use rustc::lint::*; use rustc::ty::subst::Subst; use rustc::ty::TypeVariants; use rustc::ty::fast_reject::simplify_type; use rustc::ty; use rustc_front::hir::*; use syntax::ast::{Attribute, MetaItemKind}; use syntax::codemap::Span; use utils::{CLONE_TRAIT_PATH, HASH_PATH}; use utils::{match_path, span_lint_and_then}; /// **What it does:** This lint warns about deriving `Hash` but implementing `PartialEq` /// explicitly. /// /// **Why is this bad?** The implementation of these traits must agree (for example for use with /// `HashMap`) so it’s probably a bad idea to use a default-generated `Hash` implementation with /// an explicitely defined `PartialEq`. In particular, the following must hold for any type: /// /// ```rust /// k1 == k2 ⇒ hash(k1) == hash(k2) /// ``` /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// #[derive(Hash)] /// struct Foo; /// /// impl PartialEq for Foo { /// .. /// } /// ``` declare_lint! { pub DERIVE_HASH_XOR_EQ, Warn, "deriving `Hash` but implementing `PartialEq` explicitly" } /// **What it does:** This lint warns about explicit `Clone` implementation for `Copy` types. /// /// **Why is this bad?** To avoid surprising behaviour, these traits should agree and the behaviour /// of `Copy` cannot be overridden. In almost all situations a `Copy` type should have a `Clone` /// implementation that does nothing more than copy the object, which is what /// `#[derive(Copy, Clone)]` gets you. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// #[derive(Copy)] /// struct Foo; /// /// impl Clone for Foo { /// .. /// } /// ``` declare_lint! { pub EXPL_IMPL_CLONE_ON_COPY, Warn, "implementing `Clone` explicitly on `Copy` types" } pub struct Derive; impl LintPass for Derive { fn get_lints(&self) -> LintArray { lint_array!(EXPL_IMPL_CLONE_ON_COPY, DERIVE_HASH_XOR_EQ) } } impl LateLintPass for Derive { fn check_item(&mut self, cx: &LateContext, item: &Item) { if_let_chain! {[ let ItemImpl(_, _, _, Some(ref trait_ref), _, _) = item.node ], { let ty = cx.tcx.lookup_item_type(cx.tcx.map.local_def_id(item.id)).ty; let is_automatically_derived = item.attrs.iter().any(is_automatically_derived); check_hash_peq(cx, item.span, trait_ref, ty, is_automatically_derived); if !is_automatically_derived { check_copy_clone(cx, item, trait_ref, ty); } }} } } /// Implementation of the `DERIVE_HASH_XOR_EQ` lint. fn check_hash_peq(cx: &LateContext, span: Span, trait_ref: &TraitRef, ty: ty::Ty, hash_is_automatically_derived: bool) { if_let_chain! {[ match_path(&trait_ref.path, &HASH_PATH), let Some(peq_trait_def_id) = cx.tcx.lang_items.eq_trait() ], { let peq_trait_def = cx.tcx.lookup_trait_def(peq_trait_def_id); cx.tcx.populate_implementations_for_trait_if_necessary(peq_trait_def.trait_ref.def_id); let peq_impls = peq_trait_def.borrow_impl_lists(cx.tcx).1; // Look for the PartialEq implementations for `ty` if_let_chain! {[ let Some(simpl_ty) = simplify_type(cx.tcx, ty, false), let Some(impl_ids) = peq_impls.get(&simpl_ty) ], { for &impl_id in impl_ids { let peq_is_automatically_derived = cx.tcx.get_attrs(impl_id).iter().any(is_automatically_derived); if peq_is_automatically_derived == hash_is_automatically_derived { return; } let trait_ref = cx.tcx.impl_trait_ref(impl_id).expect("must be a trait implementation"); // Only care about `impl PartialEq for Foo` if trait_ref.input_types()[0] == ty { let mess = if peq_is_automatically_derived { "you are implementing `Hash` explicitly but have derived `PartialEq`" } else { "you are deriving `Hash` but have implemented `PartialEq` explicitly" }; span_lint_and_then( cx, DERIVE_HASH_XOR_EQ, span, mess, |db| { if let Some(node_id) = cx.tcx.map.as_local_node_id(impl_id) { db.span_note( cx.tcx.map.span(node_id), "`PartialEq` implemented here" ); } }); } } }} }} } /// Implementation of the `EXPL_IMPL_CLONE_ON_COPY` lint. fn check_copy_clone<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, item: &Item, trait_ref: &TraitRef, ty: ty::Ty<'tcx>) { if match_path(&trait_ref.path, &CLONE_TRAIT_PATH) { let parameter_environment = ty::ParameterEnvironment::for_item(cx.tcx, item.id); let subst_ty = ty.subst(cx.tcx, ¶meter_environment.free_substs); if subst_ty.moves_by_default(¶meter_environment, item.span) { return; // ty is not Copy } // Some types are not Clone by default but could be cloned `by hand` if necessary match ty.sty { TypeVariants::TyEnum(def, substs) | TypeVariants::TyStruct(def, substs) => { for variant in &def.variants { for field in &variant.fields { match field.ty(cx.tcx, substs).sty { TypeVariants::TyArray(_, size) if size > 32 => { return; } TypeVariants::TyFnPtr(..) => { return; } TypeVariants::TyTuple(ref tys) if tys.len() > 12 => { return; } _ => (), } } } } _ => (), } span_lint_and_then(cx, EXPL_IMPL_CLONE_ON_COPY, item.span, "you are implementing `Clone` explicitly on a `Copy` type", |db| { db.span_note(item.span, "consider deriving `Clone` or removing `Copy`"); }); } } /// Checks for the `#[automatically_derived]` attribute all `#[derive]`d implementations have. fn is_automatically_derived(attr: &Attribute) -> bool { if let MetaItemKind::Word(ref word) = attr.node.value.node { word == &"automatically_derived" } else { false } }