// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use back::link::exported_name; use driver::session; use lib::llvm::ValueRef; use middle::trans::base::{set_llvm_fn_attrs, set_inline_hint}; use middle::trans::base::{trans_enum_variant, push_ctxt, get_item_val}; use middle::trans::base::{trans_fn, decl_internal_rust_fn}; use middle::trans::base; use middle::trans::common::*; use middle::trans::intrinsic; use middle::ty; use middle::typeck; use util::ppaux::Repr; use syntax::abi; use syntax::ast; use syntax::ast_map; use syntax::ast_util::local_def; use std::hash::{sip, Hash}; pub fn monomorphic_fn(ccx: &CrateContext, fn_id: ast::DefId, real_substs: &ty::substs, vtables: Option, self_vtables: Option, ref_id: Option) -> (ValueRef, bool) { debug!("monomorphic_fn(\ fn_id={}, \ real_substs={}, \ vtables={}, \ self_vtable={}, \ ref_id={:?})", fn_id.repr(ccx.tcx()), real_substs.repr(ccx.tcx()), vtables.repr(ccx.tcx()), self_vtables.repr(ccx.tcx()), ref_id); assert!(real_substs.tps.iter().all(|t| { !ty::type_needs_infer(*t) && !ty::type_has_params(*t) })); let _icx = push_ctxt("monomorphic_fn"); let substs_iter = real_substs.self_ty.iter().chain(real_substs.tps.iter()); let param_ids: Vec = match vtables { Some(ref vts) => { debug!("make_mono_id vtables={} psubsts={}", vts.repr(ccx.tcx()), real_substs.tps.repr(ccx.tcx())); let vts_iter = self_vtables.iter().chain(vts.iter()); vts_iter.zip(substs_iter).map(|(vtable, subst)| MonoParamId { subst: *subst, // Do we really need the vtables to be hashed? Isn't the type enough? vtables: vtable.iter().map(|vt| make_vtable_id(ccx, vt)).collect() }).collect() } None => substs_iter.map(|subst| MonoParamId { subst: *subst, vtables: Vec::new() }).collect() }; let hash_id = MonoId { def: fn_id, params: param_ids }; match ccx.monomorphized.borrow().find(&hash_id) { Some(&val) => { debug!("leaving monomorphic fn {}", ty::item_path_str(ccx.tcx(), fn_id)); return (val, false); } None => () } let psubsts = param_substs { tys: real_substs.tps.clone(), vtables: vtables, self_ty: real_substs.self_ty.clone(), self_vtables: self_vtables }; debug!("monomorphic_fn(\ fn_id={}, \ psubsts={}, \ hash_id={:?})", fn_id.repr(ccx.tcx()), psubsts.repr(ccx.tcx()), hash_id); let tpt = ty::lookup_item_type(ccx.tcx(), fn_id); let llitem_ty = tpt.ty; // We need to do special handling of the substitutions if we are // calling a static provided method. This is sort of unfortunate. let mut is_static_provided = None; let map_node = session::expect( ccx.sess(), ccx.tcx.map.find(fn_id.node), || format!("while monomorphizing {:?}, couldn't find it in the \ item map (may have attempted to monomorphize an item \ defined in a different crate?)", fn_id)); match map_node { ast_map::NodeForeignItem(_) => { if ccx.tcx.map.get_foreign_abi(fn_id.node) != abi::RustIntrinsic { // Foreign externs don't have to be monomorphized. return (get_item_val(ccx, fn_id.node), true); } } ast_map::NodeTraitMethod(method) => { match *method { ast::Provided(m) => { // If this is a static provided method, indicate that // and stash the number of params on the method. if m.explicit_self.node == ast::SelfStatic { is_static_provided = Some(m.generics.ty_params.len()); } } _ => {} } } _ => {} } debug!("monomorphic_fn about to subst into {}", llitem_ty.repr(ccx.tcx())); let mono_ty = match is_static_provided { None => ty::subst_tps(ccx.tcx(), real_substs.tps.as_slice(), real_substs.self_ty, llitem_ty), Some(num_method_ty_params) => { // Static default methods are a little unfortunate, in // that the "internal" and "external" type of them differ. // Internally, the method body can refer to Self, but the // externally visible type of the method has a type param // inserted in between the trait type params and the // method type params. The substs that we are given are // the proper substs *internally* to the method body, so // we have to use those when compiling it. // // In order to get the proper substitution to use on the // type of the method, we pull apart the substitution and // stick a substitution for the self type in. // This is a bit unfortunate. let idx = real_substs.tps.len() - num_method_ty_params; let substs = real_substs.tps.slice(0, idx) + &[real_substs.self_ty.unwrap()] + real_substs.tps.tailn(idx); debug!("static default: changed substitution to {}", substs.repr(ccx.tcx())); ty::subst_tps(ccx.tcx(), substs, None, llitem_ty) } }; let f = match ty::get(mono_ty).sty { ty::ty_bare_fn(ref f) => { assert!(f.abi == abi::Rust || f.abi == abi::RustIntrinsic); f } _ => fail!("expected bare rust fn or an intrinsic") }; ccx.stats.n_monos.set(ccx.stats.n_monos.get() + 1); let depth; { let mut monomorphizing = ccx.monomorphizing.borrow_mut(); depth = match monomorphizing.find(&fn_id) { Some(&d) => d, None => 0 }; // Random cut-off -- code that needs to instantiate the same function // recursively more than thirty times can probably safely be assumed // to be causing an infinite expansion. if depth > ccx.sess().recursion_limit.get() { ccx.sess().span_fatal(ccx.tcx.map.span(fn_id.node), "reached the recursion limit during monomorphization"); } monomorphizing.insert(fn_id, depth + 1); } let s = ccx.tcx.map.with_path(fn_id.node, |path| { let mut state = sip::SipState::new(); hash_id.hash(&mut state); mono_ty.hash(&mut state); exported_name(path, format!("h{}", state.result()), ccx.link_meta.crateid.version_or_default()) }); debug!("monomorphize_fn mangled to {}", s); // This shouldn't need to option dance. let mut hash_id = Some(hash_id); let mk_lldecl = || { let lldecl = decl_internal_rust_fn(ccx, false, f.sig.inputs.as_slice(), f.sig.output, s); ccx.monomorphized.borrow_mut().insert(hash_id.take_unwrap(), lldecl); lldecl }; let lldecl = match map_node { ast_map::NodeItem(i) => { match *i { ast::Item { node: ast::ItemFn(decl, _, _, _, body), .. } => { let d = mk_lldecl(); set_llvm_fn_attrs(i.attrs.as_slice(), d); trans_fn(ccx, decl, body, d, Some(&psubsts), fn_id.node, []); d } _ => { ccx.sess().bug("Can't monomorphize this kind of item") } } } ast_map::NodeForeignItem(i) => { let simple = intrinsic::get_simple_intrinsic(ccx, i); match simple { Some(decl) => decl, None => { let d = mk_lldecl(); intrinsic::trans_intrinsic(ccx, d, i, &psubsts, ref_id); d } } } ast_map::NodeVariant(v) => { let parent = ccx.tcx.map.get_parent(fn_id.node); let tvs = ty::enum_variants(ccx.tcx(), local_def(parent)); let this_tv = *tvs.iter().find(|tv| { tv.id.node == fn_id.node}).unwrap(); let d = mk_lldecl(); set_inline_hint(d); match v.node.kind { ast::TupleVariantKind(ref args) => { trans_enum_variant(ccx, parent, v, args.as_slice(), this_tv.disr_val, Some(&psubsts), d); } ast::StructVariantKind(_) => ccx.sess().bug("can't monomorphize struct variants"), } d } ast_map::NodeMethod(mth) => { let d = mk_lldecl(); set_llvm_fn_attrs(mth.attrs.as_slice(), d); trans_fn(ccx, mth.decl, mth.body, d, Some(&psubsts), mth.id, []); d } ast_map::NodeTraitMethod(method) => { match *method { ast::Provided(mth) => { let d = mk_lldecl(); set_llvm_fn_attrs(mth.attrs.as_slice(), d); trans_fn(ccx, mth.decl, mth.body, d, Some(&psubsts), mth.id, []); d } _ => { ccx.sess().bug(format!("can't monomorphize a {:?}", map_node)) } } } ast_map::NodeStructCtor(struct_def) => { let d = mk_lldecl(); set_inline_hint(d); base::trans_tuple_struct(ccx, struct_def.fields.as_slice(), struct_def.ctor_id.expect("ast-mapped tuple struct \ didn't have a ctor id"), Some(&psubsts), d); d } // Ugh -- but this ensures any new variants won't be forgotten ast_map::NodeLifetime(..) | ast_map::NodeExpr(..) | ast_map::NodeStmt(..) | ast_map::NodeArg(..) | ast_map::NodeBlock(..) | ast_map::NodeLocal(..) => { ccx.sess().bug(format!("can't monomorphize a {:?}", map_node)) } }; ccx.monomorphizing.borrow_mut().insert(fn_id, depth); debug!("leaving monomorphic fn {}", ty::item_path_str(ccx.tcx(), fn_id)); (lldecl, false) } // Used to identify cached monomorphized functions and vtables #[deriving(Eq, TotalEq, Hash)] pub struct MonoParamId { pub subst: ty::t, // Do we really need the vtables to be hashed? Isn't the type enough? pub vtables: Vec } #[deriving(Eq, TotalEq, Hash)] pub struct MonoId { pub def: ast::DefId, pub params: Vec } pub fn make_vtable_id(ccx: &CrateContext, origin: &typeck::vtable_origin) -> MonoId { match origin { &typeck::vtable_static(impl_id, ref substs, ref sub_vtables) => { MonoId { def: impl_id, params: sub_vtables.iter().zip(substs.iter()).map(|(vtable, subst)| { MonoParamId { subst: *subst, // Do we really need the vtables to be hashed? Isn't the type enough? vtables: vtable.iter().map(|vt| make_vtable_id(ccx, vt)).collect() } }).collect() } } // can't this be checked at the callee? _ => fail!("make_vtable_id needs vtable_static") } }