use super::{ FnEvalContext, CachedMir, TerminatorTarget, ConstantId, GlobalEvalContext }; use error::EvalResult; use rustc::mir::repr as mir; use rustc::ty::subst::{self, Subst}; use rustc::hir::def_id::DefId; use rustc::mir::visit::{Visitor, LvalueContext}; use syntax::codemap::Span; use std::rc::Rc; pub enum Event { Constant, Assignment, Terminator, Done, } pub struct Stepper<'fncx, 'a: 'fncx, 'b: 'a + 'mir, 'mir: 'fncx, 'tcx: 'b>{ fncx: &'fncx mut FnEvalContext<'a, 'b, 'mir, 'tcx>, process: fn (&mut Stepper<'fncx, 'a, 'b, 'mir, 'tcx>) -> EvalResult<()>, } impl<'fncx, 'a, 'b: 'a + 'mir, 'mir, 'tcx: 'b> Stepper<'fncx, 'a, 'b, 'mir, 'tcx> { pub(super) fn new(fncx: &'fncx mut FnEvalContext<'a, 'b, 'mir, 'tcx>) -> Self { Stepper { fncx: fncx, process: Self::dummy, } } fn dummy(&mut self) -> EvalResult<()> { Ok(()) } fn statement(&mut self) -> EvalResult<()> { let mir = self.fncx.mir(); let block_data = mir.basic_block_data(self.fncx.frame().next_block); let stmt = &block_data.statements[self.fncx.frame().stmt]; let mir::StatementKind::Assign(ref lvalue, ref rvalue) = stmt.kind; let result = self.fncx.eval_assignment(lvalue, rvalue); self.fncx.maybe_report(stmt.span, result)?; self.fncx.frame_mut().stmt += 1; Ok(()) } fn terminator(&mut self) -> EvalResult<()> { // after a terminator we go to a new block self.fncx.frame_mut().stmt = 0; let term = { let mir = self.fncx.mir(); let block_data = mir.basic_block_data(self.fncx.frame().next_block); let terminator = block_data.terminator(); let result = self.fncx.eval_terminator(terminator); self.fncx.maybe_report(terminator.span, result)? }; match term { TerminatorTarget::Block => {}, TerminatorTarget::Return => { assert!(self.fncx.frame().constants.is_empty()); self.fncx.pop_stack_frame(); }, TerminatorTarget::Call => {}, } Ok(()) } fn constant(&mut self) -> EvalResult<()> { let (cid, span, return_ptr, mir) = self.fncx.frame_mut().constants.pop().expect("state machine broken"); let def_id = cid.def_id(); let substs = cid.substs(); self.fncx.push_stack_frame(def_id, span, mir, substs, Some(return_ptr)); Ok(()) } pub fn step(&mut self) -> EvalResult { (self.process)(self)?; if self.fncx.stack.is_empty() { // fuse the iterator self.process = Self::dummy; return Ok(Event::Done); } if !self.fncx.frame().constants.is_empty() { self.process = Self::constant; return Ok(Event::Constant); } let block = self.fncx.frame().next_block; let stmt = self.fncx.frame().stmt; let mir = self.fncx.mir(); let basic_block = mir.basic_block_data(block); if let Some(ref stmt) = basic_block.statements.get(stmt) { assert!(self.fncx.frame().constants.is_empty()); ConstantExtractor { span: stmt.span, gecx: self.fncx.gecx, frame: self.fncx.stack.last_mut().expect("stack empty"), }.visit_statement(block, stmt); if self.fncx.frame().constants.is_empty() { self.process = Self::statement; return Ok(Event::Assignment); } else { self.process = Self::constant; return Ok(Event::Constant); } } let terminator = basic_block.terminator(); assert!(self.fncx.frame().constants.is_empty()); ConstantExtractor { span: terminator.span, gecx: self.fncx.gecx, frame: self.fncx.stack.last_mut().expect("stack empty"), }.visit_terminator(block, terminator); if self.fncx.frame().constants.is_empty() { self.process = Self::terminator; Ok(Event::Terminator) } else { self.process = Self::constant; Ok(Event::Constant) } } /// returns the statement that will be processed next pub fn stmt(&self) -> &mir::Statement { &self.fncx.basic_block().statements[self.fncx.frame().stmt] } /// returns the terminator of the current block pub fn term(&self) -> &mir::Terminator { self.fncx.basic_block().terminator() } pub fn block(&self) -> mir::BasicBlock { self.fncx.frame().next_block } } struct ConstantExtractor<'a, 'b: 'mir, 'mir: 'a, 'tcx: 'b> { span: Span, frame: &'a mut Frame<'mir, 'tcx>, gecx: &'a mut GlobalEvalContext<'b, 'tcx>, } impl<'a, 'b, 'mir, 'tcx> ConstantExtractor<'a, 'b, 'mir, 'tcx> { fn static_item(&mut self, def_id: DefId, substs: &'tcx subst::Substs<'tcx>, span: Span) { let cid = ConstantId::Static { def_id: def_id, substs: substs, }; if self.gecx.statics.contains_key(&cid) { return; } let mir = self.gecx.load_mir(def_id); let ptr = self.gecx.alloc_ret_ptr(mir.return_ty, substs).expect("there's no such thing as an unreachable static"); self.gecx.statics.insert(cid.clone(), ptr); self.frame.constants.push((cid, span, ptr, mir)); } } impl<'a, 'b, 'mir, 'tcx> Visitor<'tcx> for ConstantExtractor<'a, 'b, 'mir, 'tcx> { fn visit_constant(&mut self, constant: &mir::Constant<'tcx>) { self.super_constant(constant); match constant.literal { // already computed by rustc mir::Literal::Value { .. } => {} mir::Literal::Item { def_id, substs } => { let item_ty = self.gecx.tcx.lookup_item_type(def_id).subst(self.gecx.tcx, substs); if item_ty.ty.is_fn() { // unimplemented } else { self.static_item(def_id, substs, constant.span); } }, mir::Literal::Promoted { index } => { let cid = ConstantId::Promoted { def_id: self.frame.def_id, substs: self.frame.substs, index: index, }; if self.gecx.statics.contains_key(&cid) { return; } let mir = self.frame.mir.promoted[index].clone(); let return_ty = mir.return_ty; let return_ptr = self.gecx.alloc_ret_ptr(return_ty, cid.substs()).expect("there's no such thing as an unreachable static"); let mir = CachedMir::Owned(Rc::new(mir)); self.gecx.statics.insert(cid.clone(), return_ptr); self.frame.constants.push((cid, constant.span, return_ptr, mir)); } } } fn visit_lvalue(&mut self, lvalue: &mir::Lvalue<'tcx>, context: LvalueContext) { self.super_lvalue(lvalue, context); if let mir::Lvalue::Static(def_id) = *lvalue { let substs = self.gecx.tcx.mk_substs(subst::Substs::empty()); let span = self.span; self.static_item(def_id, substs, span); } } }