// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use abi::Abi; use ast::*; use ast; use ast_util; use codemap; use codemap::Span; use owned_slice::OwnedSlice; use parse::token; use print::pprust; use ptr::P; use visit::Visitor; use visit; use std::cmp; use std::u32; pub fn path_name_i(idents: &[Ident]) -> String { // FIXME: Bad copies (#2543 -- same for everything else that says "bad") idents.iter().map(|i| { token::get_ident(*i).to_string() }).collect::>().connect("::") } pub fn local_def(id: NodeId) -> DefId { ast::DefId { krate: LOCAL_CRATE, node: id } } pub fn is_local(did: ast::DefId) -> bool { did.krate == LOCAL_CRATE } pub fn stmt_id(s: &Stmt) -> NodeId { match s.node { StmtDecl(_, id) => id, StmtExpr(_, id) => id, StmtSemi(_, id) => id, StmtMac(..) => panic!("attempted to analyze unexpanded stmt") } } pub fn binop_to_string(op: BinOp_) -> &'static str { match op { BiAdd => "+", BiSub => "-", BiMul => "*", BiDiv => "/", BiRem => "%", BiAnd => "&&", BiOr => "||", BiBitXor => "^", BiBitAnd => "&", BiBitOr => "|", BiShl => "<<", BiShr => ">>", BiEq => "==", BiLt => "<", BiLe => "<=", BiNe => "!=", BiGe => ">=", BiGt => ">" } } pub fn lazy_binop(b: BinOp_) -> bool { match b { BiAnd => true, BiOr => true, _ => false } } pub fn is_shift_binop(b: BinOp_) -> bool { match b { BiShl => true, BiShr => true, _ => false } } pub fn is_comparison_binop(b: BinOp_) -> bool { match b { BiEq | BiLt | BiLe | BiNe | BiGt | BiGe => true, _ => false } } /// Returns `true` if the binary operator takes its arguments by value pub fn is_by_value_binop(b: BinOp_) -> bool { match b { BiAdd | BiSub | BiMul | BiDiv | BiRem | BiBitXor | BiBitAnd | BiBitOr | BiShl | BiShr => { true } _ => false } } /// Returns `true` if the binary operator is symmetric in the sense that LHS /// and RHS must have the same type. So the type of LHS can serve as an hint /// for the type of RHS and vice versa. pub fn is_symmetric_binop(b: BinOp_) -> bool { match b { BiAdd | BiSub | BiMul | BiDiv | BiRem | BiBitXor | BiBitAnd | BiBitOr | BiEq | BiLt | BiLe | BiNe | BiGt | BiGe => { true } _ => false } } /// Returns `true` if the unary operator takes its argument by value pub fn is_by_value_unop(u: UnOp) -> bool { match u { UnNeg | UnNot => true, _ => false, } } pub fn unop_to_string(op: UnOp) -> &'static str { match op { UnUniq => "box() ", UnDeref => "*", UnNot => "!", UnNeg => "-", } } pub fn is_path(e: P) -> bool { return match e.node { ExprPath(_) => true, _ => false }; } /// Get a string representation of a signed int type, with its value. /// We want to avoid "45int" and "-3int" in favor of "45" and "-3" pub fn int_ty_to_string(t: IntTy, val: Option) -> String { let s = match t { TyIs(_) => "isize", TyI8 => "i8", TyI16 => "i16", TyI32 => "i32", TyI64 => "i64" }; match val { // cast to a u64 so we can correctly print INT64_MIN. All integral types // are parsed as u64, so we wouldn't want to print an extra negative // sign. Some(n) => format!("{}{}", n as u64, s), None => s.to_string() } } pub fn int_ty_max(t: IntTy) -> u64 { match t { TyI8 => 0x80u64, TyI16 => 0x8000u64, TyIs(_) | TyI32 => 0x80000000u64, // actually ni about TyIs TyI64 => 0x8000000000000000u64 } } /// Get a string representation of an unsigned int type, with its value. /// We want to avoid "42u" in favor of "42us". "42uint" is right out. pub fn uint_ty_to_string(t: UintTy, val: Option) -> String { let s = match t { TyUs(_) => "usize", TyU8 => "u8", TyU16 => "u16", TyU32 => "u32", TyU64 => "u64" }; match val { Some(n) => format!("{}{}", n, s), None => s.to_string() } } pub fn uint_ty_max(t: UintTy) -> u64 { match t { TyU8 => 0xffu64, TyU16 => 0xffffu64, TyUs(_) | TyU32 => 0xffffffffu64, // actually ni about TyUs TyU64 => 0xffffffffffffffffu64 } } pub fn float_ty_to_string(t: FloatTy) -> String { match t { TyF32 => "f32".to_string(), TyF64 => "f64".to_string(), } } // convert a span and an identifier to the corresponding // 1-segment path pub fn ident_to_path(s: Span, identifier: Ident) -> Path { ast::Path { span: s, global: false, segments: vec!( ast::PathSegment { identifier: identifier, parameters: ast::AngleBracketedParameters(ast::AngleBracketedParameterData { lifetimes: Vec::new(), types: OwnedSlice::empty(), bindings: OwnedSlice::empty(), }) } ), } } // If path is a single segment ident path, return that ident. Otherwise, return // None. pub fn path_to_ident(path: &Path) -> Option { if path.segments.len() != 1 { return None; } let segment = &path.segments[0]; if !segment.parameters.is_empty() { return None; } Some(segment.identifier) } pub fn ident_to_pat(id: NodeId, s: Span, i: Ident) -> P { P(Pat { id: id, node: PatIdent(BindByValue(MutImmutable), codemap::Spanned{span:s, node:i}, None), span: s }) } pub fn name_to_dummy_lifetime(name: Name) -> Lifetime { Lifetime { id: DUMMY_NODE_ID, span: codemap::DUMMY_SP, name: name } } /// Generate a "pretty" name for an `impl` from its type and trait. /// This is designed so that symbols of `impl`'d methods give some /// hint of where they came from, (previously they would all just be /// listed as `__extensions__::method_name::hash`, with no indication /// of the type). pub fn impl_pretty_name(trait_ref: &Option, ty: &Ty) -> Ident { let mut pretty = pprust::ty_to_string(ty); match *trait_ref { Some(ref trait_ref) => { pretty.push('.'); pretty.push_str(&pprust::path_to_string(&trait_ref.path)[]); } None => {} } token::gensym_ident(&pretty[]) } pub fn trait_method_to_ty_method(method: &Method) -> TypeMethod { match method.node { MethDecl(ident, ref generics, abi, ref explicit_self, unsafety, ref decl, _, vis) => { TypeMethod { ident: ident, attrs: method.attrs.clone(), unsafety: unsafety, decl: (*decl).clone(), generics: generics.clone(), explicit_self: (*explicit_self).clone(), id: method.id, span: method.span, vis: vis, abi: abi, } }, MethMac(_) => panic!("expected non-macro method declaration") } } /// extract a TypeMethod from a TraitItem. if the TraitItem is /// a default, pull out the useful fields to make a TypeMethod // // NB: to be used only after expansion is complete, and macros are gone. pub fn trait_item_to_ty_method(method: &TraitItem) -> TypeMethod { match *method { RequiredMethod(ref m) => (*m).clone(), ProvidedMethod(ref m) => trait_method_to_ty_method(&**m), TypeTraitItem(_) => { panic!("trait_method_to_ty_method(): expected method but found \ typedef") } } } pub fn split_trait_methods(trait_methods: &[TraitItem]) -> (Vec, Vec> ) { let mut reqd = Vec::new(); let mut provd = Vec::new(); for trt_method in trait_methods { match *trt_method { RequiredMethod(ref tm) => reqd.push((*tm).clone()), ProvidedMethod(ref m) => provd.push((*m).clone()), TypeTraitItem(_) => {} } }; (reqd, provd) } pub fn struct_field_visibility(field: ast::StructField) -> Visibility { match field.node.kind { ast::NamedField(_, v) | ast::UnnamedField(v) => v } } /// Maps a binary operator to its precedence pub fn operator_prec(op: ast::BinOp_) -> usize { match op { // 'as' sits here with 12 BiMul | BiDiv | BiRem => 11, BiAdd | BiSub => 10, BiShl | BiShr => 9, BiBitAnd => 8, BiBitXor => 7, BiBitOr => 6, BiLt | BiLe | BiGe | BiGt | BiEq | BiNe => 3, BiAnd => 2, BiOr => 1 } } /// Precedence of the `as` operator, which is a binary operator /// not appearing in the prior table. pub const AS_PREC: usize = 12; pub fn empty_generics() -> Generics { Generics { lifetimes: Vec::new(), ty_params: OwnedSlice::empty(), where_clause: WhereClause { id: DUMMY_NODE_ID, predicates: Vec::new(), } } } // ______________________________________________________________________ // Enumerating the IDs which appear in an AST #[derive(RustcEncodable, RustcDecodable, Debug, Copy)] pub struct IdRange { pub min: NodeId, pub max: NodeId, } impl IdRange { pub fn max() -> IdRange { IdRange { min: u32::MAX, max: u32::MIN, } } pub fn empty(&self) -> bool { self.min >= self.max } pub fn add(&mut self, id: NodeId) { self.min = cmp::min(self.min, id); self.max = cmp::max(self.max, id + 1); } } pub trait IdVisitingOperation { fn visit_id(&mut self, node_id: NodeId); } /// A visitor that applies its operation to all of the node IDs /// in a visitable thing. pub struct IdVisitor<'a, O:'a> { pub operation: &'a mut O, pub pass_through_items: bool, pub visited_outermost: bool, } impl<'a, O: IdVisitingOperation> IdVisitor<'a, O> { fn visit_generics_helper(&mut self, generics: &Generics) { for type_parameter in &*generics.ty_params { self.operation.visit_id(type_parameter.id) } for lifetime in &generics.lifetimes { self.operation.visit_id(lifetime.lifetime.id) } } } impl<'a, 'v, O: IdVisitingOperation> Visitor<'v> for IdVisitor<'a, O> { fn visit_mod(&mut self, module: &Mod, _: Span, node_id: NodeId) { self.operation.visit_id(node_id); visit::walk_mod(self, module) } fn visit_foreign_item(&mut self, foreign_item: &ForeignItem) { self.operation.visit_id(foreign_item.id); visit::walk_foreign_item(self, foreign_item) } fn visit_item(&mut self, item: &Item) { if !self.pass_through_items { if self.visited_outermost { return } else { self.visited_outermost = true } } self.operation.visit_id(item.id); match item.node { ItemUse(ref view_path) => { match view_path.node { ViewPathSimple(_, _) | ViewPathGlob(_) => {} ViewPathList(_, ref paths) => { for path in paths { self.operation.visit_id(path.node.id()) } } } } ItemEnum(ref enum_definition, _) => { for variant in &enum_definition.variants { self.operation.visit_id(variant.node.id) } } _ => {} } visit::walk_item(self, item); self.visited_outermost = false } fn visit_local(&mut self, local: &Local) { self.operation.visit_id(local.id); visit::walk_local(self, local) } fn visit_block(&mut self, block: &Block) { self.operation.visit_id(block.id); visit::walk_block(self, block) } fn visit_stmt(&mut self, statement: &Stmt) { self.operation.visit_id(ast_util::stmt_id(statement)); visit::walk_stmt(self, statement) } fn visit_pat(&mut self, pattern: &Pat) { self.operation.visit_id(pattern.id); visit::walk_pat(self, pattern) } fn visit_expr(&mut self, expression: &Expr) { self.operation.visit_id(expression.id); visit::walk_expr(self, expression) } fn visit_ty(&mut self, typ: &Ty) { self.operation.visit_id(typ.id); if let TyPath(_, id) = typ.node { self.operation.visit_id(id); } visit::walk_ty(self, typ) } fn visit_generics(&mut self, generics: &Generics) { self.visit_generics_helper(generics); visit::walk_generics(self, generics) } fn visit_fn(&mut self, function_kind: visit::FnKind<'v>, function_declaration: &'v FnDecl, block: &'v Block, span: Span, node_id: NodeId) { if !self.pass_through_items { match function_kind { visit::FkMethod(..) if self.visited_outermost => return, visit::FkMethod(..) => self.visited_outermost = true, _ => {} } } self.operation.visit_id(node_id); match function_kind { visit::FkItemFn(_, generics, _, _) | visit::FkMethod(_, generics, _) => { self.visit_generics_helper(generics) } visit::FkFnBlock => {} } for argument in &function_declaration.inputs { self.operation.visit_id(argument.id) } visit::walk_fn(self, function_kind, function_declaration, block, span); if !self.pass_through_items { if let visit::FkMethod(..) = function_kind { self.visited_outermost = false; } } } fn visit_struct_field(&mut self, struct_field: &StructField) { self.operation.visit_id(struct_field.node.id); visit::walk_struct_field(self, struct_field) } fn visit_struct_def(&mut self, struct_def: &StructDef, _: ast::Ident, _: &ast::Generics, id: NodeId) { self.operation.visit_id(id); struct_def.ctor_id.map(|ctor_id| self.operation.visit_id(ctor_id)); visit::walk_struct_def(self, struct_def); } fn visit_trait_item(&mut self, tm: &ast::TraitItem) { match *tm { ast::RequiredMethod(ref m) => self.operation.visit_id(m.id), ast::ProvidedMethod(ref m) => self.operation.visit_id(m.id), ast::TypeTraitItem(ref typ) => self.operation.visit_id(typ.ty_param.id), } visit::walk_trait_item(self, tm); } fn visit_lifetime_ref(&mut self, lifetime: &'v Lifetime) { self.operation.visit_id(lifetime.id); } fn visit_lifetime_def(&mut self, def: &'v LifetimeDef) { self.visit_lifetime_ref(&def.lifetime); } } pub fn visit_ids_for_inlined_item(item: &InlinedItem, operation: &mut O) { let mut id_visitor = IdVisitor { operation: operation, pass_through_items: true, visited_outermost: false, }; visit::walk_inlined_item(&mut id_visitor, item); } struct IdRangeComputingVisitor { result: IdRange, } impl IdVisitingOperation for IdRangeComputingVisitor { fn visit_id(&mut self, id: NodeId) { self.result.add(id); } } pub fn compute_id_range_for_inlined_item(item: &InlinedItem) -> IdRange { let mut visitor = IdRangeComputingVisitor { result: IdRange::max() }; visit_ids_for_inlined_item(item, &mut visitor); visitor.result } /// Computes the id range for a single fn body, ignoring nested items. pub fn compute_id_range_for_fn_body(fk: visit::FnKind, decl: &FnDecl, body: &Block, sp: Span, id: NodeId) -> IdRange { let mut visitor = IdRangeComputingVisitor { result: IdRange::max() }; let mut id_visitor = IdVisitor { operation: &mut visitor, pass_through_items: false, visited_outermost: false, }; id_visitor.visit_fn(fk, decl, body, sp, id); id_visitor.operation.result } pub fn walk_pat(pat: &Pat, mut it: F) -> bool where F: FnMut(&Pat) -> bool { // FIXME(#19596) this is a workaround, but there should be a better way fn walk_pat_(pat: &Pat, it: &mut G) -> bool where G: FnMut(&Pat) -> bool { if !(*it)(pat) { return false; } match pat.node { PatIdent(_, _, Some(ref p)) => walk_pat_(&**p, it), PatStruct(_, ref fields, _) => { fields.iter().all(|field| walk_pat_(&*field.node.pat, it)) } PatEnum(_, Some(ref s)) | PatTup(ref s) => { s.iter().all(|p| walk_pat_(&**p, it)) } PatBox(ref s) | PatRegion(ref s, _) => { walk_pat_(&**s, it) } PatVec(ref before, ref slice, ref after) => { before.iter().all(|p| walk_pat_(&**p, it)) && slice.iter().all(|p| walk_pat_(&**p, it)) && after.iter().all(|p| walk_pat_(&**p, it)) } PatMac(_) => panic!("attempted to analyze unexpanded pattern"), PatWild(_) | PatLit(_) | PatRange(_, _) | PatIdent(_, _, _) | PatEnum(_, _) => { true } } } walk_pat_(pat, &mut it) } /// Returns true if the given struct def is tuple-like; i.e. that its fields /// are unnamed. pub fn struct_def_is_tuple_like(struct_def: &ast::StructDef) -> bool { struct_def.ctor_id.is_some() } /// Returns true if the given pattern consists solely of an identifier /// and false otherwise. pub fn pat_is_ident(pat: P) -> bool { match pat.node { ast::PatIdent(..) => true, _ => false, } } // are two paths equal when compared unhygienically? // since I'm using this to replace ==, it seems appropriate // to compare the span, global, etc. fields as well. pub fn path_name_eq(a : &ast::Path, b : &ast::Path) -> bool { (a.span == b.span) && (a.global == b.global) && (segments_name_eq(&a.segments[], &b.segments[])) } // are two arrays of segments equal when compared unhygienically? pub fn segments_name_eq(a : &[ast::PathSegment], b : &[ast::PathSegment]) -> bool { a.len() == b.len() && a.iter().zip(b.iter()).all(|(s, t)| { s.identifier.name == t.identifier.name && // FIXME #7743: ident -> name problems in lifetime comparison? // can types contain idents? s.parameters == t.parameters }) } /// Returns true if this literal is a string and false otherwise. pub fn lit_is_str(lit: &Lit) -> bool { match lit.node { LitStr(..) => true, _ => false, } } /// Macro invocations are guaranteed not to occur after expansion is complete. /// Extracting fields of a method requires a dynamic check to make sure that it's /// not a macro invocation. This check is guaranteed to succeed, assuming /// that the invocations are indeed gone. pub trait PostExpansionMethod { fn pe_ident(&self) -> ast::Ident; fn pe_generics<'a>(&'a self) -> &'a ast::Generics; fn pe_abi(&self) -> Abi; fn pe_explicit_self<'a>(&'a self) -> &'a ast::ExplicitSelf; fn pe_unsafety(&self) -> ast::Unsafety; fn pe_fn_decl<'a>(&'a self) -> &'a ast::FnDecl; fn pe_body<'a>(&'a self) -> &'a ast::Block; fn pe_vis(&self) -> ast::Visibility; } macro_rules! mf_method{ ($meth_name:ident, $field_ty:ty, $field_pat:pat, $result:expr) => { fn $meth_name<'a>(&'a self) -> $field_ty { match self.node { $field_pat => $result, MethMac(_) => { panic!("expected an AST without macro invocations"); } } } } } impl PostExpansionMethod for Method { mf_method! { pe_ident,ast::Ident,MethDecl(ident,_,_,_,_,_,_,_),ident } mf_method! { pe_generics,&'a ast::Generics, MethDecl(_,ref generics,_,_,_,_,_,_),generics } mf_method! { pe_abi,Abi,MethDecl(_,_,abi,_,_,_,_,_),abi } mf_method! { pe_explicit_self,&'a ast::ExplicitSelf, MethDecl(_,_,_,ref explicit_self,_,_,_,_),explicit_self } mf_method! { pe_unsafety,ast::Unsafety,MethDecl(_,_,_,_,unsafety,_,_,_),unsafety } mf_method! { pe_fn_decl,&'a ast::FnDecl,MethDecl(_,_,_,_,_,ref decl,_,_),&**decl } mf_method! { pe_body,&'a ast::Block,MethDecl(_,_,_,_,_,_,ref body,_),&**body } mf_method! { pe_vis,ast::Visibility,MethDecl(_,_,_,_,_,_,_,vis),vis } } #[cfg(test)] mod test { use ast::*; use super::*; fn ident_to_segment(id : &Ident) -> PathSegment { PathSegment {identifier: id.clone(), parameters: PathParameters::none()} } #[test] fn idents_name_eq_test() { assert!(segments_name_eq( &[Ident{name:Name(3),ctxt:4}, Ident{name:Name(78),ctxt:82}] .iter().map(ident_to_segment).collect::>()[], &[Ident{name:Name(3),ctxt:104}, Ident{name:Name(78),ctxt:182}] .iter().map(ident_to_segment).collect::>()[])); assert!(!segments_name_eq( &[Ident{name:Name(3),ctxt:4}, Ident{name:Name(78),ctxt:82}] .iter().map(ident_to_segment).collect::>()[], &[Ident{name:Name(3),ctxt:104}, Ident{name:Name(77),ctxt:182}] .iter().map(ident_to_segment).collect::>()[])); } }