import core::{vec, str}; import core::ctypes::{c_uint, c_int}; import str::sbuf; import lib::llvm::llvm; import syntax::codemap; import codemap::span; import llvm::{ValueRef, TypeRef, BasicBlockRef, BuilderRef, Opcode, ModuleRef}; import trans_common::{block_ctxt, T_ptr, T_nil, T_i8, T_i1, T_void, T_fn, val_ty, bcx_ccx, C_i32}; fn B(cx: @block_ctxt) -> BuilderRef { let b = *cx.fcx.lcx.ccx.builder; llvm::LLVMPositionBuilderAtEnd(b, cx.llbb); ret b; } // The difference between a block being unreachable and being terminated is // somewhat obscure, and has to do with error checking. When a block is // terminated, we're saying that trying to add any further statements in the // block is an error. On the other hand, if something is unreachable, that // means that the block was terminated in some way that we don't want to check // for (fail/break/ret statements, call to diverging functions, etc), and // further instructions to the block should simply be ignored. fn RetVoid(cx: @block_ctxt) { if cx.unreachable { ret; } assert (!cx.terminated); cx.terminated = true; llvm::LLVMBuildRetVoid(B(cx)); } fn Ret(cx: @block_ctxt, V: ValueRef) { if cx.unreachable { ret; } assert (!cx.terminated); cx.terminated = true; llvm::LLVMBuildRet(B(cx), V); } fn AggregateRet(cx: @block_ctxt, RetVals: [ValueRef]) { if cx.unreachable { ret; } assert (!cx.terminated); cx.terminated = true; unsafe { llvm::LLVMBuildAggregateRet(B(cx), vec::to_ptr(RetVals), vec::len(RetVals) as c_uint); } } fn Br(cx: @block_ctxt, Dest: BasicBlockRef) { if cx.unreachable { ret; } assert (!cx.terminated); cx.terminated = true; llvm::LLVMBuildBr(B(cx), Dest); } fn CondBr(cx: @block_ctxt, If: ValueRef, Then: BasicBlockRef, Else: BasicBlockRef) { if cx.unreachable { ret; } assert (!cx.terminated); cx.terminated = true; llvm::LLVMBuildCondBr(B(cx), If, Then, Else); } fn Switch(cx: @block_ctxt, V: ValueRef, Else: BasicBlockRef, NumCases: uint) -> ValueRef { if cx.unreachable { ret _Undef(V); } assert !cx.terminated; cx.terminated = true; ret llvm::LLVMBuildSwitch(B(cx), V, Else, NumCases as c_uint); } fn AddCase(S: ValueRef, OnVal: ValueRef, Dest: BasicBlockRef) { if llvm::LLVMIsUndef(S) == lib::llvm::True { ret; } llvm::LLVMAddCase(S, OnVal, Dest); } fn IndirectBr(cx: @block_ctxt, Addr: ValueRef, NumDests: uint) { if cx.unreachable { ret; } assert (!cx.terminated); cx.terminated = true; llvm::LLVMBuildIndirectBr(B(cx), Addr, NumDests as c_uint); } // This is a really awful way to get a zero-length c-string, but better (and a // lot more efficient) than doing str::as_buf("", ...) every time. fn noname() -> sbuf unsafe { const cnull: uint = 0u; ret unsafe::reinterpret_cast(ptr::addr_of(cnull)); } fn Invoke(cx: @block_ctxt, Fn: ValueRef, Args: [ValueRef], Then: BasicBlockRef, Catch: BasicBlockRef) { if cx.unreachable { ret; } assert (!cx.terminated); cx.terminated = true; unsafe { llvm::LLVMBuildInvoke(B(cx), Fn, vec::to_ptr(Args), vec::len(Args) as c_uint, Then, Catch, noname()); } } fn FastInvoke(cx: @block_ctxt, Fn: ValueRef, Args: [ValueRef], Then: BasicBlockRef, Catch: BasicBlockRef) { if cx.unreachable { ret; } assert (!cx.terminated); cx.terminated = true; unsafe { let v = llvm::LLVMBuildInvoke(B(cx), Fn, vec::to_ptr(Args), vec::len(Args) as c_uint, Then, Catch, noname()); llvm::LLVMSetInstructionCallConv( v, lib::llvm::LLVMFastCallConv as c_uint); } } fn Unreachable(cx: @block_ctxt) { if cx.unreachable { ret; } cx.unreachable = true; if !cx.terminated { llvm::LLVMBuildUnreachable(B(cx)); } } fn _Undef(val: ValueRef) -> ValueRef { ret llvm::LLVMGetUndef(val_ty(val)); } /* Arithmetic */ fn Add(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { ret _Undef(LHS); } ret llvm::LLVMBuildAdd(B(cx), LHS, RHS, noname()); } fn NSWAdd(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { ret _Undef(LHS); } ret llvm::LLVMBuildNSWAdd(B(cx), LHS, RHS, noname()); } fn NUWAdd(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { ret _Undef(LHS); } ret llvm::LLVMBuildNUWAdd(B(cx), LHS, RHS, noname()); } fn FAdd(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { ret _Undef(LHS); } ret llvm::LLVMBuildFAdd(B(cx), LHS, RHS, noname()); } fn Sub(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { ret _Undef(LHS); } ret llvm::LLVMBuildSub(B(cx), LHS, RHS, noname()); } fn NSWSub(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { ret _Undef(LHS); } ret llvm::LLVMBuildNSWSub(B(cx), LHS, RHS, noname()); } fn NUWSub(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { ret _Undef(LHS); } ret llvm::LLVMBuildNUWSub(B(cx), LHS, RHS, noname()); } fn FSub(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { ret _Undef(LHS); } ret llvm::LLVMBuildFSub(B(cx), LHS, RHS, noname()); } fn Mul(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { ret _Undef(LHS); } ret llvm::LLVMBuildMul(B(cx), LHS, RHS, noname()); } fn NSWMul(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { ret _Undef(LHS); } ret llvm::LLVMBuildNSWMul(B(cx), LHS, RHS, noname()); } fn NUWMul(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { ret _Undef(LHS); } ret llvm::LLVMBuildNUWMul(B(cx), LHS, RHS, noname()); } fn FMul(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { ret _Undef(LHS); } ret llvm::LLVMBuildFMul(B(cx), LHS, RHS, noname()); } fn UDiv(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { ret _Undef(LHS); } ret llvm::LLVMBuildUDiv(B(cx), LHS, RHS, noname()); } fn SDiv(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { ret _Undef(LHS); } ret llvm::LLVMBuildSDiv(B(cx), LHS, RHS, noname()); } fn ExactSDiv(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { ret _Undef(LHS); } ret llvm::LLVMBuildExactSDiv(B(cx), LHS, RHS, noname()); } fn FDiv(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { ret _Undef(LHS); } ret llvm::LLVMBuildFDiv(B(cx), LHS, RHS, noname()); } fn URem(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { ret _Undef(LHS); } ret llvm::LLVMBuildURem(B(cx), LHS, RHS, noname()); } fn SRem(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { ret _Undef(LHS); } ret llvm::LLVMBuildSRem(B(cx), LHS, RHS, noname()); } fn FRem(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { ret _Undef(LHS); } ret llvm::LLVMBuildFRem(B(cx), LHS, RHS, noname()); } fn Shl(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { ret _Undef(LHS); } ret llvm::LLVMBuildShl(B(cx), LHS, RHS, noname()); } fn LShr(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { ret _Undef(LHS); } ret llvm::LLVMBuildLShr(B(cx), LHS, RHS, noname()); } fn AShr(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { ret _Undef(LHS); } ret llvm::LLVMBuildAShr(B(cx), LHS, RHS, noname()); } fn And(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { ret _Undef(LHS); } ret llvm::LLVMBuildAnd(B(cx), LHS, RHS, noname()); } fn Or(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { ret _Undef(LHS); } ret llvm::LLVMBuildOr(B(cx), LHS, RHS, noname()); } fn Xor(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { ret _Undef(LHS); } ret llvm::LLVMBuildXor(B(cx), LHS, RHS, noname()); } fn BinOp(cx: @block_ctxt, Op: Opcode, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { ret _Undef(LHS); } ret llvm::LLVMBuildBinOp(B(cx), Op, LHS, RHS, noname()); } fn Neg(cx: @block_ctxt, V: ValueRef) -> ValueRef { if cx.unreachable { ret _Undef(V); } ret llvm::LLVMBuildNeg(B(cx), V, noname()); } fn NSWNeg(cx: @block_ctxt, V: ValueRef) -> ValueRef { if cx.unreachable { ret _Undef(V); } ret llvm::LLVMBuildNSWNeg(B(cx), V, noname()); } fn NUWNeg(cx: @block_ctxt, V: ValueRef) -> ValueRef { if cx.unreachable { ret _Undef(V); } ret llvm::LLVMBuildNUWNeg(B(cx), V, noname()); } fn FNeg(cx: @block_ctxt, V: ValueRef) -> ValueRef { if cx.unreachable { ret _Undef(V); } ret llvm::LLVMBuildFNeg(B(cx), V, noname()); } fn Not(cx: @block_ctxt, V: ValueRef) -> ValueRef { if cx.unreachable { ret _Undef(V); } ret llvm::LLVMBuildNot(B(cx), V, noname()); } /* Memory */ fn Malloc(cx: @block_ctxt, Ty: TypeRef) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(T_ptr(T_i8())); } ret llvm::LLVMBuildMalloc(B(cx), Ty, noname()); } fn ArrayMalloc(cx: @block_ctxt, Ty: TypeRef, Val: ValueRef) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(T_ptr(T_i8())); } ret llvm::LLVMBuildArrayMalloc(B(cx), Ty, Val, noname()); } fn Alloca(cx: @block_ctxt, Ty: TypeRef) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(T_ptr(Ty)); } ret llvm::LLVMBuildAlloca(B(cx), Ty, noname()); } fn ArrayAlloca(cx: @block_ctxt, Ty: TypeRef, Val: ValueRef) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(T_ptr(Ty)); } ret llvm::LLVMBuildArrayAlloca(B(cx), Ty, Val, noname()); } fn Free(cx: @block_ctxt, PointerVal: ValueRef) { if cx.unreachable { ret; } llvm::LLVMBuildFree(B(cx), PointerVal); } fn Load(cx: @block_ctxt, PointerVal: ValueRef) -> ValueRef { let ccx = cx.fcx.lcx.ccx; if cx.unreachable { let ty = val_ty(PointerVal); let eltty = if llvm::LLVMGetTypeKind(ty) == 11 as c_int { llvm::LLVMGetElementType(ty) } else { ccx.int_type }; ret llvm::LLVMGetUndef(eltty); } ret llvm::LLVMBuildLoad(B(cx), PointerVal, noname()); } fn Store(cx: @block_ctxt, Val: ValueRef, Ptr: ValueRef) { if cx.unreachable { ret; } llvm::LLVMBuildStore(B(cx), Val, Ptr); } fn GEP(cx: @block_ctxt, Pointer: ValueRef, Indices: [ValueRef]) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(T_ptr(T_nil())); } unsafe { ret llvm::LLVMBuildGEP(B(cx), Pointer, vec::to_ptr(Indices), vec::len(Indices) as c_uint, noname()); } } // Simple wrapper around GEP that takes an array of ints and wraps them // in C_i32() fn GEPi(cx: @block_ctxt, base: ValueRef, ixs: [int]) -> ValueRef { let v: [ValueRef] = []; for i: int in ixs { v += [C_i32(i as i32)]; } ret InBoundsGEP(cx, base, v); } fn InBoundsGEP(cx: @block_ctxt, Pointer: ValueRef, Indices: [ValueRef]) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(T_ptr(T_nil())); } unsafe { ret llvm::LLVMBuildInBoundsGEP(B(cx), Pointer, vec::to_ptr(Indices), vec::len(Indices) as c_uint, noname()); } } fn StructGEP(cx: @block_ctxt, Pointer: ValueRef, Idx: uint) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(T_ptr(T_nil())); } ret llvm::LLVMBuildStructGEP(B(cx), Pointer, Idx as c_uint, noname()); } fn GlobalString(cx: @block_ctxt, _Str: sbuf) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(T_ptr(T_i8())); } ret llvm::LLVMBuildGlobalString(B(cx), _Str, noname()); } fn GlobalStringPtr(cx: @block_ctxt, _Str: sbuf) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(T_ptr(T_i8())); } ret llvm::LLVMBuildGlobalStringPtr(B(cx), _Str, noname()); } /* Casts */ fn Trunc(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); } ret llvm::LLVMBuildTrunc(B(cx), Val, DestTy, noname()); } fn ZExt(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); } ret llvm::LLVMBuildZExt(B(cx), Val, DestTy, noname()); } fn SExt(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); } ret llvm::LLVMBuildSExt(B(cx), Val, DestTy, noname()); } fn FPToUI(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); } ret llvm::LLVMBuildFPToUI(B(cx), Val, DestTy, noname()); } fn FPToSI(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); } ret llvm::LLVMBuildFPToSI(B(cx), Val, DestTy, noname()); } fn UIToFP(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); } ret llvm::LLVMBuildUIToFP(B(cx), Val, DestTy, noname()); } fn SIToFP(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); } ret llvm::LLVMBuildSIToFP(B(cx), Val, DestTy, noname()); } fn FPTrunc(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); } ret llvm::LLVMBuildFPTrunc(B(cx), Val, DestTy, noname()); } fn FPExt(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); } ret llvm::LLVMBuildFPExt(B(cx), Val, DestTy, noname()); } fn PtrToInt(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); } ret llvm::LLVMBuildPtrToInt(B(cx), Val, DestTy, noname()); } fn IntToPtr(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); } ret llvm::LLVMBuildIntToPtr(B(cx), Val, DestTy, noname()); } fn BitCast(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); } ret llvm::LLVMBuildBitCast(B(cx), Val, DestTy, noname()); } fn ZExtOrBitCast(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); } ret llvm::LLVMBuildZExtOrBitCast(B(cx), Val, DestTy, noname()); } fn SExtOrBitCast(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); } ret llvm::LLVMBuildSExtOrBitCast(B(cx), Val, DestTy, noname()); } fn TruncOrBitCast(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); } ret llvm::LLVMBuildTruncOrBitCast(B(cx), Val, DestTy, noname()); } fn Cast(cx: @block_ctxt, Op: Opcode, Val: ValueRef, DestTy: TypeRef, _Name: sbuf) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); } ret llvm::LLVMBuildCast(B(cx), Op, Val, DestTy, noname()); } fn PointerCast(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); } ret llvm::LLVMBuildPointerCast(B(cx), Val, DestTy, noname()); } fn IntCast(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); } ret llvm::LLVMBuildIntCast(B(cx), Val, DestTy, noname()); } fn FPCast(cx: @block_ctxt, Val: ValueRef, DestTy: TypeRef) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(DestTy); } ret llvm::LLVMBuildFPCast(B(cx), Val, DestTy, noname()); } /* Comparisons */ fn ICmp(cx: @block_ctxt, Op: uint, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(T_i1()); } ret llvm::LLVMBuildICmp(B(cx), Op as c_uint, LHS, RHS, noname()); } fn FCmp(cx: @block_ctxt, Op: uint, LHS: ValueRef, RHS: ValueRef) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(T_i1()); } ret llvm::LLVMBuildFCmp(B(cx), Op as c_uint, LHS, RHS, noname()); } /* Miscellaneous instructions */ fn EmptyPhi(cx: @block_ctxt, Ty: TypeRef) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(Ty); } ret llvm::LLVMBuildPhi(B(cx), Ty, noname()); } fn Phi(cx: @block_ctxt, Ty: TypeRef, vals: [ValueRef], bbs: [BasicBlockRef]) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(Ty); } assert (vec::len::(vals) == vec::len::(bbs)); let phi = EmptyPhi(cx, Ty); unsafe { llvm::LLVMAddIncoming(phi, vec::to_ptr(vals), vec::to_ptr(bbs), vec::len(vals) as c_uint); ret phi; } } fn AddIncomingToPhi(phi: ValueRef, val: ValueRef, bb: BasicBlockRef) { if llvm::LLVMIsUndef(phi) == lib::llvm::True { ret; } unsafe { let valptr = unsafe::reinterpret_cast(ptr::addr_of(val)); let bbptr = unsafe::reinterpret_cast(ptr::addr_of(bb)); llvm::LLVMAddIncoming(phi, valptr, bbptr, 1 as c_uint); } } fn _UndefReturn(cx: @block_ctxt, Fn: ValueRef) -> ValueRef { let ccx = cx.fcx.lcx.ccx; let ty = val_ty(Fn); let retty = if llvm::LLVMGetTypeKind(ty) == 8 as c_int { llvm::LLVMGetReturnType(ty) } else { ccx.int_type }; ret llvm::LLVMGetUndef(retty); } fn add_span_comment(bcx: @block_ctxt, sp: span, text: str) { let ccx = bcx_ccx(bcx); if (!ccx.sess.opts.no_asm_comments) { let s = text + " (" + codemap::span_to_str(sp, ccx.sess.codemap) + ")"; log(debug, s); add_comment(bcx, s); } } fn add_comment(bcx: @block_ctxt, text: str) { let ccx = bcx_ccx(bcx); if (!ccx.sess.opts.no_asm_comments) { check str::is_not_empty("$"); let sanitized = str::replace(text, "$", ""); let comment_text = "; " + sanitized; let asm = str::as_buf(comment_text, { |c| str::as_buf("", { |e| llvm::LLVMConstInlineAsm(T_fn([], T_void()), c, e, 0, 0)})}); Call(bcx, asm, []); } } fn Call(cx: @block_ctxt, Fn: ValueRef, Args: [ValueRef]) -> ValueRef { if cx.unreachable { ret _UndefReturn(cx, Fn); } unsafe { ret llvm::LLVMBuildCall(B(cx), Fn, vec::to_ptr(Args), vec::len(Args) as c_uint, noname()); } } fn FastCall(cx: @block_ctxt, Fn: ValueRef, Args: [ValueRef]) -> ValueRef { if cx.unreachable { ret _UndefReturn(cx, Fn); } unsafe { let v = llvm::LLVMBuildCall(B(cx), Fn, vec::to_ptr(Args), vec::len(Args) as c_uint, noname()); llvm::LLVMSetInstructionCallConv( v, lib::llvm::LLVMFastCallConv as c_uint); ret v; } } fn CallWithConv(cx: @block_ctxt, Fn: ValueRef, Args: [ValueRef], Conv: c_uint) -> ValueRef { if cx.unreachable { ret _UndefReturn(cx, Fn); } unsafe { let v = llvm::LLVMBuildCall(B(cx), Fn, vec::to_ptr(Args), vec::len(Args) as c_uint, noname()); llvm::LLVMSetInstructionCallConv(v, Conv); ret v; } } fn Select(cx: @block_ctxt, If: ValueRef, Then: ValueRef, Else: ValueRef) -> ValueRef { if cx.unreachable { ret _Undef(Then); } ret llvm::LLVMBuildSelect(B(cx), If, Then, Else, noname()); } fn VAArg(cx: @block_ctxt, list: ValueRef, Ty: TypeRef) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(Ty); } ret llvm::LLVMBuildVAArg(B(cx), list, Ty, noname()); } fn ExtractElement(cx: @block_ctxt, VecVal: ValueRef, Index: ValueRef) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(T_nil()); } ret llvm::LLVMBuildExtractElement(B(cx), VecVal, Index, noname()); } fn InsertElement(cx: @block_ctxt, VecVal: ValueRef, EltVal: ValueRef, Index: ValueRef) { if cx.unreachable { ret; } llvm::LLVMBuildInsertElement(B(cx), VecVal, EltVal, Index, noname()); } fn ShuffleVector(cx: @block_ctxt, V1: ValueRef, V2: ValueRef, Mask: ValueRef) { if cx.unreachable { ret; } llvm::LLVMBuildShuffleVector(B(cx), V1, V2, Mask, noname()); } fn ExtractValue(cx: @block_ctxt, AggVal: ValueRef, Index: uint) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(T_nil()); } ret llvm::LLVMBuildExtractValue(B(cx), AggVal, Index as c_uint, noname()); } fn InsertValue(cx: @block_ctxt, AggVal: ValueRef, EltVal: ValueRef, Index: uint) { if cx.unreachable { ret; } llvm::LLVMBuildInsertValue(B(cx), AggVal, EltVal, Index as c_uint, noname()); } fn IsNull(cx: @block_ctxt, Val: ValueRef) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(T_i1()); } ret llvm::LLVMBuildIsNull(B(cx), Val, noname()); } fn IsNotNull(cx: @block_ctxt, Val: ValueRef) -> ValueRef { if cx.unreachable { ret llvm::LLVMGetUndef(T_i1()); } ret llvm::LLVMBuildIsNotNull(B(cx), Val, noname()); } fn PtrDiff(cx: @block_ctxt, LHS: ValueRef, RHS: ValueRef) -> ValueRef { let ccx = cx.fcx.lcx.ccx; if cx.unreachable { ret llvm::LLVMGetUndef(ccx.int_type); } ret llvm::LLVMBuildPtrDiff(B(cx), LHS, RHS, noname()); } fn Trap(cx: @block_ctxt) { if cx.unreachable { ret; } let b = B(cx); let BB: BasicBlockRef = llvm::LLVMGetInsertBlock(b); let FN: ValueRef = llvm::LLVMGetBasicBlockParent(BB); let M: ModuleRef = llvm::LLVMGetGlobalParent(FN); let T: ValueRef = str::as_buf("llvm.trap", {|buf| llvm::LLVMGetNamedFunction(M, buf) }); assert (T as int != 0); let Args: [ValueRef] = []; unsafe { llvm::LLVMBuildCall(b, T, vec::to_ptr(Args), vec::len(Args) as c_uint, noname()); } } fn LandingPad(cx: @block_ctxt, Ty: TypeRef, PersFn: ValueRef, NumClauses: uint) -> ValueRef { assert !cx.terminated && !cx.unreachable; ret llvm::LLVMBuildLandingPad(B(cx), Ty, PersFn, NumClauses as c_uint, noname()); } fn SetCleanup(_cx: @block_ctxt, LandingPad: ValueRef) { llvm::LLVMSetCleanup(LandingPad, lib::llvm::True); } fn Resume(cx: @block_ctxt, Exn: ValueRef) -> ValueRef { assert (!cx.terminated); cx.terminated = true; ret llvm::LLVMBuildResume(B(cx), Exn); } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: //