use syntax::ast::*; use syntax::ast_util::{variant_def_ids, dummy_sp, unguarded_pat}; use const_eval::{eval_const_expr, const_val, const_int, const_bool, compare_const_vals}; use syntax::codemap::span; use syntax::print::pprust::pat_to_str; use util::ppaux::ty_to_str; use pat_util::*; use syntax::visit; use driver::session::session; use middle::ty; use middle::ty::*; use std::map::hashmap; fn check_crate(tcx: ty::ctxt, crate: @crate) { visit::visit_crate(*crate, (), visit::mk_vt(@{ visit_expr: |a,b,c| check_expr(tcx, a, b, c), visit_local: |a,b,c| check_local(tcx, a, b, c), .. *visit::default_visitor::<()>() })); tcx.sess.abort_if_errors(); } fn check_expr(tcx: ty::ctxt, ex: @expr, &&s: (), v: visit::vt<()>) { visit::visit_expr(ex, s, v); match ex.node { expr_match(scrut, arms) => { check_arms(tcx, arms); /* Check for exhaustiveness */ // Check for empty enum, because is_useful only works on inhabited // types. let pat_ty = node_id_to_type(tcx, scrut.id); if arms.is_empty() { if !type_is_empty(tcx, pat_ty) { // We know the type is inhabited, so this must be wrong tcx.sess.span_err(ex.span, #fmt("non-exhaustive patterns: \ type %s is non-empty", ty_to_str(tcx, pat_ty))); } // If the type *is* empty, it's vacuously exhaustive return; } match ty::get(pat_ty).struct { ty_enum(did, _) => { if (*enum_variants(tcx, did)).is_empty() && arms.is_empty() { return; } } _ => { /* We assume only enum types can be uninhabited */ } } let arms = vec::concat(vec::filter_map(arms, unguarded_pat)); check_exhaustive(tcx, ex.span, arms); } _ => () } } // Check for unreachable patterns fn check_arms(tcx: ty::ctxt, arms: ~[arm]) { let mut seen = ~[]; for arms.each |arm| { for arm.pats.each |pat| { let v = ~[pat]; match is_useful(tcx, seen, v) { not_useful => { tcx.sess.span_err(pat.span, ~"unreachable pattern"); } _ => () } if option::is_none(arm.guard) { vec::push(seen, v); } } } } fn raw_pat(p: @pat) -> @pat { match p.node { pat_ident(_, _, Some(s)) => { raw_pat(s) } _ => { p } } } fn check_exhaustive(tcx: ty::ctxt, sp: span, pats: ~[@pat]) { assert(pats.is_not_empty()); let ext = match is_useful(tcx, vec::map(pats, |p| ~[p]), ~[wild()]) { not_useful => return, // This is good, wildcard pattern isn't reachable useful_ => None, useful(ty, ctor) => { match ty::get(ty).struct { ty::ty_bool => { match ctor { val(const_bool(true)) => Some(~"true"), val(const_bool(false)) => Some(~"false"), _ => None } } ty::ty_enum(id, _) => { let vid = match ctor { variant(id) => id, _ => fail ~"check_exhaustive: non-variant ctor" }; match vec::find(*ty::enum_variants(tcx, id), |v| v.id == vid) { Some(v) => Some(tcx.sess.str_of(v.name)), None => fail ~"check_exhaustive: bad variant in ctor" } } _ => None } } }; let msg = ~"non-exhaustive patterns" + match ext { Some(s) => ~": " + s + ~" not covered", None => ~"" }; tcx.sess.span_err(sp, msg); } type matrix = ~[~[@pat]]; enum useful { useful(ty::t, ctor), useful_, not_useful } enum ctor { single, variant(def_id), val(const_val), range(const_val, const_val), } impl ctor: cmp::Eq { pure fn eq(&&other: ctor) -> bool { match (self, other) { (single, single) => true, (variant(did_self), variant(did_other)) => did_self == did_other, (val(cv_self), val(cv_other)) => cv_self == cv_other, (range(cv0_self, cv1_self), range(cv0_other, cv1_other)) => { cv0_self == cv0_other && cv1_self == cv1_other } (single, _) | (variant(_), _) | (val(_), _) | (range(*), _) => { false } } } } // Algorithm from http://moscova.inria.fr/~maranget/papers/warn/index.html // // Whether a vector `v` of patterns is 'useful' in relation to a set of such // vectors `m` is defined as there being a set of inputs that will match `v` // but not any of the sets in `m`. // // This is used both for reachability checking (if a pattern isn't useful in // relation to preceding patterns, it is not reachable) and exhaustiveness // checking (if a wildcard pattern is useful in relation to a matrix, the // matrix isn't exhaustive). // Note: is_useful doesn't work on empty types, as the paper notes. // So it assumes that v is non-empty. fn is_useful(tcx: ty::ctxt, m: matrix, v: ~[@pat]) -> useful { if m.len() == 0u { return useful_; } if m[0].len() == 0u { return not_useful; } let real_pat = match vec::find(m, |r| r[0].id != 0) { Some(r) => r[0], None => v[0] }; let left_ty = if real_pat.id == 0 { ty::mk_nil(tcx) } else { ty::node_id_to_type(tcx, real_pat.id) }; match pat_ctor_id(tcx, v[0]) { None => { match missing_ctor(tcx, m, left_ty) { None => { match ty::get(left_ty).struct { ty::ty_bool => { match is_useful_specialized(tcx, m, v, val(const_bool(true)), 0u, left_ty){ not_useful => { is_useful_specialized(tcx, m, v, val(const_bool(false)), 0u, left_ty) } u => u } } ty::ty_enum(eid, _) => { for (*ty::enum_variants(tcx, eid)).each |va| { match is_useful_specialized(tcx, m, v, variant(va.id), va.args.len(), left_ty) { not_useful => (), u => return u } } not_useful } _ => { let arity = ctor_arity(tcx, single, left_ty); is_useful_specialized(tcx, m, v, single, arity, left_ty) } } } Some(ctor) => { match is_useful(tcx, vec::filter_map(m, |r| default(tcx, r) ), vec::tail(v)) { useful_ => useful(left_ty, ctor), u => u } } } } Some(v0_ctor) => { let arity = ctor_arity(tcx, v0_ctor, left_ty); is_useful_specialized(tcx, m, v, v0_ctor, arity, left_ty) } } } fn is_useful_specialized(tcx: ty::ctxt, m: matrix, v: ~[@pat], ctor: ctor, arity: uint, lty: ty::t) -> useful { let ms = vec::filter_map(m, |r| specialize(tcx, r, ctor, arity, lty) ); let could_be_useful = is_useful( tcx, ms, option::get(specialize(tcx, v, ctor, arity, lty))); match could_be_useful { useful_ => useful(lty, ctor), u => u } } fn pat_ctor_id(tcx: ty::ctxt, p: @pat) -> Option { let pat = raw_pat(p); match pat.node { pat_wild => { None } pat_ident(_, _, _) | pat_enum(_, _) => { match tcx.def_map.find(pat.id) { Some(def_variant(_, id)) => Some(variant(id)), _ => None } } pat_lit(expr) => { Some(val(eval_const_expr(tcx, expr))) } pat_range(lo, hi) => { Some(range(eval_const_expr(tcx, lo), eval_const_expr(tcx, hi))) } pat_box(_) | pat_uniq(_) | pat_rec(_, _) | pat_tup(_) | pat_struct(*) => { Some(single) } } } fn is_wild(tcx: ty::ctxt, p: @pat) -> bool { let pat = raw_pat(p); match pat.node { pat_wild => { true } pat_ident(_, _, _) => { match tcx.def_map.find(pat.id) { Some(def_variant(_, _)) => { false } _ => { true } } } _ => { false } } } fn missing_ctor(tcx: ty::ctxt, m: matrix, left_ty: ty::t) -> Option { match ty::get(left_ty).struct { ty::ty_box(_) | ty::ty_uniq(_) | ty::ty_tup(_) | ty::ty_rec(_) | ty::ty_class(*) => { for m.each |r| { if !is_wild(tcx, r[0]) { return None; } } return Some(single); } ty::ty_enum(eid, _) => { let mut found = ~[]; for m.each |r| { do option::iter(pat_ctor_id(tcx, r[0])) |id| { if !vec::contains(found, id) { vec::push(found, id); } } } let variants = ty::enum_variants(tcx, eid); if found.len() != (*variants).len() { for vec::each(*variants) |v| { if !found.contains(variant(v.id)) { return Some(variant(v.id)); } } fail; } else { None } } ty::ty_nil => None, ty::ty_bool => { let mut true_found = false, false_found = false; for m.each |r| { match pat_ctor_id(tcx, r[0]) { None => (), Some(val(const_bool(true))) => true_found = true, Some(val(const_bool(false))) => false_found = true, _ => fail ~"impossible case" } } if true_found && false_found { None } else if true_found { Some(val(const_bool(false))) } else { Some(val(const_bool(true))) } } _ => Some(single) } } fn ctor_arity(tcx: ty::ctxt, ctor: ctor, ty: ty::t) -> uint { match ty::get(ty).struct { ty::ty_tup(fs) => fs.len(), ty::ty_rec(fs) => fs.len(), ty::ty_box(_) | ty::ty_uniq(_) => 1u, ty::ty_enum(eid, _) => { let id = match ctor { variant(id) => id, _ => fail ~"impossible case" }; match vec::find(*ty::enum_variants(tcx, eid), |v| v.id == id ) { Some(v) => v.args.len(), None => fail ~"impossible case" } } ty::ty_class(cid, _) => ty::lookup_class_fields(tcx, cid).len(), _ => 0u } } fn wild() -> @pat { @{id: 0, node: pat_wild, span: syntax::ast_util::dummy_sp()} } fn specialize(tcx: ty::ctxt, r: ~[@pat], ctor_id: ctor, arity: uint, left_ty: ty::t) -> Option<~[@pat]> { let r0 = raw_pat(r[0]); match r0.node { pat_wild => Some(vec::append(vec::from_elem(arity, wild()), vec::tail(r))), pat_ident(_, _, _) => { match tcx.def_map.find(r0.id) { Some(def_variant(_, id)) => { if variant(id) == ctor_id { Some(vec::tail(r)) } else { None } } _ => Some(vec::append(vec::from_elem(arity, wild()), vec::tail(r))) } } pat_enum(_, args) => { match tcx.def_map.get(r0.id) { def_variant(_, id) if variant(id) == ctor_id => { let args = match args { Some(args) => args, None => vec::from_elem(arity, wild()) }; Some(vec::append(args, vec::tail(r))) } def_variant(_, _) => None, _ => None } } pat_rec(flds, _) => { let ty_flds = match ty::get(left_ty).struct { ty::ty_rec(flds) => flds, _ => fail ~"bad type for pat_rec" }; let args = vec::map(ty_flds, |ty_f| { match vec::find(flds, |f| f.ident == ty_f.ident ) { Some(f) => f.pat, _ => wild() } }); Some(vec::append(args, vec::tail(r))) } pat_struct(_, flds, _) => { // Grab the class data that we care about. let class_fields, class_id; match ty::get(left_ty).struct { ty::ty_class(cid, _) => { class_id = cid; class_fields = ty::lookup_class_fields(tcx, class_id); } _ => { tcx.sess.span_bug(r0.span, ~"struct pattern didn't resolve \ to a struct"); } } let args = vec::map(class_fields, |class_field| { match vec::find(flds, |f| f.ident == class_field.ident ) { Some(f) => f.pat, _ => wild() } }); Some(vec::append(args, vec::tail(r))) } pat_tup(args) => Some(vec::append(args, vec::tail(r))), pat_box(a) | pat_uniq(a) => Some(vec::append(~[a], vec::tail(r))), pat_lit(expr) => { let e_v = eval_const_expr(tcx, expr); let match_ = match ctor_id { val(v) => compare_const_vals(e_v, v) == 0, range(c_lo, c_hi) => { compare_const_vals(c_lo, e_v) >= 0 && compare_const_vals(c_hi, e_v) <= 0 } single => true, _ => fail ~"type error" }; if match_ { Some(vec::tail(r)) } else { None } } pat_range(lo, hi) => { let (c_lo, c_hi) = match ctor_id { val(v) => (v, v), range(lo, hi) => (lo, hi), single => return Some(vec::tail(r)), _ => fail ~"type error" }; let v_lo = eval_const_expr(tcx, lo), v_hi = eval_const_expr(tcx, hi); let match_ = compare_const_vals(c_lo, v_lo) >= 0 && compare_const_vals(c_hi, v_hi) <= 0; if match_ { Some(vec::tail(r)) } else { None } } } } fn default(tcx: ty::ctxt, r: ~[@pat]) -> Option<~[@pat]> { if is_wild(tcx, r[0]) { Some(vec::tail(r)) } else { None } } fn check_local(tcx: ty::ctxt, loc: @local, &&s: (), v: visit::vt<()>) { visit::visit_local(loc, s, v); if is_refutable(tcx, loc.node.pat) { tcx.sess.span_err(loc.node.pat.span, ~"refutable pattern in local binding"); } } fn is_refutable(tcx: ty::ctxt, pat: @pat) -> bool { match tcx.def_map.find(pat.id) { Some(def_variant(enum_id, _)) => { if vec::len(*ty::enum_variants(tcx, enum_id)) != 1u { return true; } } _ => () } match pat.node { pat_box(sub) | pat_uniq(sub) | pat_ident(_, _, Some(sub)) => { is_refutable(tcx, sub) } pat_wild | pat_ident(_, _, None) => { false } pat_lit(@{node: expr_lit(@{node: lit_nil, _}), _}) => { false } // "()" pat_lit(_) | pat_range(_, _) => { true } pat_rec(fields, _) => { for fields.each |it| { if is_refutable(tcx, it.pat) { return true; } } false } pat_struct(_, fields, _) => { for fields.each |it| { if is_refutable(tcx, it.pat) { return true; } } false } pat_tup(elts) => { for elts.each |elt| { if is_refutable(tcx, elt) { return true; } } false } pat_enum(_, Some(args)) => { for args.each |p| { if is_refutable(tcx, p) { return true; } }; false } pat_enum(_,_) => { false } } } // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: