// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A priority queue implemented with a binary heap. //! //! Insertion and popping the largest element have `O(log n)` time complexity. //! Checking the largest element is `O(1)`. Converting a vector to a binary heap //! can be done in-place, and has `O(n)` complexity. A binary heap can also be //! converted to a sorted vector in-place, allowing it to be used for an `O(n //! log n)` in-place heapsort. //! //! # Examples //! //! This is a larger example that implements [Dijkstra's algorithm][dijkstra] //! to solve the [shortest path problem][sssp] on a [directed graph][dir_graph]. //! It shows how to use [`BinaryHeap`] with custom types. //! //! [dijkstra]: http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm //! [sssp]: http://en.wikipedia.org/wiki/Shortest_path_problem //! [dir_graph]: http://en.wikipedia.org/wiki/Directed_graph //! [`BinaryHeap`]: struct.BinaryHeap.html //! //! ``` //! use std::cmp::Ordering; //! use std::collections::BinaryHeap; //! use std::usize; //! //! #[derive(Copy, Clone, Eq, PartialEq)] //! struct State { //! cost: usize, //! position: usize, //! } //! //! // The priority queue depends on `Ord`. //! // Explicitly implement the trait so the queue becomes a min-heap //! // instead of a max-heap. //! impl Ord for State { //! fn cmp(&self, other: &State) -> Ordering { //! // Notice that the we flip the ordering on costs. //! // In case of a tie we compare positions - this step is necessary //! // to make implementations of `PartialEq` and `Ord` consistent. //! other.cost.cmp(&self.cost) //! .then_with(|| self.position.cmp(&other.position)) //! } //! } //! //! // `PartialOrd` needs to be implemented as well. //! impl PartialOrd for State { //! fn partial_cmp(&self, other: &State) -> Option { //! Some(self.cmp(other)) //! } //! } //! //! // Each node is represented as an `usize`, for a shorter implementation. //! struct Edge { //! node: usize, //! cost: usize, //! } //! //! // Dijkstra's shortest path algorithm. //! //! // Start at `start` and use `dist` to track the current shortest distance //! // to each node. This implementation isn't memory-efficient as it may leave duplicate //! // nodes in the queue. It also uses `usize::MAX` as a sentinel value, //! // for a simpler implementation. //! fn shortest_path(adj_list: &Vec>, start: usize, goal: usize) -> Option { //! // dist[node] = current shortest distance from `start` to `node` //! let mut dist: Vec<_> = (0..adj_list.len()).map(|_| usize::MAX).collect(); //! //! let mut heap = BinaryHeap::new(); //! //! // We're at `start`, with a zero cost //! dist[start] = 0; //! heap.push(State { cost: 0, position: start }); //! //! // Examine the frontier with lower cost nodes first (min-heap) //! while let Some(State { cost, position }) = heap.pop() { //! // Alternatively we could have continued to find all shortest paths //! if position == goal { return Some(cost); } //! //! // Important as we may have already found a better way //! if cost > dist[position] { continue; } //! //! // For each node we can reach, see if we can find a way with //! // a lower cost going through this node //! for edge in &adj_list[position] { //! let next = State { cost: cost + edge.cost, position: edge.node }; //! //! // If so, add it to the frontier and continue //! if next.cost < dist[next.position] { //! heap.push(next); //! // Relaxation, we have now found a better way //! dist[next.position] = next.cost; //! } //! } //! } //! //! // Goal not reachable //! None //! } //! //! fn main() { //! // This is the directed graph we're going to use. //! // The node numbers correspond to the different states, //! // and the edge weights symbolize the cost of moving //! // from one node to another. //! // Note that the edges are one-way. //! // //! // 7 //! // +-----------------+ //! // | | //! // v 1 2 | 2 //! // 0 -----> 1 -----> 3 ---> 4 //! // | ^ ^ ^ //! // | | 1 | | //! // | | | 3 | 1 //! // +------> 2 -------+ | //! // 10 | | //! // +---------------+ //! // //! // The graph is represented as an adjacency list where each index, //! // corresponding to a node value, has a list of outgoing edges. //! // Chosen for its efficiency. //! let graph = vec![ //! // Node 0 //! vec![Edge { node: 2, cost: 10 }, //! Edge { node: 1, cost: 1 }], //! // Node 1 //! vec![Edge { node: 3, cost: 2 }], //! // Node 2 //! vec![Edge { node: 1, cost: 1 }, //! Edge { node: 3, cost: 3 }, //! Edge { node: 4, cost: 1 }], //! // Node 3 //! vec![Edge { node: 0, cost: 7 }, //! Edge { node: 4, cost: 2 }], //! // Node 4 //! vec![]]; //! //! assert_eq!(shortest_path(&graph, 0, 1), Some(1)); //! assert_eq!(shortest_path(&graph, 0, 3), Some(3)); //! assert_eq!(shortest_path(&graph, 3, 0), Some(7)); //! assert_eq!(shortest_path(&graph, 0, 4), Some(5)); //! assert_eq!(shortest_path(&graph, 4, 0), None); //! } //! ``` #![allow(missing_docs)] #![stable(feature = "rust1", since = "1.0.0")] use core::ops::{Deref, DerefMut, Place, Placer, InPlace}; use core::iter::{FromIterator, FusedIterator}; use core::mem::{swap, size_of}; use core::ptr; use core::fmt; use slice; use vec::{self, Vec}; use super::SpecExtend; /// A priority queue implemented with a binary heap. /// /// This will be a max-heap. /// /// It is a logic error for an item to be modified in such a way that the /// item's ordering relative to any other item, as determined by the `Ord` /// trait, changes while it is in the heap. This is normally only possible /// through `Cell`, `RefCell`, global state, I/O, or unsafe code. /// /// # Examples /// /// ``` /// use std::collections::BinaryHeap; /// /// // Type inference lets us omit an explicit type signature (which /// // would be `BinaryHeap` in this example). /// let mut heap = BinaryHeap::new(); /// /// // We can use peek to look at the next item in the heap. In this case, /// // there's no items in there yet so we get None. /// assert_eq!(heap.peek(), None); /// /// // Let's add some scores... /// heap.push(1); /// heap.push(5); /// heap.push(2); /// /// // Now peek shows the most important item in the heap. /// assert_eq!(heap.peek(), Some(&5)); /// /// // We can check the length of a heap. /// assert_eq!(heap.len(), 3); /// /// // We can iterate over the items in the heap, although they are returned in /// // a random order. /// for x in &heap { /// println!("{}", x); /// } /// /// // If we instead pop these scores, they should come back in order. /// assert_eq!(heap.pop(), Some(5)); /// assert_eq!(heap.pop(), Some(2)); /// assert_eq!(heap.pop(), Some(1)); /// assert_eq!(heap.pop(), None); /// /// // We can clear the heap of any remaining items. /// heap.clear(); /// /// // The heap should now be empty. /// assert!(heap.is_empty()) /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub struct BinaryHeap { data: Vec, } /// Structure wrapping a mutable reference to the greatest item on a /// `BinaryHeap`. /// /// This `struct` is created by the [`peek_mut`] method on [`BinaryHeap`]. See /// its documentation for more. /// /// [`peek_mut`]: struct.BinaryHeap.html#method.peek_mut /// [`BinaryHeap`]: struct.BinaryHeap.html #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] pub struct PeekMut<'a, T: 'a + Ord> { heap: &'a mut BinaryHeap, sift: bool, } #[stable(feature = "collection_debug", since = "1.17.0")] impl<'a, T: Ord + fmt::Debug> fmt::Debug for PeekMut<'a, T> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_tuple("PeekMut") .field(&self.heap.data[0]) .finish() } } #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] impl<'a, T: Ord> Drop for PeekMut<'a, T> { fn drop(&mut self) { if self.sift { self.heap.sift_down(0); } } } #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] impl<'a, T: Ord> Deref for PeekMut<'a, T> { type Target = T; fn deref(&self) -> &T { &self.heap.data[0] } } #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] impl<'a, T: Ord> DerefMut for PeekMut<'a, T> { fn deref_mut(&mut self) -> &mut T { &mut self.heap.data[0] } } impl<'a, T: Ord> PeekMut<'a, T> { /// Removes the peeked value from the heap and returns it. #[stable(feature = "binary_heap_peek_mut_pop", since = "1.18.0")] pub fn pop(mut this: PeekMut<'a, T>) -> T { let value = this.heap.pop().unwrap(); this.sift = false; value } } #[stable(feature = "rust1", since = "1.0.0")] impl Clone for BinaryHeap { fn clone(&self) -> Self { BinaryHeap { data: self.data.clone() } } fn clone_from(&mut self, source: &Self) { self.data.clone_from(&source.data); } } #[stable(feature = "rust1", since = "1.0.0")] impl Default for BinaryHeap { /// Creates an empty `BinaryHeap`. #[inline] fn default() -> BinaryHeap { BinaryHeap::new() } } #[stable(feature = "binaryheap_debug", since = "1.4.0")] impl fmt::Debug for BinaryHeap { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_list().entries(self.iter()).finish() } } impl BinaryHeap { /// Creates an empty `BinaryHeap` as a max-heap. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::new(); /// heap.push(4); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn new() -> BinaryHeap { BinaryHeap { data: vec![] } } /// Creates an empty `BinaryHeap` with a specific capacity. /// This preallocates enough memory for `capacity` elements, /// so that the `BinaryHeap` does not have to be reallocated /// until it contains at least that many values. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::with_capacity(10); /// heap.push(4); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn with_capacity(capacity: usize) -> BinaryHeap { BinaryHeap { data: Vec::with_capacity(capacity) } } /// Returns an iterator visiting all values in the underlying vector, in /// arbitrary order. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let heap = BinaryHeap::from(vec![1, 2, 3, 4]); /// /// // Print 1, 2, 3, 4 in arbitrary order /// for x in heap.iter() { /// println!("{}", x); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn iter(&self) -> Iter { Iter { iter: self.data.iter() } } /// Returns the greatest item in the binary heap, or `None` if it is empty. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::new(); /// assert_eq!(heap.peek(), None); /// /// heap.push(1); /// heap.push(5); /// heap.push(2); /// assert_eq!(heap.peek(), Some(&5)); /// /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn peek(&self) -> Option<&T> { self.data.get(0) } /// Returns a mutable reference to the greatest item in the binary heap, or /// `None` if it is empty. /// /// Note: If the `PeekMut` value is leaked, the heap may be in an /// inconsistent state. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::new(); /// assert!(heap.peek_mut().is_none()); /// /// heap.push(1); /// heap.push(5); /// heap.push(2); /// { /// let mut val = heap.peek_mut().unwrap(); /// *val = 0; /// } /// assert_eq!(heap.peek(), Some(&2)); /// ``` #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] pub fn peek_mut(&mut self) -> Option> { if self.is_empty() { None } else { Some(PeekMut { heap: self, sift: true, }) } } /// Returns the number of elements the binary heap can hold without reallocating. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::with_capacity(100); /// assert!(heap.capacity() >= 100); /// heap.push(4); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn capacity(&self) -> usize { self.data.capacity() } /// Reserves the minimum capacity for exactly `additional` more elements to be inserted in the /// given `BinaryHeap`. Does nothing if the capacity is already sufficient. /// /// Note that the allocator may give the collection more space than it requests. Therefore /// capacity can not be relied upon to be precisely minimal. Prefer [`reserve`] if future /// insertions are expected. /// /// # Panics /// /// Panics if the new capacity overflows `usize`. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::new(); /// heap.reserve_exact(100); /// assert!(heap.capacity() >= 100); /// heap.push(4); /// ``` /// /// [`reserve`]: #method.reserve #[stable(feature = "rust1", since = "1.0.0")] pub fn reserve_exact(&mut self, additional: usize) { self.data.reserve_exact(additional); } /// Reserves capacity for at least `additional` more elements to be inserted in the /// `BinaryHeap`. The collection may reserve more space to avoid frequent reallocations. /// /// # Panics /// /// Panics if the new capacity overflows `usize`. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::new(); /// heap.reserve(100); /// assert!(heap.capacity() >= 100); /// heap.push(4); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn reserve(&mut self, additional: usize) { self.data.reserve(additional); } /// Discards as much additional capacity as possible. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap: BinaryHeap = BinaryHeap::with_capacity(100); /// /// assert!(heap.capacity() >= 100); /// heap.shrink_to_fit(); /// assert!(heap.capacity() == 0); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn shrink_to_fit(&mut self) { self.data.shrink_to_fit(); } /// Removes the greatest item from the binary heap and returns it, or `None` if it /// is empty. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::from(vec![1, 3]); /// /// assert_eq!(heap.pop(), Some(3)); /// assert_eq!(heap.pop(), Some(1)); /// assert_eq!(heap.pop(), None); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn pop(&mut self) -> Option { self.data.pop().map(|mut item| { if !self.is_empty() { swap(&mut item, &mut self.data[0]); self.sift_down_to_bottom(0); } item }) } /// Pushes an item onto the binary heap. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::new(); /// heap.push(3); /// heap.push(5); /// heap.push(1); /// /// assert_eq!(heap.len(), 3); /// assert_eq!(heap.peek(), Some(&5)); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn push(&mut self, item: T) { let old_len = self.len(); self.data.push(item); self.sift_up(0, old_len); } /// Consumes the `BinaryHeap` and returns the underlying vector /// in arbitrary order. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let heap = BinaryHeap::from(vec![1, 2, 3, 4, 5, 6, 7]); /// let vec = heap.into_vec(); /// /// // Will print in some order /// for x in vec { /// println!("{}", x); /// } /// ``` #[stable(feature = "binary_heap_extras_15", since = "1.5.0")] pub fn into_vec(self) -> Vec { self.into() } /// Consumes the `BinaryHeap` and returns a vector in sorted /// (ascending) order. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// /// let mut heap = BinaryHeap::from(vec![1, 2, 4, 5, 7]); /// heap.push(6); /// heap.push(3); /// /// let vec = heap.into_sorted_vec(); /// assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7]); /// ``` #[stable(feature = "binary_heap_extras_15", since = "1.5.0")] pub fn into_sorted_vec(mut self) -> Vec { let mut end = self.len(); while end > 1 { end -= 1; self.data.swap(0, end); self.sift_down_range(0, end); } self.into_vec() } // The implementations of sift_up and sift_down use unsafe blocks in // order to move an element out of the vector (leaving behind a // hole), shift along the others and move the removed element back into the // vector at the final location of the hole. // The `Hole` type is used to represent this, and make sure // the hole is filled back at the end of its scope, even on panic. // Using a hole reduces the constant factor compared to using swaps, // which involves twice as many moves. fn sift_up(&mut self, start: usize, pos: usize) -> usize { unsafe { // Take out the value at `pos` and create a hole. let mut hole = Hole::new(&mut self.data, pos); while hole.pos() > start { let parent = (hole.pos() - 1) / 2; if hole.element() <= hole.get(parent) { break; } hole.move_to(parent); } hole.pos() } } /// Take an element at `pos` and move it down the heap, /// while its children are larger. fn sift_down_range(&mut self, pos: usize, end: usize) { unsafe { let mut hole = Hole::new(&mut self.data, pos); let mut child = 2 * pos + 1; while child < end { let right = child + 1; // compare with the greater of the two children if right < end && !(hole.get(child) > hole.get(right)) { child = right; } // if we are already in order, stop. if hole.element() >= hole.get(child) { break; } hole.move_to(child); child = 2 * hole.pos() + 1; } } } fn sift_down(&mut self, pos: usize) { let len = self.len(); self.sift_down_range(pos, len); } /// Take an element at `pos` and move it all the way down the heap, /// then sift it up to its position. /// /// Note: This is faster when the element is known to be large / should /// be closer to the bottom. fn sift_down_to_bottom(&mut self, mut pos: usize) { let end = self.len(); let start = pos; unsafe { let mut hole = Hole::new(&mut self.data, pos); let mut child = 2 * pos + 1; while child < end { let right = child + 1; // compare with the greater of the two children if right < end && !(hole.get(child) > hole.get(right)) { child = right; } hole.move_to(child); child = 2 * hole.pos() + 1; } pos = hole.pos; } self.sift_up(start, pos); } /// Returns the length of the binary heap. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let heap = BinaryHeap::from(vec![1, 3]); /// /// assert_eq!(heap.len(), 2); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn len(&self) -> usize { self.data.len() } /// Checks if the binary heap is empty. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::new(); /// /// assert!(heap.is_empty()); /// /// heap.push(3); /// heap.push(5); /// heap.push(1); /// /// assert!(!heap.is_empty()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn is_empty(&self) -> bool { self.len() == 0 } /// Clears the binary heap, returning an iterator over the removed elements. /// /// The elements are removed in arbitrary order. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::from(vec![1, 3]); /// /// assert!(!heap.is_empty()); /// /// for x in heap.drain() { /// println!("{}", x); /// } /// /// assert!(heap.is_empty()); /// ``` #[inline] #[stable(feature = "drain", since = "1.6.0")] pub fn drain(&mut self) -> Drain { Drain { iter: self.data.drain(..) } } /// Drops all items from the binary heap. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::from(vec![1, 3]); /// /// assert!(!heap.is_empty()); /// /// heap.clear(); /// /// assert!(heap.is_empty()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn clear(&mut self) { self.drain(); } fn rebuild(&mut self) { let mut n = self.len() / 2; while n > 0 { n -= 1; self.sift_down(n); } } /// Moves all the elements of `other` into `self`, leaving `other` empty. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// /// let v = vec![-10, 1, 2, 3, 3]; /// let mut a = BinaryHeap::from(v); /// /// let v = vec![-20, 5, 43]; /// let mut b = BinaryHeap::from(v); /// /// a.append(&mut b); /// /// assert_eq!(a.into_sorted_vec(), [-20, -10, 1, 2, 3, 3, 5, 43]); /// assert!(b.is_empty()); /// ``` #[stable(feature = "binary_heap_append", since = "1.11.0")] pub fn append(&mut self, other: &mut Self) { if self.len() < other.len() { swap(self, other); } if other.is_empty() { return; } #[inline(always)] fn log2_fast(x: usize) -> usize { 8 * size_of::() - (x.leading_zeros() as usize) - 1 } // `rebuild` takes O(len1 + len2) operations // and about 2 * (len1 + len2) comparisons in the worst case // while `extend` takes O(len2 * log_2(len1)) operations // and about 1 * len2 * log_2(len1) comparisons in the worst case, // assuming len1 >= len2. #[inline] fn better_to_rebuild(len1: usize, len2: usize) -> bool { 2 * (len1 + len2) < len2 * log2_fast(len1) } if better_to_rebuild(self.len(), other.len()) { self.data.append(&mut other.data); self.rebuild(); } else { self.extend(other.drain()); } } } /// Hole represents a hole in a slice i.e. an index without valid value /// (because it was moved from or duplicated). /// In drop, `Hole` will restore the slice by filling the hole /// position with the value that was originally removed. struct Hole<'a, T: 'a> { data: &'a mut [T], /// `elt` is always `Some` from new until drop. elt: Option, pos: usize, } impl<'a, T> Hole<'a, T> { /// Create a new Hole at index `pos`. /// /// Unsafe because pos must be within the data slice. #[inline] unsafe fn new(data: &'a mut [T], pos: usize) -> Self { debug_assert!(pos < data.len()); let elt = ptr::read(&data[pos]); Hole { data, elt: Some(elt), pos, } } #[inline] fn pos(&self) -> usize { self.pos } /// Returns a reference to the element removed. #[inline] fn element(&self) -> &T { self.elt.as_ref().unwrap() } /// Returns a reference to the element at `index`. /// /// Unsafe because index must be within the data slice and not equal to pos. #[inline] unsafe fn get(&self, index: usize) -> &T { debug_assert!(index != self.pos); debug_assert!(index < self.data.len()); self.data.get_unchecked(index) } /// Move hole to new location /// /// Unsafe because index must be within the data slice and not equal to pos. #[inline] unsafe fn move_to(&mut self, index: usize) { debug_assert!(index != self.pos); debug_assert!(index < self.data.len()); let index_ptr: *const _ = self.data.get_unchecked(index); let hole_ptr = self.data.get_unchecked_mut(self.pos); ptr::copy_nonoverlapping(index_ptr, hole_ptr, 1); self.pos = index; } } impl<'a, T> Drop for Hole<'a, T> { #[inline] fn drop(&mut self) { // fill the hole again unsafe { let pos = self.pos; ptr::write(self.data.get_unchecked_mut(pos), self.elt.take().unwrap()); } } } /// An iterator over the elements of a `BinaryHeap`. /// /// This `struct` is created by the [`iter`] method on [`BinaryHeap`]. See its /// documentation for more. /// /// [`iter`]: struct.BinaryHeap.html#method.iter /// [`BinaryHeap`]: struct.BinaryHeap.html #[stable(feature = "rust1", since = "1.0.0")] pub struct Iter<'a, T: 'a> { iter: slice::Iter<'a, T>, } #[stable(feature = "collection_debug", since = "1.17.0")] impl<'a, T: 'a + fmt::Debug> fmt::Debug for Iter<'a, T> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_tuple("Iter") .field(&self.iter.as_slice()) .finish() } } // FIXME(#26925) Remove in favor of `#[derive(Clone)]` #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T> Clone for Iter<'a, T> { fn clone(&self) -> Iter<'a, T> { Iter { iter: self.iter.clone() } } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T> Iterator for Iter<'a, T> { type Item = &'a T; #[inline] fn next(&mut self) -> Option<&'a T> { self.iter.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T> DoubleEndedIterator for Iter<'a, T> { #[inline] fn next_back(&mut self) -> Option<&'a T> { self.iter.next_back() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T> ExactSizeIterator for Iter<'a, T> { fn is_empty(&self) -> bool { self.iter.is_empty() } } #[unstable(feature = "fused", issue = "35602")] impl<'a, T> FusedIterator for Iter<'a, T> {} /// An owning iterator over the elements of a `BinaryHeap`. /// /// This `struct` is created by the [`into_iter`] method on [`BinaryHeap`][`BinaryHeap`] /// (provided by the `IntoIterator` trait). See its documentation for more. /// /// [`into_iter`]: struct.BinaryHeap.html#method.into_iter /// [`BinaryHeap`]: struct.BinaryHeap.html #[stable(feature = "rust1", since = "1.0.0")] #[derive(Clone)] pub struct IntoIter { iter: vec::IntoIter, } #[stable(feature = "collection_debug", since = "1.17.0")] impl fmt::Debug for IntoIter { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_tuple("IntoIter") .field(&self.iter.as_slice()) .finish() } } #[stable(feature = "rust1", since = "1.0.0")] impl Iterator for IntoIter { type Item = T; #[inline] fn next(&mut self) -> Option { self.iter.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl DoubleEndedIterator for IntoIter { #[inline] fn next_back(&mut self) -> Option { self.iter.next_back() } } #[stable(feature = "rust1", since = "1.0.0")] impl ExactSizeIterator for IntoIter { fn is_empty(&self) -> bool { self.iter.is_empty() } } #[unstable(feature = "fused", issue = "35602")] impl FusedIterator for IntoIter {} /// A draining iterator over the elements of a `BinaryHeap`. /// /// This `struct` is created by the [`drain`] method on [`BinaryHeap`]. See its /// documentation for more. /// /// [`drain`]: struct.BinaryHeap.html#method.drain /// [`BinaryHeap`]: struct.BinaryHeap.html #[stable(feature = "drain", since = "1.6.0")] #[derive(Debug)] pub struct Drain<'a, T: 'a> { iter: vec::Drain<'a, T>, } #[stable(feature = "drain", since = "1.6.0")] impl<'a, T: 'a> Iterator for Drain<'a, T> { type Item = T; #[inline] fn next(&mut self) -> Option { self.iter.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } #[stable(feature = "drain", since = "1.6.0")] impl<'a, T: 'a> DoubleEndedIterator for Drain<'a, T> { #[inline] fn next_back(&mut self) -> Option { self.iter.next_back() } } #[stable(feature = "drain", since = "1.6.0")] impl<'a, T: 'a> ExactSizeIterator for Drain<'a, T> { fn is_empty(&self) -> bool { self.iter.is_empty() } } #[unstable(feature = "fused", issue = "35602")] impl<'a, T: 'a> FusedIterator for Drain<'a, T> {} #[stable(feature = "binary_heap_extras_15", since = "1.5.0")] impl From> for BinaryHeap { fn from(vec: Vec) -> BinaryHeap { let mut heap = BinaryHeap { data: vec }; heap.rebuild(); heap } } #[stable(feature = "binary_heap_extras_15", since = "1.5.0")] impl From> for Vec { fn from(heap: BinaryHeap) -> Vec { heap.data } } #[stable(feature = "rust1", since = "1.0.0")] impl FromIterator for BinaryHeap { fn from_iter>(iter: I) -> BinaryHeap { BinaryHeap::from(iter.into_iter().collect::>()) } } #[stable(feature = "rust1", since = "1.0.0")] impl IntoIterator for BinaryHeap { type Item = T; type IntoIter = IntoIter; /// Creates a consuming iterator, that is, one that moves each value out of /// the binary heap in arbitrary order. The binary heap cannot be used /// after calling this. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let heap = BinaryHeap::from(vec![1, 2, 3, 4]); /// /// // Print 1, 2, 3, 4 in arbitrary order /// for x in heap.into_iter() { /// // x has type i32, not &i32 /// println!("{}", x); /// } /// ``` fn into_iter(self) -> IntoIter { IntoIter { iter: self.data.into_iter() } } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T> IntoIterator for &'a BinaryHeap where T: Ord { type Item = &'a T; type IntoIter = Iter<'a, T>; fn into_iter(self) -> Iter<'a, T> { self.iter() } } #[stable(feature = "rust1", since = "1.0.0")] impl Extend for BinaryHeap { #[inline] fn extend>(&mut self, iter: I) { >::spec_extend(self, iter); } } impl> SpecExtend for BinaryHeap { default fn spec_extend(&mut self, iter: I) { self.extend_desugared(iter.into_iter()); } } impl SpecExtend> for BinaryHeap { fn spec_extend(&mut self, ref mut other: BinaryHeap) { self.append(other); } } impl BinaryHeap { fn extend_desugared>(&mut self, iter: I) { let iterator = iter.into_iter(); let (lower, _) = iterator.size_hint(); self.reserve(lower); for elem in iterator { self.push(elem); } } } #[stable(feature = "extend_ref", since = "1.2.0")] impl<'a, T: 'a + Ord + Copy> Extend<&'a T> for BinaryHeap { fn extend>(&mut self, iter: I) { self.extend(iter.into_iter().cloned()); } } #[unstable(feature = "collection_placement", reason = "placement protocol is subject to change", issue = "30172")] pub struct BinaryHeapPlace<'a, T: 'a> where T: Clone + Ord { heap: *mut BinaryHeap, place: vec::PlaceBack<'a, T>, } #[unstable(feature = "collection_placement", reason = "placement protocol is subject to change", issue = "30172")] impl<'a, T: Clone + Ord + fmt::Debug> fmt::Debug for BinaryHeapPlace<'a, T> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_tuple("BinaryHeapPlace") .field(&self.place) .finish() } } #[unstable(feature = "collection_placement", reason = "placement protocol is subject to change", issue = "30172")] impl<'a, T: 'a> Placer for &'a mut BinaryHeap where T: Clone + Ord { type Place = BinaryHeapPlace<'a, T>; fn make_place(self) -> Self::Place { let ptr = self as *mut BinaryHeap; let place = Placer::make_place(self.data.place_back()); BinaryHeapPlace { heap: ptr, place, } } } #[unstable(feature = "collection_placement", reason = "placement protocol is subject to change", issue = "30172")] impl<'a, T> Place for BinaryHeapPlace<'a, T> where T: Clone + Ord { fn pointer(&mut self) -> *mut T { self.place.pointer() } } #[unstable(feature = "collection_placement", reason = "placement protocol is subject to change", issue = "30172")] impl<'a, T> InPlace for BinaryHeapPlace<'a, T> where T: Clone + Ord { type Owner = &'a T; unsafe fn finalize(self) -> &'a T { self.place.finalize(); let heap: &mut BinaryHeap = &mut *self.heap; let len = heap.len(); let i = heap.sift_up(0, len - 1); heap.data.get_unchecked(i) } }