import cast = unsafe::reinterpret_cast; import comm; import comm::_chan; import option::some; import option::none; import option = option::t; native "rust" mod rustrt { fn task_sleep(time_in_us: uint); fn task_yield(); fn task_join(t: task_id) -> int; fn unsupervise(); fn pin_task(); fn unpin_task(); fn get_task_id() -> task_id; type rust_chan; fn set_min_stack(stack_size: uint); fn new_task() -> task_id; fn drop_task(id : task_id); fn get_task_pointer(id : task_id) -> *rust_task; fn get_task_context(id : task_id) -> *x86_registers; fn start_task(id : task_id); fn get_task_trampoline() -> u32; fn migrate_alloc(alloc : *u8, target : task_id); fn leak<@T>(thing : -T); } type rust_task = { mutable notify_enabled : u8, mutable notify_chan : _chan }; type task = int; type task_id = task; fn get_task_id() -> task_id { rustrt::get_task_id() } /** * Hints the scheduler to yield this task for a specified ammount of time. * * arg: time_in_us maximum number of microseconds to yield control for */ fn sleep(time_in_us: uint) { ret rustrt::task_sleep(time_in_us); } fn yield() { ret rustrt::task_yield(); } tag task_result { tr_success; tr_failure; } tag task_notification { exit(task, task_result); } fn join(t: task) -> task_result { join_id(cast(t)) } fn join_id(t : task_id) -> task_result { alt rustrt::task_join(t) { 0 { tr_success } _ { tr_failure } } } fn unsupervise() { ret rustrt::unsupervise(); } fn pin() { rustrt::pin_task(); } fn unpin() { rustrt::unpin_task(); } fn set_min_stack(stack_size : uint) { rustrt::set_min_stack(stack_size); } fn _spawn(thunk : fn() -> ()) -> task { spawn(thunk) } fn spawn(thunk : fn() -> ()) -> task { spawn_inner(thunk, none) } fn spawn_notify(thunk : fn() -> (), notify : _chan) -> task { spawn_inner(thunk, some(notify)) } // FIXME: make this a fn~ once those are supported. fn spawn_inner(thunk : fn() -> (), notify : option<_chan>) -> task_id { let id = rustrt::new_task(); // the order of arguments are outptr, taskptr, envptr. // In LLVM fastcall puts the first two in ecx, edx, and the rest on the // stack. let regs = rustrt::get_task_context(id); // set up the task pointer let task_ptr = rustrt::get_task_pointer(id); (*regs).edx = cast(task_ptr); let raw_thunk : { code: u32, env: u32 } = cast(thunk); (*regs).eip = raw_thunk.code; // set up notifications if they are enabled. alt notify { some(c) { (*task_ptr).notify_enabled = 1u8; (*task_ptr).notify_chan = c; } none {} }; // okay, now we align the stack and add the environment pointer and a fake // return address. // -12 for the taskm output location, the env pointer // -4 for the return address. (*regs).esp = align_down((*regs).esp - 12u32) - 4u32; let ra : *mutable u32 = cast((*regs).esp); let env : *mutable u32 = cast((*regs).esp+4u32); let tptr : *mutable u32 = cast((*regs).esp+12u32); // put the return pointer in ecx. (*regs).ecx = (*regs).esp + 8u32; *tptr = cast(task_ptr); *env = raw_thunk.env; *ra = rustrt::get_task_trampoline(); rustrt::migrate_alloc(cast(raw_thunk.env), id); rustrt::start_task(id); rustrt::leak(thunk); // Drop twice because get_task_context and get_task_pounter both bump the // ref count and expect us to free it. rustrt::drop_task(id); rustrt::drop_task(id); ret id; } // Who says we can't write an operating system in Rust? type x86_registers = { // This needs to match the structure in context.h mutable eax : u32, mutable ebx : u32, mutable ecx : u32, mutable edx : u32, mutable ebp : u32, mutable esi : u32, mutable edi : u32, mutable esp : u32, mutable cs : u16, mutable ds : u16, mutable ss : u16, mutable es : u16, mutable fs : u16, mutable gs : u16, mutable eflags : u32, mutable eip : u32 }; fn align_down(x : u32) -> u32 { // Aligns x down to 16 bytes x & !(15u32) } // Local Variables: // mode: rust; // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // compile-command: "make -k -C $RBUILD 2>&1 | sed -e 's/\\/x\\//x:\\//g'"; // End: