// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use llvm::{self, ValueRef, BasicBlockRef}; use rustc_const_eval::{ErrKind, ConstEvalErr, note_const_eval_err}; use rustc::middle::lang_items; use rustc::ty::{self, layout}; use rustc::mir; use abi::{Abi, FnType, ArgType}; use adt; use base::{self, Lifetime}; use callee::{Callee, CalleeData, Fn, Intrinsic, NamedTupleConstructor, Virtual}; use builder::Builder; use common::{self, Funclet}; use common::{C_bool, C_str_slice, C_struct, C_u32, C_undef}; use consts; use Disr; use machine::{llalign_of_min, llbitsize_of_real}; use meth; use type_of::{self, align_of}; use glue; use type_::Type; use rustc_data_structures::indexed_vec::IndexVec; use rustc_data_structures::fx::FxHashMap; use syntax::symbol::Symbol; use std::cmp; use super::{MirContext, LocalRef}; use super::analyze::CleanupKind; use super::constant::Const; use super::lvalue::LvalueRef; use super::operand::OperandRef; use super::operand::OperandValue::{Pair, Ref, Immediate}; impl<'a, 'tcx> MirContext<'a, 'tcx> { pub fn trans_block(&mut self, bb: mir::BasicBlock, funclets: &IndexVec>) { let mut bcx = self.get_builder(bb); let data = &self.mir[bb]; debug!("trans_block({:?}={:?})", bb, data); let funclet = match self.cleanup_kinds[bb] { CleanupKind::Internal { funclet } => funclets[funclet].as_ref(), _ => funclets[bb].as_ref(), }; // Create the cleanup bundle, if needed. let cleanup_pad = funclet.map(|lp| lp.cleanuppad()); let cleanup_bundle = funclet.map(|l| l.bundle()); let funclet_br = |this: &Self, bcx: Builder, bb: mir::BasicBlock| { let lltarget = this.blocks[bb]; if let Some(cp) = cleanup_pad { match this.cleanup_kinds[bb] { CleanupKind::Funclet => { // micro-optimization: generate a `ret` rather than a jump // to a return block bcx.cleanup_ret(cp, Some(lltarget)); } CleanupKind::Internal { .. } => bcx.br(lltarget), CleanupKind::NotCleanup => bug!("jump from cleanup bb to bb {:?}", bb) } } else { bcx.br(lltarget); } }; let llblock = |this: &mut Self, target: mir::BasicBlock| { let lltarget = this.blocks[target]; if let Some(cp) = cleanup_pad { match this.cleanup_kinds[target] { CleanupKind::Funclet => { // MSVC cross-funclet jump - need a trampoline debug!("llblock: creating cleanup trampoline for {:?}", target); let name = &format!("{:?}_cleanup_trampoline_{:?}", bb, target); let trampoline = this.new_block(name); trampoline.cleanup_ret(cp, Some(lltarget)); trampoline.llbb() } CleanupKind::Internal { .. } => lltarget, CleanupKind::NotCleanup => bug!("jump from cleanup bb {:?} to bb {:?}", bb, target) } } else { if let (CleanupKind::NotCleanup, CleanupKind::Funclet) = (this.cleanup_kinds[bb], this.cleanup_kinds[target]) { // jump *into* cleanup - need a landing pad if GNU this.landing_pad_to(target) } else { lltarget } } }; for statement in &data.statements { bcx = self.trans_statement(bcx, statement); } let terminator = data.terminator(); debug!("trans_block: terminator: {:?}", terminator); let span = terminator.source_info.span; self.set_debug_loc(&bcx, terminator.source_info); match terminator.kind { mir::TerminatorKind::Resume => { if let Some(cleanup_pad) = cleanup_pad { bcx.cleanup_ret(cleanup_pad, None); } else { let ps = self.get_personality_slot(&bcx); let lp = bcx.load(ps); Lifetime::End.call(&bcx, ps); if !bcx.sess().target.target.options.custom_unwind_resume { bcx.resume(lp); } else { let exc_ptr = bcx.extract_value(lp, 0); bcx.call(bcx.ccx.eh_unwind_resume(), &[exc_ptr], cleanup_bundle); bcx.unreachable(); } } } mir::TerminatorKind::Goto { target } => { funclet_br(self, bcx, target); } mir::TerminatorKind::If { ref cond, targets: (true_bb, false_bb) } => { let cond = self.trans_operand(&bcx, cond); let lltrue = llblock(self, true_bb); let llfalse = llblock(self, false_bb); bcx.cond_br(cond.immediate(), lltrue, llfalse); } mir::TerminatorKind::Switch { ref discr, ref adt_def, ref targets } => { let discr_lvalue = self.trans_lvalue(&bcx, discr); let ty = discr_lvalue.ty.to_ty(bcx.tcx()); let discr = adt::trans_get_discr(&bcx, ty, discr_lvalue.llval, None, true); let mut bb_hist = FxHashMap(); for target in targets { *bb_hist.entry(target).or_insert(0) += 1; } let (default_bb, default_blk) = match bb_hist.iter().max_by_key(|&(_, c)| c) { // If a single target basic blocks is predominant, promote that to be the // default case for the switch instruction to reduce the size of the generated // code. This is especially helpful in cases like an if-let on a huge enum. // Note: This optimization is only valid for exhaustive matches. Some((&&bb, &c)) if c > targets.len() / 2 => { (Some(bb), llblock(self, bb)) } // We're generating an exhaustive switch, so the else branch // can't be hit. Branching to an unreachable instruction // lets LLVM know this _ => (None, self.unreachable_block()) }; let switch = bcx.switch(discr, default_blk, targets.len()); assert_eq!(adt_def.variants.len(), targets.len()); for (adt_variant, &target) in adt_def.variants.iter().zip(targets) { if default_bb != Some(target) { let llbb = llblock(self, target); let llval = adt::trans_case(&bcx, ty, Disr::from(adt_variant.disr_val)); bcx.add_case(switch, llval, llbb) } } } mir::TerminatorKind::SwitchInt { ref discr, switch_ty, ref values, ref targets } => { let (otherwise, targets) = targets.split_last().unwrap(); let discr = bcx.load(self.trans_lvalue(&bcx, discr).llval); let discr = base::to_immediate(&bcx, discr, switch_ty); let switch = bcx.switch(discr, llblock(self, *otherwise), values.len()); for (value, target) in values.iter().zip(targets) { let val = Const::from_constval(bcx.ccx, value.clone(), switch_ty); let llbb = llblock(self, *target); bcx.add_case(switch, val.llval, llbb) } } mir::TerminatorKind::Return => { let ret = self.fn_ty.ret; if ret.is_ignore() || ret.is_indirect() { bcx.ret_void(); return; } let llval = if let Some(cast_ty) = ret.cast { let op = match self.locals[mir::RETURN_POINTER] { LocalRef::Operand(Some(op)) => op, LocalRef::Operand(None) => bug!("use of return before def"), LocalRef::Lvalue(tr_lvalue) => { OperandRef { val: Ref(tr_lvalue.llval), ty: tr_lvalue.ty.to_ty(bcx.tcx()) } } }; let llslot = match op.val { Immediate(_) | Pair(..) => { let llscratch = bcx.fcx().alloca(ret.original_ty, "ret"); self.store_operand(&bcx, llscratch, op, None); llscratch } Ref(llval) => llval }; let load = bcx.load(bcx.pointercast(llslot, cast_ty.ptr_to())); let llalign = llalign_of_min(bcx.ccx, ret.ty); unsafe { llvm::LLVMSetAlignment(load, llalign); } load } else { let op = self.trans_consume(&bcx, &mir::Lvalue::Local(mir::RETURN_POINTER)); op.pack_if_pair(&bcx).immediate() }; bcx.ret(llval); } mir::TerminatorKind::Unreachable => { bcx.unreachable(); } mir::TerminatorKind::Drop { ref location, target, unwind } => { let ty = location.ty(&self.mir, bcx.tcx()).to_ty(bcx.tcx()); let ty = self.monomorphize(&ty); // Double check for necessity to drop if !bcx.ccx.shared().type_needs_drop(ty) { funclet_br(self, bcx, target); return; } let mut lvalue = self.trans_lvalue(&bcx, location); let drop_fn = glue::get_drop_glue(bcx.ccx, ty); let drop_ty = glue::get_drop_glue_type(bcx.ccx.shared(), ty); if bcx.ccx.shared().type_is_sized(ty) && drop_ty != ty { lvalue.llval = bcx.pointercast( lvalue.llval, type_of::type_of(bcx.ccx, drop_ty).ptr_to()); } let args = &[lvalue.llval, lvalue.llextra][..1 + lvalue.has_extra() as usize]; if let Some(unwind) = unwind { bcx.invoke( drop_fn, args, self.blocks[target], llblock(self, unwind), cleanup_bundle ); } else { bcx.call(drop_fn, args, cleanup_bundle); funclet_br(self, bcx, target); } } mir::TerminatorKind::Assert { ref cond, expected, ref msg, target, cleanup } => { let cond = self.trans_operand(&bcx, cond).immediate(); let mut const_cond = common::const_to_opt_u128(cond, false).map(|c| c == 1); // This case can currently arise only from functions marked // with #[rustc_inherit_overflow_checks] and inlined from // another crate (mostly core::num generic/#[inline] fns), // while the current crate doesn't use overflow checks. // NOTE: Unlike binops, negation doesn't have its own // checked operation, just a comparison with the minimum // value, so we have to check for the assert message. if !bcx.ccx.check_overflow() { use rustc_const_math::ConstMathErr::Overflow; use rustc_const_math::Op::Neg; if let mir::AssertMessage::Math(Overflow(Neg)) = *msg { const_cond = Some(expected); } } // Don't translate the panic block if success if known. if const_cond == Some(expected) { funclet_br(self, bcx, target); return; } // Pass the condition through llvm.expect for branch hinting. let expect = bcx.ccx.get_intrinsic(&"llvm.expect.i1"); let cond = bcx.call(expect, &[cond, C_bool(bcx.ccx, expected)], None); // Create the failure block and the conditional branch to it. let lltarget = llblock(self, target); let panic_block = self.new_block("panic"); if expected { bcx.cond_br(cond, lltarget, panic_block.llbb()); } else { bcx.cond_br(cond, panic_block.llbb(), lltarget); } // After this point, bcx is the block for the call to panic. bcx = panic_block; self.set_debug_loc(&bcx, terminator.source_info); // Get the location information. let loc = bcx.sess().codemap().lookup_char_pos(span.lo); let filename = Symbol::intern(&loc.file.name).as_str(); let filename = C_str_slice(bcx.ccx, filename); let line = C_u32(bcx.ccx, loc.line as u32); // Put together the arguments to the panic entry point. let (lang_item, args, const_err) = match *msg { mir::AssertMessage::BoundsCheck { ref len, ref index } => { let len = self.trans_operand(&mut bcx, len).immediate(); let index = self.trans_operand(&mut bcx, index).immediate(); let const_err = common::const_to_opt_u128(len, false) .and_then(|len| common::const_to_opt_u128(index, false) .map(|index| ErrKind::IndexOutOfBounds { len: len as u64, index: index as u64 })); let file_line = C_struct(bcx.ccx, &[filename, line], false); let align = llalign_of_min(bcx.ccx, common::val_ty(file_line)); let file_line = consts::addr_of(bcx.ccx, file_line, align, "panic_bounds_check_loc"); (lang_items::PanicBoundsCheckFnLangItem, vec![file_line, index, len], const_err) } mir::AssertMessage::Math(ref err) => { let msg_str = Symbol::intern(err.description()).as_str(); let msg_str = C_str_slice(bcx.ccx, msg_str); let msg_file_line = C_struct(bcx.ccx, &[msg_str, filename, line], false); let align = llalign_of_min(bcx.ccx, common::val_ty(msg_file_line)); let msg_file_line = consts::addr_of(bcx.ccx, msg_file_line, align, "panic_loc"); (lang_items::PanicFnLangItem, vec![msg_file_line], Some(ErrKind::Math(err.clone()))) } }; // If we know we always panic, and the error message // is also constant, then we can produce a warning. if const_cond == Some(!expected) { if let Some(err) = const_err { let err = ConstEvalErr{ span: span, kind: err }; let mut diag = bcx.tcx().sess.struct_span_warn( span, "this expression will panic at run-time"); note_const_eval_err(bcx.tcx(), &err, span, "expression", &mut diag); diag.emit(); } } // Obtain the panic entry point. let def_id = common::langcall(bcx.tcx(), Some(span), "", lang_item); let callee = Callee::def(bcx.ccx, def_id, bcx.ccx.empty_substs_for_def_id(def_id)); let llfn = callee.reify(bcx.ccx); // Translate the actual panic invoke/call. if let Some(unwind) = cleanup { bcx.invoke(llfn, &args, self.unreachable_block(), llblock(self, unwind), cleanup_bundle); } else { bcx.call(llfn, &args, cleanup_bundle); bcx.unreachable(); } } mir::TerminatorKind::DropAndReplace { .. } => { bug!("undesugared DropAndReplace in trans: {:?}", data); } mir::TerminatorKind::Call { ref func, ref args, ref destination, ref cleanup } => { // Create the callee. This is a fn ptr or zero-sized and hence a kind of scalar. let callee = self.trans_operand(&bcx, func); let (mut callee, abi, sig) = match callee.ty.sty { ty::TyFnDef(def_id, substs, f) => { (Callee::def(bcx.ccx, def_id, substs), f.abi, &f.sig) } ty::TyFnPtr(f) => { (Callee { data: Fn(callee.immediate()), ty: callee.ty }, f.abi, &f.sig) } _ => bug!("{} is not callable", callee.ty) }; let sig = bcx.tcx().erase_late_bound_regions_and_normalize(sig); // Handle intrinsics old trans wants Expr's for, ourselves. let intrinsic = match (&callee.ty.sty, &callee.data) { (&ty::TyFnDef(def_id, ..), &Intrinsic) => { Some(bcx.tcx().item_name(def_id).as_str()) } _ => None }; let mut intrinsic = intrinsic.as_ref().map(|s| &s[..]); if intrinsic == Some("move_val_init") { let &(_, target) = destination.as_ref().unwrap(); // The first argument is a thin destination pointer. let llptr = self.trans_operand(&bcx, &args[0]).immediate(); let val = self.trans_operand(&bcx, &args[1]); self.store_operand(&bcx, llptr, val, None); funclet_br(self, bcx, target); return; } if intrinsic == Some("transmute") { let &(ref dest, target) = destination.as_ref().unwrap(); self.with_lvalue_ref(&bcx, dest, |this, dest| { this.trans_transmute(&bcx, &args[0], dest); }); funclet_br(self, bcx, target); return; } let extra_args = &args[sig.inputs().len()..]; let extra_args = extra_args.iter().map(|op_arg| { let op_ty = op_arg.ty(&self.mir, bcx.tcx()); self.monomorphize(&op_ty) }).collect::>(); let fn_ty = callee.direct_fn_type(bcx.ccx, &extra_args); if intrinsic == Some("drop_in_place") { let &(_, target) = destination.as_ref().unwrap(); let ty = if let ty::TyFnDef(_, substs, _) = callee.ty.sty { substs.type_at(0) } else { bug!("Unexpected ty: {}", callee.ty); }; // Double check for necessity to drop if !bcx.ccx.shared().type_needs_drop(ty) { funclet_br(self, bcx, target); return; } let drop_fn = glue::get_drop_glue(bcx.ccx, ty); let llty = fn_ty.llvm_type(bcx.ccx).ptr_to(); callee.data = Fn(bcx.pointercast(drop_fn, llty)); intrinsic = None; } // The arguments we'll be passing. Plus one to account for outptr, if used. let arg_count = fn_ty.args.len() + fn_ty.ret.is_indirect() as usize; let mut llargs = Vec::with_capacity(arg_count); // Prepare the return value destination let ret_dest = if let Some((ref dest, _)) = *destination { let is_intrinsic = if let Intrinsic = callee.data { true } else { false }; self.make_return_dest(&bcx, dest, &fn_ty.ret, &mut llargs, is_intrinsic) } else { ReturnDest::Nothing }; // Split the rust-call tupled arguments off. let (first_args, untuple) = if abi == Abi::RustCall && !args.is_empty() { let (tup, args) = args.split_last().unwrap(); (args, Some(tup)) } else { (&args[..], None) }; let is_shuffle = intrinsic.map_or(false, |name| { name.starts_with("simd_shuffle") }); let mut idx = 0; for arg in first_args { // The indices passed to simd_shuffle* in the // third argument must be constant. This is // checked by const-qualification, which also // promotes any complex rvalues to constants. if is_shuffle && idx == 2 { match *arg { mir::Operand::Consume(_) => { span_bug!(span, "shuffle indices must be constant"); } mir::Operand::Constant(ref constant) => { let val = self.trans_constant(&bcx, constant); llargs.push(val.llval); idx += 1; continue; } } } let op = self.trans_operand(&bcx, arg); self.trans_argument(&bcx, op, &mut llargs, &fn_ty, &mut idx, &mut callee.data); } if let Some(tup) = untuple { self.trans_arguments_untupled(&bcx, tup, &mut llargs, &fn_ty, &mut idx, &mut callee.data) } let fn_ptr = match callee.data { NamedTupleConstructor(_) => { // FIXME translate this like mir::Rvalue::Aggregate. callee.reify(bcx.ccx) } Intrinsic => { use intrinsic::trans_intrinsic_call; let (dest, llargs) = match ret_dest { _ if fn_ty.ret.is_indirect() => { (llargs[0], &llargs[1..]) } ReturnDest::Nothing => { (C_undef(fn_ty.ret.original_ty.ptr_to()), &llargs[..]) } ReturnDest::IndirectOperand(dst, _) | ReturnDest::Store(dst) => (dst, &llargs[..]), ReturnDest::DirectOperand(_) => bug!("Cannot use direct operand with an intrinsic call") }; trans_intrinsic_call(&bcx, callee.ty, &fn_ty, &llargs, dest, terminator.source_info.span); if let ReturnDest::IndirectOperand(dst, _) = ret_dest { // Make a fake operand for store_return let op = OperandRef { val: Ref(dst), ty: sig.output(), }; self.store_return(&bcx, ret_dest, fn_ty.ret, op); } if let Some((_, target)) = *destination { funclet_br(self, bcx, target); } else { bcx.unreachable(); } return; } Fn(f) => f, Virtual(_) => bug!("Virtual fn ptr not extracted") }; // Many different ways to call a function handled here if let &Some(cleanup) = cleanup { let ret_bcx = if let Some((_, target)) = *destination { self.blocks[target] } else { self.unreachable_block() }; let invokeret = bcx.invoke(fn_ptr, &llargs, ret_bcx, llblock(self, cleanup), cleanup_bundle); fn_ty.apply_attrs_callsite(invokeret); if let Some((_, target)) = *destination { let ret_bcx = self.get_builder(target); self.set_debug_loc(&ret_bcx, terminator.source_info); let op = OperandRef { val: Immediate(invokeret), ty: sig.output(), }; self.store_return(&ret_bcx, ret_dest, fn_ty.ret, op); } } else { let llret = bcx.call(fn_ptr, &llargs, cleanup_bundle); fn_ty.apply_attrs_callsite(llret); if let Some((_, target)) = *destination { let op = OperandRef { val: Immediate(llret), ty: sig.output(), }; self.store_return(&bcx, ret_dest, fn_ty.ret, op); funclet_br(self, bcx, target); } else { bcx.unreachable(); } } } } } fn trans_argument(&mut self, bcx: &Builder<'a, 'tcx>, op: OperandRef<'tcx>, llargs: &mut Vec, fn_ty: &FnType, next_idx: &mut usize, callee: &mut CalleeData) { if let Pair(a, b) = op.val { // Treat the values in a fat pointer separately. if common::type_is_fat_ptr(bcx.ccx, op.ty) { let (ptr, meta) = (a, b); if *next_idx == 0 { if let Virtual(idx) = *callee { let llfn = meth::get_virtual_method(bcx, meta, idx); let llty = fn_ty.llvm_type(bcx.ccx).ptr_to(); *callee = Fn(bcx.pointercast(llfn, llty)); } } let imm_op = |x| OperandRef { val: Immediate(x), // We won't be checking the type again. ty: bcx.tcx().types.err }; self.trans_argument(bcx, imm_op(ptr), llargs, fn_ty, next_idx, callee); self.trans_argument(bcx, imm_op(meta), llargs, fn_ty, next_idx, callee); return; } } let arg = &fn_ty.args[*next_idx]; *next_idx += 1; // Fill padding with undef value, where applicable. if let Some(ty) = arg.pad { llargs.push(C_undef(ty)); } if arg.is_ignore() { return; } // Force by-ref if we have to load through a cast pointer. let (mut llval, by_ref) = match op.val { Immediate(_) | Pair(..) => { if arg.is_indirect() || arg.cast.is_some() { let llscratch = bcx.fcx().alloca(arg.original_ty, "arg"); self.store_operand(bcx, llscratch, op, None); (llscratch, true) } else { (op.pack_if_pair(bcx).immediate(), false) } } Ref(llval) => (llval, true) }; if by_ref && !arg.is_indirect() { // Have to load the argument, maybe while casting it. if arg.original_ty == Type::i1(bcx.ccx) { // We store bools as i8 so we need to truncate to i1. llval = bcx.load_range_assert(llval, 0, 2, llvm::False); llval = bcx.trunc(llval, arg.original_ty); } else if let Some(ty) = arg.cast { llval = bcx.load(bcx.pointercast(llval, ty.ptr_to())); let llalign = llalign_of_min(bcx.ccx, arg.ty); unsafe { llvm::LLVMSetAlignment(llval, llalign); } } else { llval = bcx.load(llval); } } llargs.push(llval); } fn trans_arguments_untupled(&mut self, bcx: &Builder<'a, 'tcx>, operand: &mir::Operand<'tcx>, llargs: &mut Vec, fn_ty: &FnType, next_idx: &mut usize, callee: &mut CalleeData) { let tuple = self.trans_operand(bcx, operand); let arg_types = match tuple.ty.sty { ty::TyTuple(ref tys) => tys, _ => span_bug!(self.mir.span, "bad final argument to \"rust-call\" fn {:?}", tuple.ty) }; // Handle both by-ref and immediate tuples. match tuple.val { Ref(llval) => { for (n, &ty) in arg_types.iter().enumerate() { let ptr = LvalueRef::new_sized_ty(llval, tuple.ty); let ptr = ptr.trans_field_ptr(bcx, n); let val = if common::type_is_fat_ptr(bcx.ccx, ty) { let (lldata, llextra) = base::load_fat_ptr(bcx, ptr, ty); Pair(lldata, llextra) } else { // trans_argument will load this if it needs to Ref(ptr) }; let op = OperandRef { val: val, ty: ty }; self.trans_argument(bcx, op, llargs, fn_ty, next_idx, callee); } } Immediate(llval) => { let l = bcx.ccx.layout_of(tuple.ty); let v = if let layout::Univariant { ref variant, .. } = *l { variant } else { bug!("Not a tuple."); }; for (n, &ty) in arg_types.iter().enumerate() { let mut elem = bcx.extract_value(llval, v.memory_index[n] as usize); // Truncate bools to i1, if needed if ty.is_bool() && common::val_ty(elem) != Type::i1(bcx.ccx) { elem = bcx.trunc(elem, Type::i1(bcx.ccx)); } // If the tuple is immediate, the elements are as well let op = OperandRef { val: Immediate(elem), ty: ty }; self.trans_argument(bcx, op, llargs, fn_ty, next_idx, callee); } } Pair(a, b) => { let elems = [a, b]; for (n, &ty) in arg_types.iter().enumerate() { let mut elem = elems[n]; // Truncate bools to i1, if needed if ty.is_bool() && common::val_ty(elem) != Type::i1(bcx.ccx) { elem = bcx.trunc(elem, Type::i1(bcx.ccx)); } // Pair is always made up of immediates let op = OperandRef { val: Immediate(elem), ty: ty }; self.trans_argument(bcx, op, llargs, fn_ty, next_idx, callee); } } } } fn get_personality_slot(&mut self, bcx: &Builder<'a, 'tcx>) -> ValueRef { let ccx = bcx.ccx; if let Some(slot) = self.llpersonalityslot { slot } else { let llretty = Type::struct_(ccx, &[Type::i8p(ccx), Type::i32(ccx)], false); let slot = bcx.alloca(llretty, "personalityslot"); self.llpersonalityslot = Some(slot); Lifetime::Start.call(bcx, slot); slot } } /// Return the landingpad wrapper around the given basic block /// /// No-op in MSVC SEH scheme. fn landing_pad_to(&mut self, target_bb: mir::BasicBlock) -> BasicBlockRef { if let Some(block) = self.landing_pads[target_bb] { return block; } if base::wants_msvc_seh(self.ccx.sess()) { return self.blocks[target_bb]; } let target = self.get_builder(target_bb); let bcx = self.new_block("cleanup"); self.landing_pads[target_bb] = Some(bcx.llbb()); let ccx = bcx.ccx; let llpersonality = self.ccx.eh_personality(); let llretty = Type::struct_(ccx, &[Type::i8p(ccx), Type::i32(ccx)], false); let llretval = bcx.landing_pad(llretty, llpersonality, 1, self.llfn); bcx.set_cleanup(llretval); let slot = self.get_personality_slot(&bcx); bcx.store(llretval, slot, None); bcx.br(target.llbb()); bcx.llbb() } fn unreachable_block(&mut self) -> BasicBlockRef { self.unreachable_block.unwrap_or_else(|| { let bl = self.new_block("unreachable"); bl.unreachable(); self.unreachable_block = Some(bl.llbb()); bl.llbb() }) } pub fn new_block(&self, name: &str) -> Builder<'a, 'tcx> { Builder::new_block(self.ccx, self.llfn, name) } pub fn get_builder(&self, bb: mir::BasicBlock) -> Builder<'a, 'tcx> { let builder = Builder::with_ccx(self.ccx); builder.position_at_end(self.blocks[bb]); builder } fn make_return_dest(&mut self, bcx: &Builder<'a, 'tcx>, dest: &mir::Lvalue<'tcx>, fn_ret_ty: &ArgType, llargs: &mut Vec, is_intrinsic: bool) -> ReturnDest { // If the return is ignored, we can just return a do-nothing ReturnDest if fn_ret_ty.is_ignore() { return ReturnDest::Nothing; } let dest = if let mir::Lvalue::Local(index) = *dest { let ret_ty = self.monomorphized_lvalue_ty(dest); match self.locals[index] { LocalRef::Lvalue(dest) => dest, LocalRef::Operand(None) => { // Handle temporary lvalues, specifically Operand ones, as // they don't have allocas return if fn_ret_ty.is_indirect() { // Odd, but possible, case, we have an operand temporary, // but the calling convention has an indirect return. let tmp = bcx.alloca_ty(ret_ty, "tmp_ret"); llargs.push(tmp); ReturnDest::IndirectOperand(tmp, index) } else if is_intrinsic { // Currently, intrinsics always need a location to store // the result. so we create a temporary alloca for the // result let tmp = bcx.alloca_ty(ret_ty, "tmp_ret"); ReturnDest::IndirectOperand(tmp, index) } else { ReturnDest::DirectOperand(index) }; } LocalRef::Operand(Some(_)) => { bug!("lvalue local already assigned to"); } } } else { self.trans_lvalue(bcx, dest) }; if fn_ret_ty.is_indirect() { llargs.push(dest.llval); ReturnDest::Nothing } else { ReturnDest::Store(dest.llval) } } fn trans_transmute(&mut self, bcx: &Builder<'a, 'tcx>, src: &mir::Operand<'tcx>, dst: LvalueRef<'tcx>) { let mut val = self.trans_operand(bcx, src); if let ty::TyFnDef(def_id, substs, _) = val.ty.sty { let llouttype = type_of::type_of(bcx.ccx, dst.ty.to_ty(bcx.tcx())); let out_type_size = llbitsize_of_real(bcx.ccx, llouttype); if out_type_size != 0 { // FIXME #19925 Remove this hack after a release cycle. let f = Callee::def(bcx.ccx, def_id, substs); let ty = match f.ty.sty { ty::TyFnDef(.., f) => bcx.tcx().mk_fn_ptr(f), _ => f.ty }; val = OperandRef { val: Immediate(f.reify(bcx.ccx)), ty: ty }; } } let llty = type_of::type_of(bcx.ccx, val.ty); let cast_ptr = bcx.pointercast(dst.llval, llty.ptr_to()); let in_type = val.ty; let out_type = dst.ty.to_ty(bcx.tcx());; let llalign = cmp::min(align_of(bcx.ccx, in_type), align_of(bcx.ccx, out_type)); self.store_operand(bcx, cast_ptr, val, Some(llalign)); } // Stores the return value of a function call into it's final location. fn store_return(&mut self, bcx: &Builder<'a, 'tcx>, dest: ReturnDest, ret_ty: ArgType, op: OperandRef<'tcx>) { use self::ReturnDest::*; match dest { Nothing => (), Store(dst) => ret_ty.store(bcx, op.immediate(), dst), IndirectOperand(tmp, index) => { let op = self.trans_load(bcx, tmp, op.ty); self.locals[index] = LocalRef::Operand(Some(op)); } DirectOperand(index) => { // If there is a cast, we have to store and reload. let op = if ret_ty.cast.is_some() { let tmp = bcx.alloca_ty(op.ty, "tmp_ret"); ret_ty.store(bcx, op.immediate(), tmp); self.trans_load(bcx, tmp, op.ty) } else { op.unpack_if_pair(bcx) }; self.locals[index] = LocalRef::Operand(Some(op)); } } } } enum ReturnDest { // Do nothing, the return value is indirect or ignored Nothing, // Store the return value to the pointer Store(ValueRef), // Stores an indirect return value to an operand local lvalue IndirectOperand(ValueRef, mir::Local), // Stores a direct return value to an operand local lvalue DirectOperand(mir::Local) }