/* The 'fmt' extension is modeled on the posix printf system. * * A posix conversion ostensibly looks like this: * * %[parameter][flags][width][.precision][length]type * * Given the different numeric type bestiary we have, we omit the 'length' * parameter and support slightly different conversions for 'type': * * %[parameter][flags][width][.precision]type * * we also only support translating-to-rust a tiny subset of the possible * combinations at the moment. */ import front.parser; import std._str; import std._vec; import std.option; import std.option.none; import std.option.some; tag signedness { signed; unsigned; } tag caseness { case_upper; case_lower; } tag ty { ty_bool; ty_str; ty_char; ty_int(signedness); ty_bits; ty_hex(caseness); // FIXME: More types } tag flag { flag_left_justify; flag_left_zero_pad; flag_left_space_pad; flag_plus_if_positive; flag_alternate; } tag count { count_is(int); count_is_param(int); count_is_next_param; count_implied; } // A formatted conversion from an expression to a string type conv = rec(option.t[int] param, vec[flag] flags, count width, count precision, ty typ); // A fragment of the output sequence tag piece { piece_string(str); piece_conv(conv); } fn bad_fmt_call() { log "malformed #fmt call"; fail; } fn expand_syntax_ext(vec[@ast.expr] args, option.t[@ast.expr] body) -> @ast.expr { if (_vec.len[@ast.expr](args) == 0u) { bad_fmt_call(); } auto fmt = expr_to_str(args.(0)); log fmt; auto pieces = parse_fmt_string(fmt); log "printing all pieces"; for (piece p in pieces) { alt (p) { case (piece_string(?s)) { log s; } case (piece_conv(_)) { log "conv"; } } } log "done printing all pieces"; ret pieces_to_expr(pieces, args); } fn expr_to_str(@ast.expr expr) -> str { alt (expr.node) { case (ast.expr_lit(?l, _)) { alt (l.node) { case (ast.lit_str(?s)) { ret s; } } } } bad_fmt_call(); fail; } fn parse_fmt_string(str s) -> vec[piece] { let vec[piece] pieces = vec(); // FIXME: Should be counting codepoints instead of bytes auto lim = _str.byte_len(s); auto buf = ""; fn flush_buf(str buf, &vec[piece] pieces) -> str { if (_str.byte_len(buf) > 0u) { auto piece = piece_string(buf); pieces += piece; } ret ""; } auto i = 0u; while (i < lim) { auto curr = _str.substr(s, i, 1u); if (_str.eq(curr, "%")) { i += 1u; if (i >= lim) { log "unterminated conversion at end of string"; fail; } auto curr2 = _str.substr(s, i, 1u); if (_str.eq(curr2, "%")) { i += 1u; } else { buf = flush_buf(buf, pieces); auto res = parse_conversion(s, i, lim); pieces += res._0; i = res._1; } } else { buf += curr; i += 1u; } } buf = flush_buf(buf, pieces); ret pieces; } fn peek_num(str s, uint i, uint lim) -> option.t[tup(int, int)] { if (i >= lim) { ret none[tup(int, int)]; } else { ret none[tup(int, int)]; /*if ('0' <= c && c <= '9') { log c; fail; } else { ret option.none[tup(int, int)]; } */ } } fn parse_conversion(str s, uint i, uint lim) -> tup(piece, uint) { auto parm = parse_parameter(s, i, lim); auto flags = parse_flags(s, parm._1, lim); auto width = parse_width(s, flags._1, lim); auto prec = parse_precision(s, width._1, lim); auto ty = parse_type(s, prec._1, lim); ret tup(piece_conv(rec(param = parm._0, flags = flags._0, width = width._0, precision = prec._0, typ = ty._0)), ty._1); } fn parse_parameter(str s, uint i, uint lim) -> tup(option.t[int], uint) { if (i >= lim) { ret tup(none[int], i); } auto num = peek_num(s, i, lim); alt (num) { case (none[tup(int, int)]) { ret tup(none[int], i); } case (some[tup(int, int)](?t)) { fail; } } } fn parse_flags(str s, uint i, uint lim) -> tup(vec[flag], uint) { let vec[flag] flags = vec(); ret tup(flags, i); } fn parse_width(str s, uint i, uint lim) -> tup(count, uint) { ret tup(count_implied, i); } fn parse_precision(str s, uint i, uint lim) -> tup(count, uint) { ret tup(count_implied, i); } fn parse_type(str s, uint i, uint lim) -> tup(ty, uint) { if (i >= lim) { log "missing type in conversion"; fail; } auto t; auto tstr = _str.substr(s, i, 1u); if (_str.eq(tstr, "b")) { t = ty_bool; } else if (_str.eq(tstr, "s")) { t = ty_str; } else if (_str.eq(tstr, "c")) { t = ty_char; } else if (_str.eq(tstr, "d") || _str.eq(tstr, "i")) { // TODO: Do we really want two signed types here? // How important is it to be printf compatible? t = ty_int(signed); } else if (_str.eq(tstr, "u")) { t = ty_int(unsigned); } else if (_str.eq(tstr, "x")) { t = ty_hex(case_lower); } else if (_str.eq(tstr, "X")) { t = ty_hex(case_upper); } else if (_str.eq(tstr, "t")) { t = ty_bits; } else { // FIXME: This is a hack to avoid 'unsatisfied precondition // constraint' on uninitialized variable t below t = ty_bool; log "unknown type in conversion"; fail; } ret tup(t, i + 1u); } fn pieces_to_expr(vec[piece] pieces, vec[@ast.expr] args) -> @ast.expr { auto lo = args.(0).span; auto hi = args.(0).span; auto strlit = ast.lit_str("TODO"); auto spstrlit = @parser.spanned[ast.lit_](lo, hi, strlit); auto expr = ast.expr_lit(spstrlit, ast.ann_none); auto spexpr = @parser.spanned[ast.expr_](lo, hi, expr); ret spexpr; } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // compile-command: "make -k -C ../.. 2>&1 | sed -e 's/\\/x\\//x:\\//g'"; // End: //