next { Some(ref a) => (self.f)(a), None => () } next } } /// An iterator which just modifies the contained state throughout iteration. pub struct UnfoldrIterator<'self, A, St> { priv f: &'self fn(&mut St) -> Option, /// Internal state that will be yielded on the next iteration state: St } impl<'self, A, St> UnfoldrIterator<'self, A, St> { /// Creates a new iterator with the specified closure as the "iterator /// function" and an initial state to eventually pass to the iterator #[inline] pub fn new<'a>(initial_state: St, f: &'a fn(&mut St) -> Option) -> UnfoldrIterator<'a, A, St> { UnfoldrIterator { f: f, state: initial_state } } } impl<'self, A, St> Iterator for UnfoldrIterator<'self, A, St> { #[inline] fn next(&mut self) -> Option { (self.f)(&mut self.state) } } /// An infinite iterator starting at `start` and advancing by `step` with each /// iteration #[deriving(Clone)] pub struct Counter { /// The current state the counter is at (next value to be yielded) state: A, /// The amount that this iterator is stepping by step: A } impl Counter { /// Creates a new counter with the specified start/step #[inline] pub fn new(start: A, step: A) -> Counter { Counter{state: start, step: step} } } impl + Clone> Iterator for Counter { #[inline] fn next(&mut self) -> Option { let result = self.state.clone(); self.state = self.state.add(&self.step); // FIXME: #6050 Some(result) } #[inline] fn size_hint(&self) -> (uint, Option) { (uint::max_value, None) // Too bad we can't specify an infinite lower bound } } #[cfg(test)] mod tests { use super::*; use prelude::*; use uint; #[test] fn test_counter_from_iter() { let mut it = Counter::new(0, 5).take_(10); let xs: ~[int] = FromIterator::from_iterator(&mut it); assert_eq!(xs, ~[0, 5, 10, 15, 20, 25, 30, 35, 40, 45]); } #[test] fn test_iterator_chain() { let xs = [0u, 1, 2, 3, 4, 5]; let ys = [30u, 40, 50, 60]; let expected = [0, 1, 2, 3, 4, 5, 30, 40, 50, 60]; let mut it = xs.iter().chain_(ys.iter()); let mut i = 0; for it.advance |&x| { assert_eq!(x, expected[i]); i += 1; } assert_eq!(i, expected.len()); let ys = Counter::new(30u, 10).take_(4); let mut it = xs.iter().transform(|&x| x).chain_(ys); let mut i = 0; for it.advance |x| { assert_eq!(x, expected[i]); i += 1; } assert_eq!(i, expected.len()); } #[test] fn test_filter_map() { let mut it = Counter::new(0u, 1u).take_(10) .filter_map(|x| if x.is_even() { Some(x*x) } else { None }); assert_eq!(it.collect::<~[uint]>(), ~[0*0, 2*2, 4*4, 6*6, 8*8]); } #[test] fn test_iterator_enumerate() { let xs = [0u, 1, 2, 3, 4, 5]; let mut it = xs.iter().enumerate(); for it.advance |(i, &x)| { assert_eq!(i, x); } } #[test] fn test_iterator_take_while() { let xs = [0u, 1, 2, 3, 5, 13, 15, 16, 17, 19]; let ys = [0u, 1, 2, 3, 5, 13]; let mut it = xs.iter().take_while(|&x| *x < 15u); let mut i = 0; for it.advance |&x| { assert_eq!(x, ys[i]); i += 1; } assert_eq!(i, ys.len()); } #[test] fn test_iterator_skip_while() { let xs = [0u, 1, 2, 3, 5, 13, 15, 16, 17, 19]; let ys = [15, 16, 17, 19]; let mut it = xs.iter().skip_while(|&x| *x < 15u); let mut i = 0; for it.advance |&x| { assert_eq!(x, ys[i]); i += 1; } assert_eq!(i, ys.len()); } #[test] fn test_iterator_skip() { let xs = [0u, 1, 2, 3, 5, 13, 15, 16, 17, 19, 20, 30]; let ys = [13, 15, 16, 17, 19, 20, 30]; let mut it = xs.iter().skip(5); let mut i = 0; for it.advance |&x| { assert_eq!(x, ys[i]); i += 1; } assert_eq!(i, ys.len()); } #[test] fn test_iterator_take() { let xs = [0u, 1, 2, 3, 5, 13, 15, 16, 17, 19]; let ys = [0u, 1, 2, 3, 5]; let mut it = xs.iter().take_(5); let mut i = 0; for it.advance |&x| { assert_eq!(x, ys[i]); i += 1; } assert_eq!(i, ys.len()); } #[test] fn test_iterator_scan() { // test the type inference fn add(old: &mut int, new: &uint) -> Option { *old += *new as int; Some(*old as float) } let xs = [0u, 1, 2, 3, 4]; let ys = [0f, 1f, 3f, 6f, 10f]; let mut it = xs.iter().scan(0, add); let mut i = 0; for it.advance |x| { assert_eq!(x, ys[i]); i += 1; } assert_eq!(i, ys.len()); } #[test] fn test_iterator_flat_map() { let xs = [0u, 3, 6]; let ys = [0u, 1, 2, 3, 4, 5, 6, 7, 8]; let mut it = xs.iter().flat_map_(|&x| Counter::new(x, 1).take_(3)); let mut i = 0; for it.advance |x: uint| { assert_eq!(x, ys[i]); i += 1; } assert_eq!(i, ys.len()); } #[test] fn test_peek() { let xs = [1u, 2, 3, 4]; let mut n = 0; let ys = xs.iter() .transform(|&x| x) .peek_(|_| n += 1) .collect::<~[uint]>(); assert_eq!(n, xs.len()); assert_eq!(xs, ys.as_slice()); } #[test] fn test_unfoldr() { fn count(st: &mut uint) -> Option { if *st < 10 { let ret = Some(*st); *st += 1; ret } else { None } } let mut it = UnfoldrIterator::new(0, count); let mut i = 0; for it.advance |counted| { assert_eq!(counted, i); i += 1; } assert_eq!(i, 10); } #[test] fn test_cycle() { let cycle_len = 3; let it = Counter::new(0u,1).take_(cycle_len).cycle(); assert_eq!(it.size_hint(), (uint::max_value, None)); for it.take_(100).enumerate().advance |(i, x)| { assert_eq!(i % cycle_len, x); } let mut it = Counter::new(0u,1).take_(0).cycle(); assert_eq!(it.size_hint(), (0, Some(0))); assert_eq!(it.next(), None); } #[test] fn test_iterator_nth() { let v = &[0, 1, 2, 3, 4]; for uint::range(0, v.len()) |i| { assert_eq!(v.iter().nth(i).unwrap(), &v[i]); } } #[test] fn test_iterator_last() { let v = &[0, 1, 2, 3, 4]; assert_eq!(v.iter().last_().unwrap(), &4); assert_eq!(v.slice(0, 1).iter().last_().unwrap(), &0); } #[test] fn test_iterator_len() { let v = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; assert_eq!(v.slice(0, 4).iter().len_(), 4); assert_eq!(v.slice(0, 10).iter().len_(), 10); assert_eq!(v.slice(0, 0).iter().len_(), 0); } #[test] fn test_iterator_sum() { let v = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; assert_eq!(v.slice(0, 4).iter().transform(|&x| x).sum(), 6); assert_eq!(v.iter().transform(|&x| x).sum(), 55); assert_eq!(v.slice(0, 0).iter().transform(|&x| x).sum(), 0); } #[test] fn test_iterator_product() { let v = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; assert_eq!(v.slice(0, 4).iter().transform(|&x| x).product(), 0); assert_eq!(v.slice(1, 5).iter().transform(|&x| x).product(), 24); assert_eq!(v.slice(0, 0).iter().transform(|&x| x).product(), 1); } #[test] fn test_iterator_max() { let v = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; assert_eq!(v.slice(0, 4).iter().transform(|&x| x).max(), Some(3)); assert_eq!(v.iter().transform(|&x| x).max(), Some(10)); assert_eq!(v.slice(0, 0).iter().transform(|&x| x).max(), None); } #[test] fn test_iterator_min() { let v = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; assert_eq!(v.slice(0, 4).iter().transform(|&x| x).min(), Some(0)); assert_eq!(v.iter().transform(|&x| x).min(), Some(0)); assert_eq!(v.slice(0, 0).iter().transform(|&x| x).min(), None); } #[test] fn test_iterator_size_hint() { let c = Counter::new(0, 1); let v = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]; let v2 = &[10, 11, 12]; let vi = v.iter(); assert_eq!(c.size_hint(), (uint::max_value, None)); assert_eq!(vi.size_hint(), (10, Some(10))); assert_eq!(c.take_(5).size_hint(), (5, Some(5))); assert_eq!(c.skip(5).size_hint().second(), None); assert_eq!(c.take_while(|_| false).size_hint(), (0, None)); assert_eq!(c.skip_while(|_| false).size_hint(), (0, None)); assert_eq!(c.enumerate().size_hint(), (uint::max_value, None)); assert_eq!(c.chain_(vi.transform(|&i| i)).size_hint(), (uint::max_value, None)); assert_eq!(c.zip(vi).size_hint(), (10, Some(10))); assert_eq!(c.scan(0, |_,_| Some(0)).size_hint(), (0, None)); assert_eq!(c.filter(|_| false).size_hint(), (0, None)); assert_eq!(c.transform(|_| 0).size_hint(), (uint::max_value, None)); assert_eq!(c.filter_map(|_| Some(0)).size_hint(), (0, None)); assert_eq!(vi.take_(5).size_hint(), (5, Some(5))); assert_eq!(vi.take_(12).size_hint(), (10, Some(10))); assert_eq!(vi.skip(3).size_hint(), (7, Some(7))); assert_eq!(vi.skip(12).size_hint(), (0, Some(0))); assert_eq!(vi.take_while(|_| false).size_hint(), (0, Some(10))); assert_eq!(vi.skip_while(|_| false).size_hint(), (0, Some(10))); assert_eq!(vi.enumerate().size_hint(), (10, Some(10))); assert_eq!(vi.chain_(v2.iter()).size_hint(), (13, Some(13))); assert_eq!(vi.zip(v2.iter()).size_hint(), (3, Some(3))); assert_eq!(vi.scan(0, |_,_| Some(0)).size_hint(), (0, Some(10))); assert_eq!(vi.filter(|_| false).size_hint(), (0, Some(10))); assert_eq!(vi.transform(|i| i+1).size_hint(), (10, Some(10))); assert_eq!(vi.filter_map(|_| Some(0)).size_hint(), (0, Some(10))); } #[test] fn test_collect() { let a = ~[1, 2, 3, 4, 5]; let b: ~[int] = a.iter().transform(|&x| x).collect(); assert_eq!(a, b); } #[test] fn test_all() { let v = ~&[1, 2, 3, 4, 5]; assert!(v.iter().all(|&x| x < 10)); assert!(!v.iter().all(|&x| x.is_even())); assert!(!v.iter().all(|&x| x > 100)); assert!(v.slice(0, 0).iter().all(|_| fail!())); } #[test] fn test_any() { let v = ~&[1, 2, 3, 4, 5]; assert!(v.iter().any(|&x| x < 10)); assert!(v.iter().any(|&x| x.is_even())); assert!(!v.iter().any(|&x| x > 100)); assert!(!v.slice(0, 0).iter().any(|_| fail!())); } #[test] fn test_find() { let v = &[1, 3, 9, 27, 103, 14, 11]; assert_eq!(*v.iter().find_(|x| *x & 1 == 0).unwrap(), 14); assert_eq!(*v.iter().find_(|x| *x % 3 == 0).unwrap(), 3); assert!(v.iter().find_(|x| *x % 12 == 0).is_none()); } #[test] fn test_position() { let v = &[1, 3, 9, 27, 103, 14, 11]; assert_eq!(v.iter().position(|x| *x & 1 == 0).unwrap(), 5); assert_eq!(v.iter().position(|x| *x % 3 == 0).unwrap(), 1); assert!(v.iter().position(|x| *x % 12 == 0).is_none()); } #[test] fn test_count() { let xs = &[1, 2, 2, 1, 5, 9, 0, 2]; assert_eq!(xs.iter().count(|x| *x == 2), 3); assert_eq!(xs.iter().count(|x| *x == 5), 1); assert_eq!(xs.iter().count(|x| *x == 95), 0); } #[test] fn test_max_by() { let xs = [-3, 0, 1, 5, -10]; assert_eq!(*xs.iter().max_by(|x| x.abs()).unwrap(), -10); } #[test] fn test_min_by() { let xs = [-3, 0, 1, 5, -10]; assert_eq!(*xs.iter().min_by(|x| x.abs()).unwrap(), 0); } #[test] fn test_invert() { let xs = [2, 4, 6, 8, 10, 12, 14, 16]; let mut it = xs.iter(); it.next(); it.next(); assert_eq!(it.invert().transform(|&x| x).collect::<~[int]>(), ~[16, 14, 12, 10, 8, 6]); } #[test] fn test_double_ended_map() { let xs = [1, 2, 3, 4, 5, 6]; let mut it = xs.iter().transform(|&x| x * -1); assert_eq!(it.next(), Some(-1)); assert_eq!(it.next(), Some(-2)); assert_eq!(it.next_back(), Some(-6)); assert_eq!(it.next_back(), Some(-5)); assert_eq!(it.next(), Some(-3)); assert_eq!(it.next_back(), Some(-4)); assert_eq!(it.next(), None); } #[test] fn test_double_ended_filter() { let xs = [1, 2, 3, 4, 5, 6]; let mut it = xs.iter().filter(|&x| *x & 1 == 0); assert_eq!(it.next_back().unwrap(), &6); assert_eq!(it.next_back().unwrap(), &4); assert_eq!(it.next().unwrap(), &2); assert_eq!(it.next_back(), None); } #[test] fn test_double_ended_filter_map() { let xs = [1, 2, 3, 4, 5, 6]; let mut it = xs.iter().filter_map(|&x| if x & 1 == 0 { Some(x * 2) } else { None }); assert_eq!(it.next_back().unwrap(), 12); assert_eq!(it.next_back().unwrap(), 8); assert_eq!(it.next().unwrap(), 4); assert_eq!(it.next_back(), None); } #[test] fn test_double_ended_chain() { let xs = [1, 2, 3, 4, 5]; let ys = ~[7, 9, 11]; let mut it = xs.iter().chain_(ys.iter()).invert(); assert_eq!(it.next().unwrap(), &11) assert_eq!(it.next().unwrap(), &9) assert_eq!(it.next_back().unwrap(), &1) assert_eq!(it.next_back().unwrap(), &2) assert_eq!(it.next_back().unwrap(), &3) assert_eq!(it.next_back().unwrap(), &4) assert_eq!(it.next_back().unwrap(), &5) assert_eq!(it.next_back().unwrap(), &7) assert_eq!(it.next_back(), None) } #[test] fn test_random_access_chain() { let xs = [1, 2, 3, 4, 5]; let ys = ~[7, 9, 11]; let mut it = xs.iter().chain_(ys.iter()); assert_eq!(it.idx(0).unwrap(), &1); assert_eq!(it.idx(5).unwrap(), &7); assert_eq!(it.idx(7).unwrap(), &11); assert!(it.idx(8).is_none()); it.next(); it.next(); it.next_back(); assert_eq!(it.idx(0).unwrap(), &3); assert_eq!(it.idx(4).unwrap(), &9); assert!(it.idx(6).is_none()); } }