//! Machinery for hygienic macros. //! //! Inspired by Matthew Flatt et al., “Macros That Work Together: Compile-Time Bindings, Partial //! Expansion, and Definition Contexts,” *Journal of Functional Programming* 22, no. 2 //! (March 1, 2012): 181–216, . // Hygiene data is stored in a global variable and accessed via TLS, which // means that accesses are somewhat expensive. (`HygieneData::with` // encapsulates a single access.) Therefore, on hot code paths it is worth // ensuring that multiple HygieneData accesses are combined into a single // `HygieneData::with`. // // This explains why `HygieneData`, `SyntaxContext` and `ExpnId` have interfaces // with a certain amount of redundancy in them. For example, // `SyntaxContext::outer_expn_data` combines `SyntaxContext::outer` and // `ExpnId::expn_data` so that two `HygieneData` accesses can be performed within // a single `HygieneData::with` call. // // It also explains why many functions appear in `HygieneData` and again in // `SyntaxContext` or `ExpnId`. For example, `HygieneData::outer` and // `SyntaxContext::outer` do the same thing, but the former is for use within a // `HygieneData::with` call while the latter is for use outside such a call. // When modifying this file it is important to understand this distinction, // because getting it wrong can lead to nested `HygieneData::with` calls that // trigger runtime aborts. (Fortunately these are obvious and easy to fix.) use crate::edition::Edition; use crate::symbol::{kw, sym, Symbol}; use crate::with_session_globals; use crate::{HashStableContext, Span, DUMMY_SP}; use crate::def_id::{CrateNum, DefId, StableCrateId, CRATE_DEF_ID, LOCAL_CRATE}; use rustc_data_structures::fingerprint::Fingerprint; use rustc_data_structures::fx::{FxHashMap, FxHashSet}; use rustc_data_structures::stable_hasher::HashingControls; use rustc_data_structures::stable_hasher::{HashStable, StableHasher}; use rustc_data_structures::sync::{Lock, Lrc}; use rustc_data_structures::unhash::UnhashMap; use rustc_index::vec::IndexVec; use rustc_macros::HashStable_Generic; use rustc_serialize::{Decodable, Decoder, Encodable, Encoder}; use std::fmt; use std::hash::Hash; use tracing::*; /// A `SyntaxContext` represents a chain of pairs `(ExpnId, Transparency)` named "marks". #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)] pub struct SyntaxContext(u32); #[derive(Debug, Encodable, Decodable, Clone)] pub struct SyntaxContextData { outer_expn: ExpnId, outer_transparency: Transparency, parent: SyntaxContext, /// This context, but with all transparent and semi-transparent expansions filtered away. opaque: SyntaxContext, /// This context, but with all transparent expansions filtered away. opaque_and_semitransparent: SyntaxContext, /// Name of the crate to which `$crate` with this context would resolve. dollar_crate_name: Symbol, } rustc_index::newtype_index! { /// A unique ID associated with a macro invocation and expansion. pub struct ExpnIndex { ENCODABLE = custom } } /// A unique ID associated with a macro invocation and expansion. #[derive(Clone, Copy, PartialEq, Eq, Hash)] pub struct ExpnId { pub krate: CrateNum, pub local_id: ExpnIndex, } impl fmt::Debug for ExpnId { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { // Generate crate_::{{expn_}}. write!(f, "{:?}::{{{{expn{}}}}}", self.krate, self.local_id.private) } } rustc_index::newtype_index! { /// A unique ID associated with a macro invocation and expansion. pub struct LocalExpnId { ENCODABLE = custom ORD_IMPL = custom DEBUG_FORMAT = "expn{}" } } // To ensure correctness of incremental compilation, // `LocalExpnId` must not implement `Ord` or `PartialOrd`. // See https://github.com/rust-lang/rust/issues/90317. impl !Ord for LocalExpnId {} impl !PartialOrd for LocalExpnId {} /// Assert that the provided `HashStableContext` is configured with the 'default' /// `HashingControls`. We should always have bailed out before getting to here /// with a non-default mode. With this check in place, we can avoid the need /// to maintain separate versions of `ExpnData` hashes for each permutation /// of `HashingControls` settings. fn assert_default_hashing_controls(ctx: &CTX, msg: &str) { match ctx.hashing_controls() { // Note that we require that `hash_spans` be set according to the global // `-Z incremental-ignore-spans` option. Normally, this option is disabled, // which will cause us to require that this method always be called with `Span` hashing // enabled. HashingControls { hash_spans } if hash_spans == !ctx.debug_opts_incremental_ignore_spans() => {} other => panic!("Attempted hashing of {msg} with non-default HashingControls: {:?}", other), } } /// A unique hash value associated to an expansion. #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, Encodable, Decodable, HashStable_Generic)] pub struct ExpnHash(Fingerprint); impl ExpnHash { /// Returns the [StableCrateId] identifying the crate this [ExpnHash] /// originates from. #[inline] pub fn stable_crate_id(self) -> StableCrateId { StableCrateId(self.0.as_value().0) } /// Returns the crate-local part of the [ExpnHash]. /// /// Used for tests. #[inline] pub fn local_hash(self) -> u64 { self.0.as_value().1 } #[inline] pub fn is_root(self) -> bool { self.0 == Fingerprint::ZERO } /// Builds a new [ExpnHash] with the given [StableCrateId] and /// `local_hash`, where `local_hash` must be unique within its crate. fn new(stable_crate_id: StableCrateId, local_hash: u64) -> ExpnHash { ExpnHash(Fingerprint::new(stable_crate_id.0, local_hash)) } } /// A property of a macro expansion that determines how identifiers /// produced by that expansion are resolved. #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Hash, Debug, Encodable, Decodable)] #[derive(HashStable_Generic)] pub enum Transparency { /// Identifier produced by a transparent expansion is always resolved at call-site. /// Call-site spans in procedural macros, hygiene opt-out in `macro` should use this. Transparent, /// Identifier produced by a semi-transparent expansion may be resolved /// either at call-site or at definition-site. /// If it's a local variable, label or `$crate` then it's resolved at def-site. /// Otherwise it's resolved at call-site. /// `macro_rules` macros behave like this, built-in macros currently behave like this too, /// but that's an implementation detail. SemiTransparent, /// Identifier produced by an opaque expansion is always resolved at definition-site. /// Def-site spans in procedural macros, identifiers from `macro` by default use this. Opaque, } impl LocalExpnId { /// The ID of the theoretical expansion that generates freshly parsed, unexpanded AST. pub const ROOT: LocalExpnId = LocalExpnId::from_u32(0); #[inline] pub fn from_raw(idx: ExpnIndex) -> LocalExpnId { LocalExpnId::from_u32(idx.as_u32()) } #[inline] pub fn as_raw(self) -> ExpnIndex { ExpnIndex::from_u32(self.as_u32()) } pub fn fresh_empty() -> LocalExpnId { HygieneData::with(|data| { let expn_id = data.local_expn_data.push(None); let _eid = data.local_expn_hashes.push(ExpnHash(Fingerprint::ZERO)); debug_assert_eq!(expn_id, _eid); expn_id }) } pub fn fresh(mut expn_data: ExpnData, ctx: impl HashStableContext) -> LocalExpnId { debug_assert_eq!(expn_data.parent.krate, LOCAL_CRATE); let expn_hash = update_disambiguator(&mut expn_data, ctx); HygieneData::with(|data| { let expn_id = data.local_expn_data.push(Some(expn_data)); let _eid = data.local_expn_hashes.push(expn_hash); debug_assert_eq!(expn_id, _eid); let _old_id = data.expn_hash_to_expn_id.insert(expn_hash, expn_id.to_expn_id()); debug_assert!(_old_id.is_none()); expn_id }) } #[inline] pub fn expn_hash(self) -> ExpnHash { HygieneData::with(|data| data.local_expn_hash(self)) } #[inline] pub fn expn_data(self) -> ExpnData { HygieneData::with(|data| data.local_expn_data(self).clone()) } #[inline] pub fn to_expn_id(self) -> ExpnId { ExpnId { krate: LOCAL_CRATE, local_id: self.as_raw() } } #[inline] pub fn set_expn_data(self, mut expn_data: ExpnData, ctx: impl HashStableContext) { debug_assert_eq!(expn_data.parent.krate, LOCAL_CRATE); let expn_hash = update_disambiguator(&mut expn_data, ctx); HygieneData::with(|data| { let old_expn_data = &mut data.local_expn_data[self]; assert!(old_expn_data.is_none(), "expansion data is reset for an expansion ID"); *old_expn_data = Some(expn_data); debug_assert_eq!(data.local_expn_hashes[self].0, Fingerprint::ZERO); data.local_expn_hashes[self] = expn_hash; let _old_id = data.expn_hash_to_expn_id.insert(expn_hash, self.to_expn_id()); debug_assert!(_old_id.is_none()); }); } #[inline] pub fn is_descendant_of(self, ancestor: LocalExpnId) -> bool { self.to_expn_id().is_descendant_of(ancestor.to_expn_id()) } /// `expn_id.outer_expn_is_descendant_of(ctxt)` is equivalent to but faster than /// `expn_id.is_descendant_of(ctxt.outer_expn())`. #[inline] pub fn outer_expn_is_descendant_of(self, ctxt: SyntaxContext) -> bool { self.to_expn_id().outer_expn_is_descendant_of(ctxt) } /// Returns span for the macro which originally caused this expansion to happen. /// /// Stops backtracing at include! boundary. #[inline] pub fn expansion_cause(self) -> Option { self.to_expn_id().expansion_cause() } #[inline] #[track_caller] pub fn parent(self) -> LocalExpnId { self.expn_data().parent.as_local().unwrap() } } impl ExpnId { /// The ID of the theoretical expansion that generates freshly parsed, unexpanded AST. /// Invariant: we do not create any ExpnId with local_id == 0 and krate != 0. pub const fn root() -> ExpnId { ExpnId { krate: LOCAL_CRATE, local_id: ExpnIndex::from_u32(0) } } #[inline] pub fn expn_hash(self) -> ExpnHash { HygieneData::with(|data| data.expn_hash(self)) } #[inline] pub fn from_hash(hash: ExpnHash) -> Option { HygieneData::with(|data| data.expn_hash_to_expn_id.get(&hash).copied()) } #[inline] pub fn as_local(self) -> Option { if self.krate == LOCAL_CRATE { Some(LocalExpnId::from_raw(self.local_id)) } else { None } } #[inline] #[track_caller] pub fn expect_local(self) -> LocalExpnId { self.as_local().unwrap() } #[inline] pub fn expn_data(self) -> ExpnData { HygieneData::with(|data| data.expn_data(self).clone()) } #[inline] pub fn is_descendant_of(self, ancestor: ExpnId) -> bool { // a few "fast path" cases to avoid locking HygieneData if ancestor == ExpnId::root() || ancestor == self { return true; } if ancestor.krate != self.krate { return false; } HygieneData::with(|data| data.is_descendant_of(self, ancestor)) } /// `expn_id.outer_expn_is_descendant_of(ctxt)` is equivalent to but faster than /// `expn_id.is_descendant_of(ctxt.outer_expn())`. pub fn outer_expn_is_descendant_of(self, ctxt: SyntaxContext) -> bool { HygieneData::with(|data| data.is_descendant_of(self, data.outer_expn(ctxt))) } /// Returns span for the macro which originally caused this expansion to happen. /// /// Stops backtracing at include! boundary. pub fn expansion_cause(mut self) -> Option { let mut last_macro = None; loop { let expn_data = self.expn_data(); // Stop going up the backtrace once include! is encountered if expn_data.is_root() || expn_data.kind == ExpnKind::Macro(MacroKind::Bang, sym::include) { break; } self = expn_data.call_site.ctxt().outer_expn(); last_macro = Some(expn_data.call_site); } last_macro } } #[derive(Debug)] pub struct HygieneData { /// Each expansion should have an associated expansion data, but sometimes there's a delay /// between creation of an expansion ID and obtaining its data (e.g. macros are collected /// first and then resolved later), so we use an `Option` here. local_expn_data: IndexVec>, local_expn_hashes: IndexVec, /// Data and hash information from external crates. We may eventually want to remove these /// maps, and fetch the information directly from the other crate's metadata like DefIds do. foreign_expn_data: FxHashMap, foreign_expn_hashes: FxHashMap, expn_hash_to_expn_id: UnhashMap, syntax_context_data: Vec, syntax_context_map: FxHashMap<(SyntaxContext, ExpnId, Transparency), SyntaxContext>, /// Maps the `local_hash` of an `ExpnData` to the next disambiguator value. /// This is used by `update_disambiguator` to keep track of which `ExpnData`s /// would have collisions without a disambiguator. /// The keys of this map are always computed with `ExpnData.disambiguator` /// set to 0. expn_data_disambiguators: FxHashMap, } impl HygieneData { crate fn new(edition: Edition) -> Self { let root_data = ExpnData::default( ExpnKind::Root, DUMMY_SP, edition, Some(CRATE_DEF_ID.to_def_id()), None, ); HygieneData { local_expn_data: IndexVec::from_elem_n(Some(root_data), 1), local_expn_hashes: IndexVec::from_elem_n(ExpnHash(Fingerprint::ZERO), 1), foreign_expn_data: FxHashMap::default(), foreign_expn_hashes: FxHashMap::default(), expn_hash_to_expn_id: std::iter::once((ExpnHash(Fingerprint::ZERO), ExpnId::root())) .collect(), syntax_context_data: vec![SyntaxContextData { outer_expn: ExpnId::root(), outer_transparency: Transparency::Opaque, parent: SyntaxContext(0), opaque: SyntaxContext(0), opaque_and_semitransparent: SyntaxContext(0), dollar_crate_name: kw::DollarCrate, }], syntax_context_map: FxHashMap::default(), expn_data_disambiguators: FxHashMap::default(), } } pub fn with T>(f: F) -> T { with_session_globals(|session_globals| f(&mut *session_globals.hygiene_data.borrow_mut())) } #[inline] fn local_expn_hash(&self, expn_id: LocalExpnId) -> ExpnHash { self.local_expn_hashes[expn_id] } #[inline] fn expn_hash(&self, expn_id: ExpnId) -> ExpnHash { match expn_id.as_local() { Some(expn_id) => self.local_expn_hashes[expn_id], None => self.foreign_expn_hashes[&expn_id], } } fn local_expn_data(&self, expn_id: LocalExpnId) -> &ExpnData { self.local_expn_data[expn_id].as_ref().expect("no expansion data for an expansion ID") } fn expn_data(&self, expn_id: ExpnId) -> &ExpnData { if let Some(expn_id) = expn_id.as_local() { self.local_expn_data[expn_id].as_ref().expect("no expansion data for an expansion ID") } else { &self.foreign_expn_data[&expn_id] } } fn is_descendant_of(&self, mut expn_id: ExpnId, ancestor: ExpnId) -> bool { // a couple "fast path" cases to avoid traversing parents in the loop below if ancestor == ExpnId::root() { return true; } if expn_id.krate != ancestor.krate { return false; } loop { if expn_id == ancestor { return true; } if expn_id == ExpnId::root() { return false; } expn_id = self.expn_data(expn_id).parent; } } fn normalize_to_macros_2_0(&self, ctxt: SyntaxContext) -> SyntaxContext { self.syntax_context_data[ctxt.0 as usize].opaque } fn normalize_to_macro_rules(&self, ctxt: SyntaxContext) -> SyntaxContext { self.syntax_context_data[ctxt.0 as usize].opaque_and_semitransparent } fn outer_expn(&self, ctxt: SyntaxContext) -> ExpnId { self.syntax_context_data[ctxt.0 as usize].outer_expn } fn outer_mark(&self, ctxt: SyntaxContext) -> (ExpnId, Transparency) { let data = &self.syntax_context_data[ctxt.0 as usize]; (data.outer_expn, data.outer_transparency) } fn parent_ctxt(&self, ctxt: SyntaxContext) -> SyntaxContext { self.syntax_context_data[ctxt.0 as usize].parent } fn remove_mark(&self, ctxt: &mut SyntaxContext) -> (ExpnId, Transparency) { let outer_mark = self.outer_mark(*ctxt); *ctxt = self.parent_ctxt(*ctxt); outer_mark } fn marks(&self, mut ctxt: SyntaxContext) -> Vec<(ExpnId, Transparency)> { let mut marks = Vec::new(); while ctxt != SyntaxContext::root() { debug!("marks: getting parent of {:?}", ctxt); marks.push(self.outer_mark(ctxt)); ctxt = self.parent_ctxt(ctxt); } marks.reverse(); marks } fn walk_chain(&self, mut span: Span, to: SyntaxContext) -> Span { debug!("walk_chain({:?}, {:?})", span, to); debug!("walk_chain: span ctxt = {:?}", span.ctxt()); while span.from_expansion() && span.ctxt() != to { let outer_expn = self.outer_expn(span.ctxt()); debug!("walk_chain({:?}): outer_expn={:?}", span, outer_expn); let expn_data = self.expn_data(outer_expn); debug!("walk_chain({:?}): expn_data={:?}", span, expn_data); span = expn_data.call_site; } span } fn adjust(&self, ctxt: &mut SyntaxContext, expn_id: ExpnId) -> Option { let mut scope = None; while !self.is_descendant_of(expn_id, self.outer_expn(*ctxt)) { scope = Some(self.remove_mark(ctxt).0); } scope } fn apply_mark( &mut self, ctxt: SyntaxContext, expn_id: ExpnId, transparency: Transparency, ) -> SyntaxContext { assert_ne!(expn_id, ExpnId::root()); if transparency == Transparency::Opaque { return self.apply_mark_internal(ctxt, expn_id, transparency); } let call_site_ctxt = self.expn_data(expn_id).call_site.ctxt(); let mut call_site_ctxt = if transparency == Transparency::SemiTransparent { self.normalize_to_macros_2_0(call_site_ctxt) } else { self.normalize_to_macro_rules(call_site_ctxt) }; if call_site_ctxt == SyntaxContext::root() { return self.apply_mark_internal(ctxt, expn_id, transparency); } // Otherwise, `expn_id` is a macros 1.0 definition and the call site is in a // macros 2.0 expansion, i.e., a macros 1.0 invocation is in a macros 2.0 definition. // // In this case, the tokens from the macros 1.0 definition inherit the hygiene // at their invocation. That is, we pretend that the macros 1.0 definition // was defined at its invocation (i.e., inside the macros 2.0 definition) // so that the macros 2.0 definition remains hygienic. // // See the example at `test/ui/hygiene/legacy_interaction.rs`. for (expn_id, transparency) in self.marks(ctxt) { call_site_ctxt = self.apply_mark_internal(call_site_ctxt, expn_id, transparency); } self.apply_mark_internal(call_site_ctxt, expn_id, transparency) } fn apply_mark_internal( &mut self, ctxt: SyntaxContext, expn_id: ExpnId, transparency: Transparency, ) -> SyntaxContext { let syntax_context_data = &mut self.syntax_context_data; let mut opaque = syntax_context_data[ctxt.0 as usize].opaque; let mut opaque_and_semitransparent = syntax_context_data[ctxt.0 as usize].opaque_and_semitransparent; if transparency >= Transparency::Opaque { let parent = opaque; opaque = *self .syntax_context_map .entry((parent, expn_id, transparency)) .or_insert_with(|| { let new_opaque = SyntaxContext(syntax_context_data.len() as u32); syntax_context_data.push(SyntaxContextData { outer_expn: expn_id, outer_transparency: transparency, parent, opaque: new_opaque, opaque_and_semitransparent: new_opaque, dollar_crate_name: kw::DollarCrate, }); new_opaque }); } if transparency >= Transparency::SemiTransparent { let parent = opaque_and_semitransparent; opaque_and_semitransparent = *self .syntax_context_map .entry((parent, expn_id, transparency)) .or_insert_with(|| { let new_opaque_and_semitransparent = SyntaxContext(syntax_context_data.len() as u32); syntax_context_data.push(SyntaxContextData { outer_expn: expn_id, outer_transparency: transparency, parent, opaque, opaque_and_semitransparent: new_opaque_and_semitransparent, dollar_crate_name: kw::DollarCrate, }); new_opaque_and_semitransparent }); } let parent = ctxt; *self.syntax_context_map.entry((parent, expn_id, transparency)).or_insert_with(|| { let new_opaque_and_semitransparent_and_transparent = SyntaxContext(syntax_context_data.len() as u32); syntax_context_data.push(SyntaxContextData { outer_expn: expn_id, outer_transparency: transparency, parent, opaque, opaque_and_semitransparent, dollar_crate_name: kw::DollarCrate, }); new_opaque_and_semitransparent_and_transparent }) } } pub fn clear_syntax_context_map() { HygieneData::with(|data| data.syntax_context_map = FxHashMap::default()); } pub fn walk_chain(span: Span, to: SyntaxContext) -> Span { HygieneData::with(|data| data.walk_chain(span, to)) } pub fn update_dollar_crate_names(mut get_name: impl FnMut(SyntaxContext) -> Symbol) { // The new contexts that need updating are at the end of the list and have `$crate` as a name. let (len, to_update) = HygieneData::with(|data| { ( data.syntax_context_data.len(), data.syntax_context_data .iter() .rev() .take_while(|scdata| scdata.dollar_crate_name == kw::DollarCrate) .count(), ) }); // The callback must be called from outside of the `HygieneData` lock, // since it will try to acquire it too. let range_to_update = len - to_update..len; let names: Vec<_> = range_to_update.clone().map(|idx| get_name(SyntaxContext::from_u32(idx as u32))).collect(); HygieneData::with(|data| { range_to_update.zip(names).for_each(|(idx, name)| { data.syntax_context_data[idx].dollar_crate_name = name; }) }) } pub fn debug_hygiene_data(verbose: bool) -> String { HygieneData::with(|data| { if verbose { format!("{:#?}", data) } else { let mut s = String::from(""); s.push_str("Expansions:"); let mut debug_expn_data = |(id, expn_data): (&ExpnId, &ExpnData)| { s.push_str(&format!( "\n{:?}: parent: {:?}, call_site_ctxt: {:?}, def_site_ctxt: {:?}, kind: {:?}", id, expn_data.parent, expn_data.call_site.ctxt(), expn_data.def_site.ctxt(), expn_data.kind, )) }; data.local_expn_data.iter_enumerated().for_each(|(id, expn_data)| { let expn_data = expn_data.as_ref().expect("no expansion data for an expansion ID"); debug_expn_data((&id.to_expn_id(), expn_data)) }); // Sort the hash map for more reproducible output. let mut foreign_expn_data: Vec<_> = data.foreign_expn_data.iter().collect(); foreign_expn_data.sort_by_key(|(id, _)| (id.krate, id.local_id)); foreign_expn_data.into_iter().for_each(debug_expn_data); s.push_str("\n\nSyntaxContexts:"); data.syntax_context_data.iter().enumerate().for_each(|(id, ctxt)| { s.push_str(&format!( "\n#{}: parent: {:?}, outer_mark: ({:?}, {:?})", id, ctxt.parent, ctxt.outer_expn, ctxt.outer_transparency, )); }); s } }) } impl SyntaxContext { #[inline] pub const fn root() -> Self { SyntaxContext(0) } #[inline] crate fn as_u32(self) -> u32 { self.0 } #[inline] crate fn from_u32(raw: u32) -> SyntaxContext { SyntaxContext(raw) } /// Extend a syntax context with a given expansion and transparency. crate fn apply_mark(self, expn_id: ExpnId, transparency: Transparency) -> SyntaxContext { HygieneData::with(|data| data.apply_mark(self, expn_id, transparency)) } /// Pulls a single mark off of the syntax context. This effectively moves the /// context up one macro definition level. That is, if we have a nested macro /// definition as follows: /// /// ```rust /// macro_rules! f { /// macro_rules! g { /// ... /// } /// } /// ``` /// /// and we have a SyntaxContext that is referring to something declared by an invocation /// of g (call it g1), calling remove_mark will result in the SyntaxContext for the /// invocation of f that created g1. /// Returns the mark that was removed. pub fn remove_mark(&mut self) -> ExpnId { HygieneData::with(|data| data.remove_mark(self).0) } pub fn marks(self) -> Vec<(ExpnId, Transparency)> { HygieneData::with(|data| data.marks(self)) } /// Adjust this context for resolution in a scope created by the given expansion. /// For example, consider the following three resolutions of `f`: /// /// ```rust /// mod foo { pub fn f() {} } // `f`'s `SyntaxContext` is empty. /// m!(f); /// macro m($f:ident) { /// mod bar { /// pub fn f() {} // `f`'s `SyntaxContext` has a single `ExpnId` from `m`. /// pub fn $f() {} // `$f`'s `SyntaxContext` is empty. /// } /// foo::f(); // `f`'s `SyntaxContext` has a single `ExpnId` from `m` /// //^ Since `mod foo` is outside this expansion, `adjust` removes the mark from `f`, /// //| and it resolves to `::foo::f`. /// bar::f(); // `f`'s `SyntaxContext` has a single `ExpnId` from `m` /// //^ Since `mod bar` not outside this expansion, `adjust` does not change `f`, /// //| and it resolves to `::bar::f`. /// bar::$f(); // `f`'s `SyntaxContext` is empty. /// //^ Since `mod bar` is not outside this expansion, `adjust` does not change `$f`, /// //| and it resolves to `::bar::$f`. /// } /// ``` /// This returns the expansion whose definition scope we use to privacy check the resolution, /// or `None` if we privacy check as usual (i.e., not w.r.t. a macro definition scope). pub fn adjust(&mut self, expn_id: ExpnId) -> Option { HygieneData::with(|data| data.adjust(self, expn_id)) } /// Like `SyntaxContext::adjust`, but also normalizes `self` to macros 2.0. pub fn normalize_to_macros_2_0_and_adjust(&mut self, expn_id: ExpnId) -> Option { HygieneData::with(|data| { *self = data.normalize_to_macros_2_0(*self); data.adjust(self, expn_id) }) } /// Adjust this context for resolution in a scope created by the given expansion /// via a glob import with the given `SyntaxContext`. /// For example: /// /// ```rust /// m!(f); /// macro m($i:ident) { /// mod foo { /// pub fn f() {} // `f`'s `SyntaxContext` has a single `ExpnId` from `m`. /// pub fn $i() {} // `$i`'s `SyntaxContext` is empty. /// } /// n!(f); /// macro n($j:ident) { /// use foo::*; /// f(); // `f`'s `SyntaxContext` has a mark from `m` and a mark from `n` /// //^ `glob_adjust` removes the mark from `n`, so this resolves to `foo::f`. /// $i(); // `$i`'s `SyntaxContext` has a mark from `n` /// //^ `glob_adjust` removes the mark from `n`, so this resolves to `foo::$i`. /// $j(); // `$j`'s `SyntaxContext` has a mark from `m` /// //^ This cannot be glob-adjusted, so this is a resolution error. /// } /// } /// ``` /// This returns `None` if the context cannot be glob-adjusted. /// Otherwise, it returns the scope to use when privacy checking (see `adjust` for details). pub fn glob_adjust(&mut self, expn_id: ExpnId, glob_span: Span) -> Option> { HygieneData::with(|data| { let mut scope = None; let mut glob_ctxt = data.normalize_to_macros_2_0(glob_span.ctxt()); while !data.is_descendant_of(expn_id, data.outer_expn(glob_ctxt)) { scope = Some(data.remove_mark(&mut glob_ctxt).0); if data.remove_mark(self).0 != scope.unwrap() { return None; } } if data.adjust(self, expn_id).is_some() { return None; } Some(scope) }) } /// Undo `glob_adjust` if possible: /// /// ```rust /// if let Some(privacy_checking_scope) = self.reverse_glob_adjust(expansion, glob_ctxt) { /// assert!(self.glob_adjust(expansion, glob_ctxt) == Some(privacy_checking_scope)); /// } /// ``` pub fn reverse_glob_adjust( &mut self, expn_id: ExpnId, glob_span: Span, ) -> Option> { HygieneData::with(|data| { if data.adjust(self, expn_id).is_some() { return None; } let mut glob_ctxt = data.normalize_to_macros_2_0(glob_span.ctxt()); let mut marks = Vec::new(); while !data.is_descendant_of(expn_id, data.outer_expn(glob_ctxt)) { marks.push(data.remove_mark(&mut glob_ctxt)); } let scope = marks.last().map(|mark| mark.0); while let Some((expn_id, transparency)) = marks.pop() { *self = data.apply_mark(*self, expn_id, transparency); } Some(scope) }) } pub fn hygienic_eq(self, other: SyntaxContext, expn_id: ExpnId) -> bool { HygieneData::with(|data| { let mut self_normalized = data.normalize_to_macros_2_0(self); data.adjust(&mut self_normalized, expn_id); self_normalized == data.normalize_to_macros_2_0(other) }) } #[inline] pub fn normalize_to_macros_2_0(self) -> SyntaxContext { HygieneData::with(|data| data.normalize_to_macros_2_0(self)) } #[inline] pub fn normalize_to_macro_rules(self) -> SyntaxContext { HygieneData::with(|data| data.normalize_to_macro_rules(self)) } #[inline] pub fn outer_expn(self) -> ExpnId { HygieneData::with(|data| data.outer_expn(self)) } /// `ctxt.outer_expn_data()` is equivalent to but faster than /// `ctxt.outer_expn().expn_data()`. #[inline] pub fn outer_expn_data(self) -> ExpnData { HygieneData::with(|data| data.expn_data(data.outer_expn(self)).clone()) } #[inline] pub fn outer_mark(self) -> (ExpnId, Transparency) { HygieneData::with(|data| data.outer_mark(self)) } pub fn dollar_crate_name(self) -> Symbol { HygieneData::with(|data| data.syntax_context_data[self.0 as usize].dollar_crate_name) } pub fn edition(self) -> Edition { HygieneData::with(|data| data.expn_data(data.outer_expn(self)).edition) } } impl fmt::Debug for SyntaxContext { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "#{}", self.0) } } impl Span { /// Creates a fresh expansion with given properties. /// Expansions are normally created by macros, but in some cases expansions are created for /// other compiler-generated code to set per-span properties like allowed unstable features. /// The returned span belongs to the created expansion and has the new properties, /// but its location is inherited from the current span. pub fn fresh_expansion(self, expn_id: LocalExpnId) -> Span { HygieneData::with(|data| { self.with_ctxt(data.apply_mark( SyntaxContext::root(), expn_id.to_expn_id(), Transparency::Transparent, )) }) } /// Reuses the span but adds information like the kind of the desugaring and features that are /// allowed inside this span. pub fn mark_with_reason( self, allow_internal_unstable: Option>, reason: DesugaringKind, edition: Edition, ctx: impl HashStableContext, ) -> Span { let expn_data = ExpnData { allow_internal_unstable, ..ExpnData::default(ExpnKind::Desugaring(reason), self, edition, None, None) }; let expn_id = LocalExpnId::fresh(expn_data, ctx); self.fresh_expansion(expn_id) } } /// A subset of properties from both macro definition and macro call available through global data. /// Avoid using this if you have access to the original definition or call structures. #[derive(Clone, Debug, Encodable, Decodable, HashStable_Generic)] pub struct ExpnData { // --- The part unique to each expansion. /// The kind of this expansion - macro or compiler desugaring. pub kind: ExpnKind, /// The expansion that produced this expansion. pub parent: ExpnId, /// The location of the actual macro invocation or syntax sugar , e.g. /// `let x = foo!();` or `if let Some(y) = x {}` /// /// This may recursively refer to other macro invocations, e.g., if /// `foo!()` invoked `bar!()` internally, and there was an /// expression inside `bar!`; the call_site of the expression in /// the expansion would point to the `bar!` invocation; that /// call_site span would have its own ExpnData, with the call_site /// pointing to the `foo!` invocation. pub call_site: Span, /// Used to force two `ExpnData`s to have different `Fingerprint`s. /// Due to macro expansion, it's possible to end up with two `ExpnId`s /// that have identical `ExpnData`s. This violates the contract of `HashStable` /// - the two `ExpnId`s are not equal, but their `Fingerprint`s are equal /// (since the numerical `ExpnId` value is not considered by the `HashStable` /// implementation). /// /// The `disambiguator` field is set by `update_disambiguator` when two distinct /// `ExpnId`s would end up with the same `Fingerprint`. Since `ExpnData` includes /// a `krate` field, this value only needs to be unique within a single crate. disambiguator: u32, // --- The part specific to the macro/desugaring definition. // --- It may be reasonable to share this part between expansions with the same definition, // --- but such sharing is known to bring some minor inconveniences without also bringing // --- noticeable perf improvements (PR #62898). /// The span of the macro definition (possibly dummy). /// This span serves only informational purpose and is not used for resolution. pub def_site: Span, /// List of `#[unstable]`/feature-gated features that the macro is allowed to use /// internally without forcing the whole crate to opt-in /// to them. pub allow_internal_unstable: Option>, /// Whether the macro is allowed to use `unsafe` internally /// even if the user crate has `#![forbid(unsafe_code)]`. pub allow_internal_unsafe: bool, /// Enables the macro helper hack (`ident!(...)` -> `$crate::ident!(...)`) /// for a given macro. pub local_inner_macros: bool, /// Edition of the crate in which the macro is defined. pub edition: Edition, /// The `DefId` of the macro being invoked, /// if this `ExpnData` corresponds to a macro invocation pub macro_def_id: Option, /// The normal module (`mod`) in which the expanded macro was defined. pub parent_module: Option, } impl !PartialEq for ExpnData {} impl !Hash for ExpnData {} impl ExpnData { pub fn new( kind: ExpnKind, parent: ExpnId, call_site: Span, def_site: Span, allow_internal_unstable: Option>, allow_internal_unsafe: bool, local_inner_macros: bool, edition: Edition, macro_def_id: Option, parent_module: Option, ) -> ExpnData { ExpnData { kind, parent, call_site, def_site, allow_internal_unstable, allow_internal_unsafe, local_inner_macros, edition, macro_def_id, parent_module, disambiguator: 0, } } /// Constructs expansion data with default properties. pub fn default( kind: ExpnKind, call_site: Span, edition: Edition, macro_def_id: Option, parent_module: Option, ) -> ExpnData { ExpnData { kind, parent: ExpnId::root(), call_site, def_site: DUMMY_SP, allow_internal_unstable: None, allow_internal_unsafe: false, local_inner_macros: false, edition, macro_def_id, parent_module, disambiguator: 0, } } pub fn allow_unstable( kind: ExpnKind, call_site: Span, edition: Edition, allow_internal_unstable: Lrc<[Symbol]>, macro_def_id: Option, parent_module: Option, ) -> ExpnData { ExpnData { allow_internal_unstable: Some(allow_internal_unstable), ..ExpnData::default(kind, call_site, edition, macro_def_id, parent_module) } } #[inline] pub fn is_root(&self) -> bool { matches!(self.kind, ExpnKind::Root) } #[inline] fn hash_expn(&self, ctx: &mut impl HashStableContext) -> u64 { let mut hasher = StableHasher::new(); self.hash_stable(ctx, &mut hasher); hasher.finish() } } /// Expansion kind. #[derive(Clone, Debug, PartialEq, Encodable, Decodable, HashStable_Generic)] pub enum ExpnKind { /// No expansion, aka root expansion. Only `ExpnId::root()` has this kind. Root, /// Expansion produced by a macro. Macro(MacroKind, Symbol), /// Transform done by the compiler on the AST. AstPass(AstPass), /// Desugaring done by the compiler during HIR lowering. Desugaring(DesugaringKind), /// MIR inlining Inlined, } impl ExpnKind { pub fn descr(&self) -> String { match *self { ExpnKind::Root => kw::PathRoot.to_string(), ExpnKind::Macro(macro_kind, name) => match macro_kind { MacroKind::Bang => format!("{}!", name), MacroKind::Attr => format!("#[{}]", name), MacroKind::Derive => format!("#[derive({})]", name), }, ExpnKind::AstPass(kind) => kind.descr().to_string(), ExpnKind::Desugaring(kind) => format!("desugaring of {}", kind.descr()), ExpnKind::Inlined => "inlined source".to_string(), } } } /// The kind of macro invocation or definition. #[derive(Clone, Copy, PartialEq, Eq, Encodable, Decodable, Hash, Debug)] #[derive(HashStable_Generic)] pub enum MacroKind { /// A bang macro `foo!()`. Bang, /// An attribute macro `#[foo]`. Attr, /// A derive macro `#[derive(Foo)]` Derive, } impl MacroKind { pub fn descr(self) -> &'static str { match self { MacroKind::Bang => "macro", MacroKind::Attr => "attribute macro", MacroKind::Derive => "derive macro", } } pub fn descr_expected(self) -> &'static str { match self { MacroKind::Attr => "attribute", _ => self.descr(), } } pub fn article(self) -> &'static str { match self { MacroKind::Attr => "an", _ => "a", } } } /// The kind of AST transform. #[derive(Clone, Copy, Debug, PartialEq, Encodable, Decodable, HashStable_Generic)] pub enum AstPass { StdImports, TestHarness, ProcMacroHarness, } impl AstPass { pub fn descr(self) -> &'static str { match self { AstPass::StdImports => "standard library imports", AstPass::TestHarness => "test harness", AstPass::ProcMacroHarness => "proc macro harness", } } } /// The kind of compiler desugaring. #[derive(Clone, Copy, PartialEq, Debug, Encodable, Decodable, HashStable_Generic)] pub enum DesugaringKind { /// We desugar `if c { i } else { e }` to `match $ExprKind::Use(c) { true => i, _ => e }`. /// However, we do not want to blame `c` for unreachability but rather say that `i` /// is unreachable. This desugaring kind allows us to avoid blaming `c`. /// This also applies to `while` loops. CondTemporary, QuestionMark, TryBlock, /// Desugaring of an `impl Trait` in return type position /// to an `type Foo = impl Trait;` and replacing the /// `impl Trait` with `Foo`. OpaqueTy, Async, Await, ForLoop, LetElse, WhileLoop, } impl DesugaringKind { /// The description wording should combine well with "desugaring of {}". pub fn descr(self) -> &'static str { match self { DesugaringKind::CondTemporary => "`if` or `while` condition", DesugaringKind::Async => "`async` block or function", DesugaringKind::Await => "`await` expression", DesugaringKind::QuestionMark => "operator `?`", DesugaringKind::TryBlock => "`try` block", DesugaringKind::OpaqueTy => "`impl Trait`", DesugaringKind::ForLoop => "`for` loop", DesugaringKind::LetElse => "`let...else`", DesugaringKind::WhileLoop => "`while` loop", } } } #[derive(Default)] pub struct HygieneEncodeContext { /// All `SyntaxContexts` for which we have written `SyntaxContextData` into crate metadata. /// This is `None` after we finish encoding `SyntaxContexts`, to ensure /// that we don't accidentally try to encode any more `SyntaxContexts` serialized_ctxts: Lock>, /// The `SyntaxContexts` that we have serialized (e.g. as a result of encoding `Spans`) /// in the most recent 'round' of serializing. Serializing `SyntaxContextData` /// may cause us to serialize more `SyntaxContext`s, so serialize in a loop /// until we reach a fixed point. latest_ctxts: Lock>, serialized_expns: Lock>, latest_expns: Lock>, } impl HygieneEncodeContext { /// Record the fact that we need to serialize the corresponding `ExpnData`. pub fn schedule_expn_data_for_encoding(&self, expn: ExpnId) { if !self.serialized_expns.lock().contains(&expn) { self.latest_expns.lock().insert(expn); } } pub fn encode( &self, encoder: &mut T, mut encode_ctxt: impl FnMut(&mut T, u32, &SyntaxContextData) -> Result<(), R>, mut encode_expn: impl FnMut(&mut T, ExpnId, &ExpnData, ExpnHash) -> Result<(), R>, ) -> Result<(), R> { // When we serialize a `SyntaxContextData`, we may end up serializing // a `SyntaxContext` that we haven't seen before while !self.latest_ctxts.lock().is_empty() || !self.latest_expns.lock().is_empty() { debug!( "encode_hygiene: Serializing a round of {:?} SyntaxContextDatas: {:?}", self.latest_ctxts.lock().len(), self.latest_ctxts ); // Consume the current round of SyntaxContexts. // Drop the lock() temporary early let latest_ctxts = { std::mem::take(&mut *self.latest_ctxts.lock()) }; // It's fine to iterate over a HashMap, because the serialization // of the table that we insert data into doesn't depend on insertion // order for_all_ctxts_in(latest_ctxts.into_iter(), |index, ctxt, data| { if self.serialized_ctxts.lock().insert(ctxt) { encode_ctxt(encoder, index, data)?; } Ok(()) })?; let latest_expns = { std::mem::take(&mut *self.latest_expns.lock()) }; for_all_expns_in(latest_expns.into_iter(), |expn, data, hash| { if self.serialized_expns.lock().insert(expn) { encode_expn(encoder, expn, data, hash)?; } Ok(()) })?; } debug!("encode_hygiene: Done serializing SyntaxContextData"); Ok(()) } } #[derive(Default)] /// Additional information used to assist in decoding hygiene data pub struct HygieneDecodeContext { // Maps serialized `SyntaxContext` ids to a `SyntaxContext` in the current // global `HygieneData`. When we deserialize a `SyntaxContext`, we need to create // a new id in the global `HygieneData`. This map tracks the ID we end up picking, // so that multiple occurrences of the same serialized id are decoded to the same // `SyntaxContext` remapped_ctxts: Lock>>, } /// Register an expansion which has been decoded from the on-disk-cache for the local crate. pub fn register_local_expn_id(data: ExpnData, hash: ExpnHash) -> ExpnId { HygieneData::with(|hygiene_data| { let expn_id = hygiene_data.local_expn_data.next_index(); hygiene_data.local_expn_data.push(Some(data)); let _eid = hygiene_data.local_expn_hashes.push(hash); debug_assert_eq!(expn_id, _eid); let expn_id = expn_id.to_expn_id(); let _old_id = hygiene_data.expn_hash_to_expn_id.insert(hash, expn_id); debug_assert!(_old_id.is_none()); expn_id }) } /// Register an expansion which has been decoded from the metadata of a foreign crate. pub fn register_expn_id( krate: CrateNum, local_id: ExpnIndex, data: ExpnData, hash: ExpnHash, ) -> ExpnId { debug_assert!(data.parent == ExpnId::root() || krate == data.parent.krate); let expn_id = ExpnId { krate, local_id }; HygieneData::with(|hygiene_data| { let _old_data = hygiene_data.foreign_expn_data.insert(expn_id, data); debug_assert!(_old_data.is_none()); let _old_hash = hygiene_data.foreign_expn_hashes.insert(expn_id, hash); debug_assert!(_old_hash.is_none()); let _old_id = hygiene_data.expn_hash_to_expn_id.insert(hash, expn_id); debug_assert!(_old_id.is_none()); }); expn_id } /// Decode an expansion from the metadata of a foreign crate. pub fn decode_expn_id( krate: CrateNum, index: u32, decode_data: impl FnOnce(ExpnId) -> (ExpnData, ExpnHash), ) -> ExpnId { if index == 0 { debug!("decode_expn_id: deserialized root"); return ExpnId::root(); } let index = ExpnIndex::from_u32(index); // This function is used to decode metadata, so it cannot decode information about LOCAL_CRATE. debug_assert_ne!(krate, LOCAL_CRATE); let expn_id = ExpnId { krate, local_id: index }; // Fast path if the expansion has already been decoded. if HygieneData::with(|hygiene_data| hygiene_data.foreign_expn_data.contains_key(&expn_id)) { return expn_id; } // Don't decode the data inside `HygieneData::with`, since we need to recursively decode // other ExpnIds let (expn_data, hash) = decode_data(expn_id); register_expn_id(krate, index, expn_data, hash) } // Decodes `SyntaxContext`, using the provided `HygieneDecodeContext` // to track which `SyntaxContext`s we have already decoded. // The provided closure will be invoked to deserialize a `SyntaxContextData` // if we haven't already seen the id of the `SyntaxContext` we are deserializing. pub fn decode_syntax_context SyntaxContextData>( d: &mut D, context: &HygieneDecodeContext, decode_data: F, ) -> SyntaxContext { let raw_id: u32 = Decodable::decode(d); if raw_id == 0 { debug!("decode_syntax_context: deserialized root"); // The root is special return SyntaxContext::root(); } let outer_ctxts = &context.remapped_ctxts; // Ensure that the lock() temporary is dropped early { if let Some(ctxt) = outer_ctxts.lock().get(raw_id as usize).copied().flatten() { return ctxt; } } // Allocate and store SyntaxContext id *before* calling the decoder function, // as the SyntaxContextData may reference itself. let new_ctxt = HygieneData::with(|hygiene_data| { let new_ctxt = SyntaxContext(hygiene_data.syntax_context_data.len() as u32); // Push a dummy SyntaxContextData to ensure that nobody else can get the // same ID as us. This will be overwritten after call `decode_Data` hygiene_data.syntax_context_data.push(SyntaxContextData { outer_expn: ExpnId::root(), outer_transparency: Transparency::Transparent, parent: SyntaxContext::root(), opaque: SyntaxContext::root(), opaque_and_semitransparent: SyntaxContext::root(), dollar_crate_name: kw::Empty, }); let mut ctxts = outer_ctxts.lock(); let new_len = raw_id as usize + 1; if ctxts.len() < new_len { ctxts.resize(new_len, None); } ctxts[raw_id as usize] = Some(new_ctxt); drop(ctxts); new_ctxt }); // Don't try to decode data while holding the lock, since we need to // be able to recursively decode a SyntaxContext let mut ctxt_data = decode_data(d, raw_id); // Reset `dollar_crate_name` so that it will be updated by `update_dollar_crate_names` // We don't care what the encoding crate set this to - we want to resolve it // from the perspective of the current compilation session ctxt_data.dollar_crate_name = kw::DollarCrate; // Overwrite the dummy data with our decoded SyntaxContextData HygieneData::with(|hygiene_data| { let dummy = std::mem::replace( &mut hygiene_data.syntax_context_data[new_ctxt.as_u32() as usize], ctxt_data, ); // Make sure nothing weird happening while `decode_data` was running assert_eq!(dummy.dollar_crate_name, kw::Empty); }); new_ctxt } fn for_all_ctxts_in Result<(), E>>( ctxts: impl Iterator, mut f: F, ) -> Result<(), E> { let all_data: Vec<_> = HygieneData::with(|data| { ctxts.map(|ctxt| (ctxt, data.syntax_context_data[ctxt.0 as usize].clone())).collect() }); for (ctxt, data) in all_data.into_iter() { f(ctxt.0, ctxt, &data)?; } Ok(()) } fn for_all_expns_in( expns: impl Iterator, mut f: impl FnMut(ExpnId, &ExpnData, ExpnHash) -> Result<(), E>, ) -> Result<(), E> { let all_data: Vec<_> = HygieneData::with(|data| { expns.map(|expn| (expn, data.expn_data(expn).clone(), data.expn_hash(expn))).collect() }); for (expn, data, hash) in all_data.into_iter() { f(expn, &data, hash)?; } Ok(()) } impl Encodable for LocalExpnId { fn encode(&self, e: &mut E) -> Result<(), E::Error> { self.to_expn_id().encode(e) } } impl Encodable for ExpnId { default fn encode(&self, _: &mut E) -> Result<(), E::Error> { panic!("cannot encode `ExpnId` with `{}`", std::any::type_name::()); } } impl Decodable for LocalExpnId { fn decode(d: &mut D) -> Self { ExpnId::expect_local(ExpnId::decode(d)) } } impl Decodable for ExpnId { default fn decode(_: &mut D) -> Self { panic!("cannot decode `ExpnId` with `{}`", std::any::type_name::()); } } pub fn raw_encode_syntax_context( ctxt: SyntaxContext, context: &HygieneEncodeContext, e: &mut E, ) -> Result<(), E::Error> { if !context.serialized_ctxts.lock().contains(&ctxt) { context.latest_ctxts.lock().insert(ctxt); } ctxt.0.encode(e) } impl Encodable for SyntaxContext { default fn encode(&self, _: &mut E) -> Result<(), E::Error> { panic!("cannot encode `SyntaxContext` with `{}`", std::any::type_name::()); } } impl Decodable for SyntaxContext { default fn decode(_: &mut D) -> Self { panic!("cannot decode `SyntaxContext` with `{}`", std::any::type_name::()); } } /// Updates the `disambiguator` field of the corresponding `ExpnData` /// such that the `Fingerprint` of the `ExpnData` does not collide with /// any other `ExpnIds`. /// /// This method is called only when an `ExpnData` is first associated /// with an `ExpnId` (when the `ExpnId` is initially constructed, or via /// `set_expn_data`). It is *not* called for foreign `ExpnId`s deserialized /// from another crate's metadata - since `ExpnHash` includes the stable crate id, /// collisions are only possible between `ExpnId`s within the same crate. fn update_disambiguator(expn_data: &mut ExpnData, mut ctx: impl HashStableContext) -> ExpnHash { // This disambiguator should not have been set yet. assert_eq!( expn_data.disambiguator, 0, "Already set disambiguator for ExpnData: {:?}", expn_data ); assert_default_hashing_controls(&ctx, "ExpnData (disambiguator)"); let mut expn_hash = expn_data.hash_expn(&mut ctx); let disambiguator = HygieneData::with(|data| { // If this is the first ExpnData with a given hash, then keep our // disambiguator at 0 (the default u32 value) let disambig = data.expn_data_disambiguators.entry(expn_hash).or_default(); let disambiguator = *disambig; *disambig += 1; disambiguator }); if disambiguator != 0 { debug!("Set disambiguator for expn_data={:?} expn_hash={:?}", expn_data, expn_hash); expn_data.disambiguator = disambiguator; expn_hash = expn_data.hash_expn(&mut ctx); // Verify that the new disambiguator makes the hash unique #[cfg(debug_assertions)] HygieneData::with(|data| { assert_eq!( data.expn_data_disambiguators.get(&expn_hash), None, "Hash collision after disambiguator update!", ); }); } ExpnHash::new(ctx.def_path_hash(LOCAL_CRATE.as_def_id()).stable_crate_id(), expn_hash) } impl HashStable for SyntaxContext { fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) { const TAG_EXPANSION: u8 = 0; const TAG_NO_EXPANSION: u8 = 1; if *self == SyntaxContext::root() { TAG_NO_EXPANSION.hash_stable(ctx, hasher); } else { TAG_EXPANSION.hash_stable(ctx, hasher); let (expn_id, transparency) = self.outer_mark(); expn_id.hash_stable(ctx, hasher); transparency.hash_stable(ctx, hasher); } } } impl HashStable for ExpnId { fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) { assert_default_hashing_controls(ctx, "ExpnId"); let hash = if *self == ExpnId::root() { // Avoid fetching TLS storage for a trivial often-used value. Fingerprint::ZERO } else { self.expn_hash().0 }; hash.hash_stable(ctx, hasher); } }