// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. /*! The `vec` module contains useful code to help work with vector values. Vectors are Rust's list type. Vectors contain zero or more values of homogeneous types: ~~~ {.rust} let int_vector = [1,2,3]; let str_vector = ["one", "two", "three"]; ~~~ This is a big module, but for a high-level overview: ## Structs Several structs that are useful for vectors, such as `VecIterator`, which represents iteration over a vector. ## Traits A number of traits that allow you to accomplish tasks with vectors, like the `MutableVector` and `ImmutableVector` traits. ## Implementations of other traits Vectors are a very useful type, and so there's tons of implementations of traits found elsewhere. Some notable examples: * `Clone` * `Iterator` * `Zero` ## Function definitions There are a number of different functions that take vectors, here are some broad categories: * Modifying a vector, like `append` and `grow`. * Searching in a vector, like `bsearch`. * Iterating over vectors, like `each_permutation`. * Functional transformations on vectors, like `map` and `partition`. * Stack/queue operations, like `push`/`pop` and `shift`/`unshift`. * Cons-y operations, like `head` and `tail`. * Zipper operations, like `zip` and `unzip`. And much, much more. */ #[warn(non_camel_case_types)]; use cast; use clone::Clone; use container::{Container, Mutable}; use cmp::{Eq, TotalOrd, Ordering, Less, Equal, Greater}; use cmp; use iterator::*; use libc::c_void; use num::Zero; use option::{None, Option, Some}; use ptr::to_unsafe_ptr; use ptr; use ptr::RawPtr; use rt::global_heap::malloc_raw; use rt::global_heap::realloc_raw; use sys; use sys::size_of; use uint; use unstable::intrinsics; use unstable::intrinsics::{get_tydesc, contains_managed}; use unstable::raw::{Box, Repr, Slice, Vec}; use vec; use util; /// Returns true if two vectors have the same length pub fn same_length(xs: &[T], ys: &[U]) -> bool { xs.len() == ys.len() } /** * Creates and initializes an owned vector. * * Creates an owned vector of size `n_elts` and initializes the elements * to the value returned by the function `op`. */ pub fn from_fn(n_elts: uint, op: &fn(uint) -> T) -> ~[T] { unsafe { let mut v = with_capacity(n_elts); let p = raw::to_mut_ptr(v); let mut i: uint = 0u; while i < n_elts { intrinsics::move_val_init(&mut(*ptr::mut_offset(p, i as int)), op(i)); i += 1u; } raw::set_len(&mut v, n_elts); v } } /** * Creates and initializes an owned vector. * * Creates an owned vector of size `n_elts` and initializes the elements * to the value `t`. */ pub fn from_elem(n_elts: uint, t: T) -> ~[T] { // FIXME (#7136): manually inline from_fn for 2x plus speedup (sadly very // important, from_elem is a bottleneck in borrowck!). Unfortunately it // still is substantially slower than using the unsafe // vec::with_capacity/ptr::set_memory for primitive types. unsafe { let mut v = with_capacity(n_elts); let p = raw::to_mut_ptr(v); let mut i = 0u; while i < n_elts { intrinsics::move_val_init(&mut(*ptr::mut_offset(p, i as int)), t.clone()); i += 1u; } raw::set_len(&mut v, n_elts); v } } /// Creates a new vector with a capacity of `capacity` #[inline] pub fn with_capacity(capacity: uint) -> ~[T] { unsafe { if contains_managed::() { let mut vec = ~[]; vec.reserve(capacity); vec } else { let alloc = capacity * sys::nonzero_size_of::(); let ptr = malloc_raw(alloc + sys::size_of::>()) as *mut Vec<()>; (*ptr).alloc = alloc; (*ptr).fill = 0; cast::transmute(ptr) } } } /** * Builds a vector by calling a provided function with an argument * function that pushes an element to the back of a vector. * This version takes an initial capacity for the vector. * * # Arguments * * * size - An initial size of the vector to reserve * * builder - A function that will construct the vector. It receives * as an argument a function that will push an element * onto the vector being constructed. */ #[inline] pub fn build_sized(size: uint, builder: &fn(push: &fn(v: A))) -> ~[A] { let mut vec = with_capacity(size); builder(|x| vec.push(x)); vec } /** * Builds a vector by calling a provided function with an argument * function that pushes an element to the back of a vector. * * # Arguments * * * builder - A function that will construct the vector. It receives * as an argument a function that will push an element * onto the vector being constructed. */ #[inline] pub fn build(builder: &fn(push: &fn(v: A))) -> ~[A] { build_sized(4, builder) } /** * Builds a vector by calling a provided function with an argument * function that pushes an element to the back of a vector. * This version takes an initial size for the vector. * * # Arguments * * * size - An option, maybe containing initial size of the vector to reserve * * builder - A function that will construct the vector. It receives * as an argument a function that will push an element * onto the vector being constructed. */ #[inline] pub fn build_sized_opt(size: Option, builder: &fn(push: &fn(v: A))) -> ~[A] { build_sized(size.unwrap_or_default(4), builder) } /// An iterator over the slices of a vector separated by elements that /// match a predicate function. pub struct SplitIterator<'self, T> { priv v: &'self [T], priv n: uint, priv pred: &'self fn(t: &T) -> bool, priv finished: bool } impl<'self, T> Iterator<&'self [T]> for SplitIterator<'self, T> { fn next(&mut self) -> Option<&'self [T]> { if self.finished { return None; } if self.n == 0 { self.finished = true; return Some(self.v); } match self.v.iter().position(|x| (self.pred)(x)) { None => { self.finished = true; Some(self.v) } Some(idx) => { let ret = Some(self.v.slice(0, idx)); self.v = self.v.slice(idx + 1, self.v.len()); self.n -= 1; ret } } } } /// An iterator over the slices of a vector separated by elements that /// match a predicate function, from back to front. pub struct RSplitIterator<'self, T> { priv v: &'self [T], priv n: uint, priv pred: &'self fn(t: &T) -> bool, priv finished: bool } impl<'self, T> Iterator<&'self [T]> for RSplitIterator<'self, T> { fn next(&mut self) -> Option<&'self [T]> { if self.finished { return None; } if self.n == 0 { self.finished = true; return Some(self.v); } match self.v.rposition(|x| (self.pred)(x)) { None => { self.finished = true; Some(self.v) } Some(idx) => { let ret = Some(self.v.slice(idx + 1, self.v.len())); self.v = self.v.slice(0, idx); self.n -= 1; ret } } } } // Appending /// Iterates over the `rhs` vector, copying each element and appending it to the /// `lhs`. Afterwards, the `lhs` is then returned for use again. #[inline] pub fn append(lhs: ~[T], rhs: &[T]) -> ~[T] { let mut v = lhs; v.push_all(rhs); v } /// Appends one element to the vector provided. The vector itself is then /// returned for use again. #[inline] pub fn append_one(lhs: ~[T], x: T) -> ~[T] { let mut v = lhs; v.push(x); v } // Functional utilities /** * Apply a function to each element of a vector and return a concatenation * of each result vector */ pub fn flat_map(v: &[T], f: &fn(t: &T) -> ~[U]) -> ~[U] { let mut result = ~[]; for elem in v.iter() { result.push_all_move(f(elem)); } result } /// Flattens a vector of vectors of T into a single vector of T. pub fn concat(v: &[~[T]]) -> ~[T] { v.concat_vec() } /// Concatenate a vector of vectors, placing a given separator between each pub fn connect(v: &[~[T]], sep: &T) -> ~[T] { v.connect_vec(sep) } /// Flattens a vector of vectors of T into a single vector of T. pub fn concat_slices(v: &[&[T]]) -> ~[T] { v.concat_vec() } /// Concatenate a vector of vectors, placing a given separator between each pub fn connect_slices(v: &[&[T]], sep: &T) -> ~[T] { v.connect_vec(sep) } #[allow(missing_doc)] pub trait VectorVector { // FIXME #5898: calling these .concat and .connect conflicts with // StrVector::con{cat,nect}, since they have generic contents. fn concat_vec(&self) -> ~[T]; fn connect_vec(&self, sep: &T) -> ~[T]; } impl<'self, T:Clone> VectorVector for &'self [~[T]] { /// Flattens a vector of slices of T into a single vector of T. fn concat_vec(&self) -> ~[T] { self.flat_map(|inner| (*inner).clone()) } /// Concatenate a vector of vectors, placing a given separator between each. fn connect_vec(&self, sep: &T) -> ~[T] { let mut r = ~[]; let mut first = true; for inner in self.iter() { if first { first = false; } else { r.push((*sep).clone()); } r.push_all((*inner).clone()); } r } } impl<'self,T:Clone> VectorVector for &'self [&'self [T]] { /// Flattens a vector of slices of T into a single vector of T. fn concat_vec(&self) -> ~[T] { self.flat_map(|&inner| inner.to_owned()) } /// Concatenate a vector of slices, placing a given separator between each. fn connect_vec(&self, sep: &T) -> ~[T] { let mut r = ~[]; let mut first = true; for &inner in self.iter() { if first { first = false; } else { r.push((*sep).clone()); } r.push_all(inner); } r } } // FIXME: if issue #586 gets implemented, could have a postcondition // saying the two result lists have the same length -- or, could // return a nominal record with a constraint saying that, instead of // returning a tuple (contingent on issue #869) /** * Convert a vector of pairs into a pair of vectors, by reference. As unzip(). */ pub fn unzip_slice(v: &[(T, U)]) -> (~[T], ~[U]) { let mut ts = ~[]; let mut us = ~[]; for p in v.iter() { let (t, u) = (*p).clone(); ts.push(t); us.push(u); } (ts, us) } /** * Convert a vector of pairs into a pair of vectors. * * Returns a tuple containing two vectors where the i-th element of the first * vector contains the first element of the i-th tuple of the input vector, * and the i-th element of the second vector contains the second element * of the i-th tuple of the input vector. */ pub fn unzip(v: ~[(T, U)]) -> (~[T], ~[U]) { let mut ts = ~[]; let mut us = ~[]; for p in v.move_iter() { let (t, u) = p; ts.push(t); us.push(u); } (ts, us) } /** * Iterate over all permutations of vector `v`. * * Permutations are produced in lexicographic order with respect to the order * of elements in `v` (so if `v` is sorted then the permutations are * lexicographically sorted). * * The total number of permutations produced is `v.len()!`. If `v` contains * repeated elements, then some permutations are repeated. * * See [Algorithms to generate * permutations](http://en.wikipedia.org/wiki/Permutation). * * # Arguments * * * `values` - A vector of values from which the permutations are * chosen * * * `fun` - The function to iterate over the combinations */ pub fn each_permutation(values: &[T], fun: &fn(perm : &[T]) -> bool) -> bool { let length = values.len(); let mut permutation = vec::from_fn(length, |i| values[i].clone()); if length <= 1 { fun(permutation); return true; } let mut indices = vec::from_fn(length, |i| i); loop { if !fun(permutation) { return true; } // find largest k such that indices[k] < indices[k+1] // if no such k exists, all permutations have been generated let mut k = length - 2; while k > 0 && indices[k] >= indices[k+1] { k -= 1; } if k == 0 && indices[0] > indices[1] { return true; } // find largest l such that indices[k] < indices[l] // k+1 is guaranteed to be such let mut l = length - 1; while indices[k] >= indices[l] { l -= 1; } // swap indices[k] and indices[l]; sort indices[k+1..] // (they're just reversed) indices.swap(k, l); indices.mut_slice(k+1, length).reverse(); // fixup permutation based on indices for i in range(k, length) { permutation[i] = values[indices[i]].clone(); } } } /// An iterator over the (overlapping) slices of length `size` within /// a vector. #[deriving(Clone)] pub struct WindowIter<'self, T> { priv v: &'self [T], priv size: uint } impl<'self, T> Iterator<&'self [T]> for WindowIter<'self, T> { fn next(&mut self) -> Option<&'self [T]> { if self.size > self.v.len() { None } else { let ret = Some(self.v.slice(0, self.size)); self.v = self.v.slice(1, self.v.len()); ret } } } /// An iterator over a vector in (non-overlapping) chunks (`size` /// elements at a time). /// /// When the vector len is not evenly divided by the chunk size, /// the last slice of the iteration will be the remainer. #[deriving(Clone)] pub struct ChunkIter<'self, T> { priv v: &'self [T], priv size: uint } impl<'self, T> Iterator<&'self [T]> for ChunkIter<'self, T> { fn next(&mut self) -> Option<&'self [T]> { if self.v.len() == 0 { None } else { let chunksz = cmp::min(self.v.len(), self.size); let (fst, snd) = (self.v.slice_to(chunksz), self.v.slice_from(chunksz)); self.v = snd; Some(fst) } } } impl<'self, T> DoubleEndedIterator<&'self [T]> for ChunkIter<'self, T> { fn next_back(&mut self) -> Option<&'self [T]> { if self.v.len() == 0 { None } else { let remainder = self.v.len() % self.size; let chunksz = if remainder != 0 { remainder } else { self.size }; let (fst, snd) = (self.v.slice_to(self.v.len() - chunksz), self.v.slice_from(self.v.len() - chunksz)); self.v = fst; Some(snd) } } } impl<'self, T> RandomAccessIterator<&'self [T]> for ChunkIter<'self, T> { #[inline] fn indexable(&self) -> uint { self.v.len()/self.size + if self.v.len() % self.size != 0 { 1 } else { 0 } } #[inline] fn idx(&self, index: uint) -> Option<&'self [T]> { if index < self.indexable() { let lo = index * self.size; let mut hi = lo + self.size; if hi < lo || hi > self.v.len() { hi = self.v.len(); } Some(self.v.slice(lo, hi)) } else { None } } } // Equality #[cfg(not(test))] pub mod traits { use super::*; use clone::Clone; use cmp::{Eq, Ord, TotalEq, TotalOrd, Ordering, Equiv}; use iterator::order; use ops::Add; impl<'self,T:Eq> Eq for &'self [T] { fn eq(&self, other: & &'self [T]) -> bool { self.len() == other.len() && order::eq(self.iter(), other.iter()) } fn ne(&self, other: & &'self [T]) -> bool { self.len() != other.len() || order::ne(self.iter(), other.iter()) } } impl Eq for ~[T] { #[inline] fn eq(&self, other: &~[T]) -> bool { self.as_slice() == *other } #[inline] fn ne(&self, other: &~[T]) -> bool { !self.eq(other) } } impl Eq for @[T] { #[inline] fn eq(&self, other: &@[T]) -> bool { self.as_slice() == *other } #[inline] fn ne(&self, other: &@[T]) -> bool { !self.eq(other) } } impl<'self,T:TotalEq> TotalEq for &'self [T] { fn equals(&self, other: & &'self [T]) -> bool { self.len() == other.len() && order::equals(self.iter(), other.iter()) } } impl TotalEq for ~[T] { #[inline] fn equals(&self, other: &~[T]) -> bool { self.as_slice().equals(&other.as_slice()) } } impl TotalEq for @[T] { #[inline] fn equals(&self, other: &@[T]) -> bool { self.as_slice().equals(&other.as_slice()) } } impl<'self,T:Eq, V: Vector> Equiv for &'self [T] { #[inline] fn equiv(&self, other: &V) -> bool { self.as_slice() == other.as_slice() } } impl<'self,T:Eq, V: Vector> Equiv for ~[T] { #[inline] fn equiv(&self, other: &V) -> bool { self.as_slice() == other.as_slice() } } impl<'self,T:Eq, V: Vector> Equiv for @[T] { #[inline] fn equiv(&self, other: &V) -> bool { self.as_slice() == other.as_slice() } } impl<'self,T:TotalOrd> TotalOrd for &'self [T] { fn cmp(&self, other: & &'self [T]) -> Ordering { order::cmp(self.iter(), other.iter()) } } impl TotalOrd for ~[T] { #[inline] fn cmp(&self, other: &~[T]) -> Ordering { self.as_slice().cmp(&other.as_slice()) } } impl TotalOrd for @[T] { #[inline] fn cmp(&self, other: &@[T]) -> Ordering { self.as_slice().cmp(&other.as_slice()) } } impl<'self, T: Eq + Ord> Ord for &'self [T] { fn lt(&self, other: & &'self [T]) -> bool { order::lt(self.iter(), other.iter()) } #[inline] fn le(&self, other: & &'self [T]) -> bool { order::le(self.iter(), other.iter()) } #[inline] fn ge(&self, other: & &'self [T]) -> bool { order::ge(self.iter(), other.iter()) } #[inline] fn gt(&self, other: & &'self [T]) -> bool { order::gt(self.iter(), other.iter()) } } impl Ord for ~[T] { #[inline] fn lt(&self, other: &~[T]) -> bool { self.as_slice() < other.as_slice() } #[inline] fn le(&self, other: &~[T]) -> bool { self.as_slice() <= other.as_slice() } #[inline] fn ge(&self, other: &~[T]) -> bool { self.as_slice() >= other.as_slice() } #[inline] fn gt(&self, other: &~[T]) -> bool { self.as_slice() > other.as_slice() } } impl Ord for @[T] { #[inline] fn lt(&self, other: &@[T]) -> bool { self.as_slice() < other.as_slice() } #[inline] fn le(&self, other: &@[T]) -> bool { self.as_slice() <= other.as_slice() } #[inline] fn ge(&self, other: &@[T]) -> bool { self.as_slice() >= other.as_slice() } #[inline] fn gt(&self, other: &@[T]) -> bool { self.as_slice() > other.as_slice() } } impl<'self,T:Clone, V: Vector> Add for &'self [T] { #[inline] fn add(&self, rhs: &V) -> ~[T] { let mut res = with_capacity(self.len() + rhs.as_slice().len()); res.push_all(*self); res.push_all(rhs.as_slice()); res } } impl> Add for ~[T] { #[inline] fn add(&self, rhs: &V) -> ~[T] { self.as_slice() + rhs.as_slice() } } } #[cfg(test)] pub mod traits {} /// Any vector that can be represented as a slice. pub trait Vector { /// Work with `self` as a slice. fn as_slice<'a>(&'a self) -> &'a [T]; } impl<'self,T> Vector for &'self [T] { #[inline(always)] fn as_slice<'a>(&'a self) -> &'a [T] { *self } } impl Vector for ~[T] { #[inline(always)] fn as_slice<'a>(&'a self) -> &'a [T] { let v: &'a [T] = *self; v } } impl Vector for @[T] { #[inline(always)] fn as_slice<'a>(&'a self) -> &'a [T] { let v: &'a [T] = *self; v } } impl<'self, T> Container for &'self [T] { /// Returns the length of a vector #[inline] fn len(&self) -> uint { self.as_imm_buf(|_p, len| len) } } impl Container for ~[T] { /// Returns the length of a vector #[inline] fn len(&self) -> uint { self.as_imm_buf(|_p, len| len) } } /// Extension methods for vector slices with copyable elements pub trait CopyableVector { /// Copy `self` into a new owned vector fn to_owned(&self) -> ~[T]; /// Convert `self` into a owned vector, not making a copy if possible. fn into_owned(self) -> ~[T]; } /// Extension methods for vector slices impl<'self, T: Clone> CopyableVector for &'self [T] { /// Returns a copy of `v`. #[inline] fn to_owned(&self) -> ~[T] { let mut result = with_capacity(self.len()); for e in self.iter() { result.push((*e).clone()); } result } #[inline(always)] fn into_owned(self) -> ~[T] { self.to_owned() } } /// Extension methods for owned vectors impl CopyableVector for ~[T] { #[inline] fn to_owned(&self) -> ~[T] { self.clone() } #[inline(always)] fn into_owned(self) -> ~[T] { self } } /// Extension methods for managed vectors impl CopyableVector for @[T] { #[inline] fn to_owned(&self) -> ~[T] { self.as_slice().to_owned() } #[inline(always)] fn into_owned(self) -> ~[T] { self.to_owned() } } #[allow(missing_doc)] pub trait ImmutableVector<'self, T> { fn slice(&self, start: uint, end: uint) -> &'self [T]; fn slice_from(&self, start: uint) -> &'self [T]; fn slice_to(&self, end: uint) -> &'self [T]; fn iter(self) -> VecIterator<'self, T>; fn rev_iter(self) -> RevIterator<'self, T>; fn split_iter(self, pred: &'self fn(&T) -> bool) -> SplitIterator<'self, T>; fn splitn_iter(self, n: uint, pred: &'self fn(&T) -> bool) -> SplitIterator<'self, T>; fn rsplit_iter(self, pred: &'self fn(&T) -> bool) -> RSplitIterator<'self, T>; fn rsplitn_iter(self, n: uint, pred: &'self fn(&T) -> bool) -> RSplitIterator<'self, T>; fn window_iter(self, size: uint) -> WindowIter<'self, T>; fn chunk_iter(self, size: uint) -> ChunkIter<'self, T>; fn head(&self) -> &'self T; fn head_opt(&self) -> Option<&'self T>; fn tail(&self) -> &'self [T]; fn tailn(&self, n: uint) -> &'self [T]; fn init(&self) -> &'self [T]; fn initn(&self, n: uint) -> &'self [T]; fn last(&self) -> &'self T; fn last_opt(&self) -> Option<&'self T>; fn rposition(&self, f: &fn(t: &T) -> bool) -> Option; fn flat_map(&self, f: &fn(t: &T) -> ~[U]) -> ~[U]; unsafe fn unsafe_ref(&self, index: uint) -> *T; fn bsearch(&self, f: &fn(&T) -> Ordering) -> Option; fn map(&self, &fn(t: &T) -> U) -> ~[U]; fn as_imm_buf(&self, f: &fn(*T, uint) -> U) -> U; } /// Extension methods for vectors impl<'self,T> ImmutableVector<'self, T> for &'self [T] { /** * Returns a slice of self between `start` and `end`. * * Fails when `start` or `end` point outside the bounds of self, * or when `start` > `end`. */ #[inline] fn slice(&self, start: uint, end: uint) -> &'self [T] { assert!(start <= end); assert!(end <= self.len()); do self.as_imm_buf |p, _len| { unsafe { cast::transmute(Slice { data: ptr::offset(p, start as int), len: (end - start) * sys::nonzero_size_of::(), }) } } } /** * Returns a slice of self from `start` to the end of the vec. * * Fails when `start` points outside the bounds of self. */ #[inline] fn slice_from(&self, start: uint) -> &'self [T] { self.slice(start, self.len()) } /** * Returns a slice of self from the start of the vec to `end`. * * Fails when `end` points outside the bounds of self. */ #[inline] fn slice_to(&self, end: uint) -> &'self [T] { self.slice(0, end) } #[inline] fn iter(self) -> VecIterator<'self, T> { unsafe { let p = vec::raw::to_ptr(self); if sys::size_of::() == 0 { VecIterator{ptr: p, end: (p as uint + self.len()) as *T, lifetime: cast::transmute(p)} } else { VecIterator{ptr: p, end: p.offset_inbounds(self.len() as int), lifetime: cast::transmute(p)} } } } #[inline] fn rev_iter(self) -> RevIterator<'self, T> { self.iter().invert() } /// Returns an iterator over the subslices of the vector which are /// separated by elements that match `pred`. #[inline] fn split_iter(self, pred: &'self fn(&T) -> bool) -> SplitIterator<'self, T> { self.splitn_iter(uint::max_value, pred) } /// Returns an iterator over the subslices of the vector which are /// separated by elements that match `pred`, limited to splitting /// at most `n` times. #[inline] fn splitn_iter(self, n: uint, pred: &'self fn(&T) -> bool) -> SplitIterator<'self, T> { SplitIterator { v: self, n: n, pred: pred, finished: false } } /// Returns an iterator over the subslices of the vector which are /// separated by elements that match `pred`. This starts at the /// end of the vector and works backwards. #[inline] fn rsplit_iter(self, pred: &'self fn(&T) -> bool) -> RSplitIterator<'self, T> { self.rsplitn_iter(uint::max_value, pred) } /// Returns an iterator over the subslices of the vector which are /// separated by elements that match `pred` limited to splitting /// at most `n` times. This starts at the end of the vector and /// works backwards. #[inline] fn rsplitn_iter(self, n: uint, pred: &'self fn(&T) -> bool) -> RSplitIterator<'self, T> { RSplitIterator { v: self, n: n, pred: pred, finished: false } } /** * Returns an iterator over all contiguous windows of length * `size`. The windows overlap. If the vector is shorter than * `size`, the iterator returns no values. * * # Failure * * Fails if `size` is 0. * * # Example * * Print the adjacent pairs of a vector (i.e. `[1,2]`, `[2,3]`, * `[3,4]`): * * ~~~ {.rust} * let v = &[1,2,3,4]; * for win in v.window_iter() { * printfln!(win); * } * ~~~ * */ fn window_iter(self, size: uint) -> WindowIter<'self, T> { assert!(size != 0); WindowIter { v: self, size: size } } /** * * Returns an iterator over `size` elements of the vector at a * time. The chunks do not overlap. If `size` does not divide the * length of the vector, then the last chunk will not have length * `size`. * * # Failure * * Fails if `size` is 0. * * # Example * * Print the vector two elements at a time (i.e. `[1,2]`, * `[3,4]`, `[5]`): * * ~~~ {.rust} * let v = &[1,2,3,4,5]; * for win in v.chunk_iter() { * printfln!(win); * } * ~~~ * */ fn chunk_iter(self, size: uint) -> ChunkIter<'self, T> { assert!(size != 0); ChunkIter { v: self, size: size } } /// Returns the first element of a vector, failing if the vector is empty. #[inline] fn head(&self) -> &'self T { if self.len() == 0 { fail!("head: empty vector") } &self[0] } /// Returns the first element of a vector, or `None` if it is empty #[inline] fn head_opt(&self) -> Option<&'self T> { if self.len() == 0 { None } else { Some(&self[0]) } } /// Returns all but the first element of a vector #[inline] fn tail(&self) -> &'self [T] { self.slice(1, self.len()) } /// Returns all but the first `n' elements of a vector #[inline] fn tailn(&self, n: uint) -> &'self [T] { self.slice(n, self.len()) } /// Returns all but the last element of a vector #[inline] fn init(&self) -> &'self [T] { self.slice(0, self.len() - 1) } /// Returns all but the last `n' elemnts of a vector #[inline] fn initn(&self, n: uint) -> &'self [T] { self.slice(0, self.len() - n) } /// Returns the last element of a vector, failing if the vector is empty. #[inline] fn last(&self) -> &'self T { if self.len() == 0 { fail!("last: empty vector") } &self[self.len() - 1] } /// Returns the last element of a vector, or `None` if it is empty. #[inline] fn last_opt(&self) -> Option<&'self T> { if self.len() == 0 { None } else { Some(&self[self.len() - 1]) } } /** * Find the last index matching some predicate * * Apply function `f` to each element of `v` in reverse order. When * function `f` returns true then an option containing the index is * returned. If `f` matches no elements then None is returned. */ #[inline] fn rposition(&self, f: &fn(t: &T) -> bool) -> Option { for (i, t) in self.rev_iter().enumerate() { if f(t) { return Some(self.len() - i - 1); } } None } /** * Apply a function to each element of a vector and return a concatenation * of each result vector */ #[inline] fn flat_map(&self, f: &fn(t: &T) -> ~[U]) -> ~[U] { flat_map(*self, f) } /// Returns a pointer to the element at the given index, without doing /// bounds checking. #[inline] unsafe fn unsafe_ref(&self, index: uint) -> *T { self.repr().data.offset(index as int) } /** * Binary search a sorted vector with a comparator function. * * The comparator should implement an order consistent with the sort * order of the underlying vector, returning an order code that indicates * whether its argument is `Less`, `Equal` or `Greater` the desired target. * * Returns the index where the comparator returned `Equal`, or `None` if * not found. */ fn bsearch(&self, f: &fn(&T) -> Ordering) -> Option { let mut base : uint = 0; let mut lim : uint = self.len(); while lim != 0 { let ix = base + (lim >> 1); match f(&self[ix]) { Equal => return Some(ix), Less => { base = ix + 1; lim -= 1; } Greater => () } lim >>= 1; } return None; } /// Deprecated, use iterators where possible /// (`self.iter().map(f)`). Apply a function to each element /// of a vector and return the results. fn map(&self, f: &fn(t: &T) -> U) -> ~[U] { self.iter().map(f).collect() } /** * Work with the buffer of a vector. * * Allows for unsafe manipulation of vector contents, which is useful for * foreign interop. */ #[inline] fn as_imm_buf(&self, /* NB---this CANNOT be const, see below */ f: &fn(*T, uint) -> U) -> U { // NB---Do not change the type of s to `&const [T]`. This is // unsound. The reason is that we are going to create immutable pointers // into `s` and pass them to `f()`, but in fact they are potentially // pointing at *mutable memory*. Use `as_mut_buf` instead! let s = self.repr(); f(s.data, s.len / sys::nonzero_size_of::()) } } #[allow(missing_doc)] pub trait ImmutableEqVector { fn position_elem(&self, t: &T) -> Option; fn rposition_elem(&self, t: &T) -> Option; fn contains(&self, x: &T) -> bool; } impl<'self,T:Eq> ImmutableEqVector for &'self [T] { /// Find the first index containing a matching value #[inline] fn position_elem(&self, x: &T) -> Option { self.iter().position(|y| *x == *y) } /// Find the last index containing a matching value #[inline] fn rposition_elem(&self, t: &T) -> Option { self.rposition(|x| *x == *t) } /// Return true if a vector contains an element with the given value fn contains(&self, x: &T) -> bool { for elt in self.iter() { if *x == *elt { return true; } } false } } #[allow(missing_doc)] pub trait ImmutableTotalOrdVector { fn bsearch_elem(&self, x: &T) -> Option; } impl<'self, T: TotalOrd> ImmutableTotalOrdVector for &'self [T] { /** * Binary search a sorted vector for a given element. * * Returns the index of the element or None if not found. */ fn bsearch_elem(&self, x: &T) -> Option { self.bsearch(|p| p.cmp(x)) } } #[allow(missing_doc)] pub trait ImmutableCopyableVector { fn partitioned(&self, f: &fn(&T) -> bool) -> (~[T], ~[T]); unsafe fn unsafe_get(&self, elem: uint) -> T; } /// Extension methods for vectors impl<'self,T:Clone> ImmutableCopyableVector for &'self [T] { /** * Partitions the vector into those that satisfies the predicate, and * those that do not. */ #[inline] fn partitioned(&self, f: &fn(&T) -> bool) -> (~[T], ~[T]) { let mut lefts = ~[]; let mut rights = ~[]; for elt in self.iter() { if f(elt) { lefts.push((*elt).clone()); } else { rights.push((*elt).clone()); } } (lefts, rights) } /// Returns the element at the given index, without doing bounds checking. #[inline] unsafe fn unsafe_get(&self, index: uint) -> T { (*self.unsafe_ref(index)).clone() } } #[allow(missing_doc)] pub trait OwnedVector { fn move_iter(self) -> MoveIterator; fn move_rev_iter(self) -> MoveRevIterator; fn reserve(&mut self, n: uint); fn reserve_at_least(&mut self, n: uint); fn capacity(&self) -> uint; fn push(&mut self, t: T); unsafe fn push_fast(&mut self, t: T); fn push_all_move(&mut self, rhs: ~[T]); fn pop(&mut self) -> T; fn pop_opt(&mut self) -> Option; fn shift(&mut self) -> T; fn shift_opt(&mut self) -> Option; fn unshift(&mut self, x: T); fn insert(&mut self, i: uint, x:T); fn remove(&mut self, i: uint) -> T; fn swap_remove(&mut self, index: uint) -> T; fn truncate(&mut self, newlen: uint); fn retain(&mut self, f: &fn(t: &T) -> bool); fn partition(self, f: &fn(&T) -> bool) -> (~[T], ~[T]); fn grow_fn(&mut self, n: uint, op: &fn(uint) -> T); } impl OwnedVector for ~[T] { /// Creates a consuming iterator, that is, one that moves each /// value out of the vector (from start to end). The vector cannot /// be used after calling this. /// /// Note that this performs O(n) swaps, and so `move_rev_iter` /// (which just calls `pop` repeatedly) is more efficient. /// /// # Examples /// /// ~~~ {.rust} /// let v = ~[~"a", ~"b"]; /// for s in v.move_iter() { /// // s has type ~str, not &~str /// println(s); /// } /// ~~~ fn move_iter(self) -> MoveIterator { MoveIterator { v: self, idx: 0 } } /// Creates a consuming iterator that moves out of the vector in /// reverse order. Also see `move_iter`, however note that this /// is more efficient. fn move_rev_iter(self) -> MoveRevIterator { MoveRevIterator { v: self } } /** * Reserves capacity for exactly `n` elements in the given vector. * * If the capacity for `self` is already equal to or greater than the requested * capacity, then no action is taken. * * # Arguments * * * n - The number of elements to reserve space for */ fn reserve(&mut self, n: uint) { // Only make the (slow) call into the runtime if we have to if self.capacity() < n { unsafe { let td = get_tydesc::(); if contains_managed::() { let ptr: *mut *mut Box> = cast::transmute(self); ::at_vec::raw::reserve_raw(td, ptr, n); } else { let ptr: *mut *mut Vec<()> = cast::transmute(self); let alloc = n * sys::nonzero_size_of::(); let size = alloc + sys::size_of::>(); if alloc / sys::nonzero_size_of::() != n || size < alloc { fail!("vector size is too large: %u", n); } *ptr = realloc_raw(*ptr as *mut c_void, size) as *mut Vec<()>; (**ptr).alloc = alloc; } } } } /** * Reserves capacity for at least `n` elements in the given vector. * * This function will over-allocate in order to amortize the allocation costs * in scenarios where the caller may need to repeatedly reserve additional * space. * * If the capacity for `self` is already equal to or greater than the requested * capacity, then no action is taken. * * # Arguments * * * n - The number of elements to reserve space for */ fn reserve_at_least(&mut self, n: uint) { self.reserve(uint::next_power_of_two(n)); } /// Returns the number of elements the vector can hold without reallocating. #[inline] fn capacity(&self) -> uint { unsafe { if contains_managed::() { let repr: **Box> = cast::transmute(self); (**repr).data.alloc / sys::nonzero_size_of::() } else { let repr: **Vec<()> = cast::transmute(self); (**repr).alloc / sys::nonzero_size_of::() } } } /// Append an element to a vector #[inline] fn push(&mut self, t: T) { unsafe { if contains_managed::() { let repr: **Box> = cast::transmute(&mut *self); let fill = (**repr).data.fill; if (**repr).data.alloc <= fill { let new_len = self.len() + 1; self.reserve_at_least(new_len); } self.push_fast(t); } else { let repr: **Vec<()> = cast::transmute(&mut *self); let fill = (**repr).fill; if (**repr).alloc <= fill { let new_len = self.len() + 1; self.reserve_at_least(new_len); } self.push_fast(t); } } } // This doesn't bother to make sure we have space. #[inline] // really pretty please unsafe fn push_fast(&mut self, t: T) { if contains_managed::() { let repr: **mut Box> = cast::transmute(self); let fill = (**repr).data.fill; (**repr).data.fill += sys::nonzero_size_of::(); let p = to_unsafe_ptr(&((**repr).data.data)); let p = ptr::offset(p, fill as int) as *mut T; intrinsics::move_val_init(&mut(*p), t); } else { let repr: **mut Vec = cast::transmute(self); let fill = (**repr).fill; (**repr).fill += sys::nonzero_size_of::(); let p = to_unsafe_ptr(&((**repr).data)); let p = ptr::offset(p, fill as int) as *mut T; intrinsics::move_val_init(&mut(*p), t); } } /// Takes ownership of the vector `rhs`, moving all elements into /// the current vector. This does not copy any elements, and it is /// illegal to use the `rhs` vector after calling this method /// (because it is moved here). /// /// # Example /// /// ~~~ {.rust} /// let mut a = ~[~1]; /// a.push_all_move(~[~2, ~3, ~4]); /// assert!(a == ~[~1, ~2, ~3, ~4]); /// ~~~ #[inline] fn push_all_move(&mut self, mut rhs: ~[T]) { let self_len = self.len(); let rhs_len = rhs.len(); let new_len = self_len + rhs_len; self.reserve(new_len); unsafe { // Note: infallible. let self_p = vec::raw::to_mut_ptr(*self); let rhs_p = vec::raw::to_ptr(rhs); ptr::copy_memory(ptr::mut_offset(self_p, self_len as int), rhs_p, rhs_len); raw::set_len(self, new_len); raw::set_len(&mut rhs, 0); } } /// Remove the last element from a vector and return it, or `None` if it is empty fn pop_opt(&mut self) -> Option { match self.len() { 0 => None, ln => { let valptr = ptr::to_mut_unsafe_ptr(&mut self[ln - 1u]); unsafe { raw::set_len(self, ln - 1u); Some(ptr::read_ptr(valptr)) } } } } /// Remove the last element from a vector and return it, failing if it is empty #[inline] fn pop(&mut self) -> T { self.pop_opt().expect("pop: empty vector") } /// Removes the first element from a vector and return it #[inline] fn shift(&mut self) -> T { self.shift_opt().expect("shift: empty vector") } /// Removes the first element from a vector and return it, or `None` if it is empty fn shift_opt(&mut self) -> Option { unsafe { let ln = match self.len() { 0 => return None, 1 => return self.pop_opt(), 2 => { let last = self.pop(); let first = self.pop_opt(); self.push(last); return first; } x => x }; let next_ln = self.len() - 1; // Save the last element. We're going to overwrite its position let work_elt = self.pop(); // We still should have room to work where what last element was assert!(self.capacity() >= ln); // Pretend like we have the original length so we can use // the vector copy_memory to overwrite the hole we just made raw::set_len(self, ln); // Memcopy the head element (the one we want) to the location we just // popped. For the moment it unsafely exists at both the head and last // positions { let first_slice = self.slice(0, 1); let last_slice = self.slice(next_ln, ln); raw::copy_memory(cast::transmute(last_slice), first_slice, 1); } // Memcopy everything to the left one element { let init_slice = self.slice(0, next_ln); let tail_slice = self.slice(1, ln); raw::copy_memory(cast::transmute(init_slice), tail_slice, next_ln); } // Set the new length. Now the vector is back to normal raw::set_len(self, next_ln); // Swap out the element we want from the end let vp = raw::to_mut_ptr(*self); let vp = ptr::mut_offset(vp, (next_ln - 1) as int); Some(ptr::replace_ptr(vp, work_elt)) } } /// Prepend an element to the vector fn unshift(&mut self, x: T) { let v = util::replace(self, ~[x]); self.push_all_move(v); } /// Insert an element at position i within v, shifting all /// elements after position i one position to the right. fn insert(&mut self, i: uint, x:T) { let len = self.len(); assert!(i <= len); self.push(x); let mut j = len; while j > i { self.swap(j, j - 1); j -= 1; } } /// Remove and return the element at position i within v, shifting /// all elements after position i one position to the left. fn remove(&mut self, i: uint) -> T { let len = self.len(); assert!(i < len); let mut j = i; while j < len - 1 { self.swap(j, j + 1); j += 1; } self.pop() } /** * Remove an element from anywhere in the vector and return it, replacing it * with the last element. This does not preserve ordering, but is O(1). * * Fails if index >= length. */ fn swap_remove(&mut self, index: uint) -> T { let ln = self.len(); if index >= ln { fail!("vec::swap_remove - index %u >= length %u", index, ln); } if index < ln - 1 { self.swap(index, ln - 1); } self.pop() } /// Shorten a vector, dropping excess elements. fn truncate(&mut self, newlen: uint) { do self.as_mut_buf |p, oldlen| { assert!(newlen <= oldlen); unsafe { // This loop is optimized out for non-drop types. for i in range(newlen, oldlen) { ptr::read_and_zero_ptr(ptr::mut_offset(p, i as int)); } } } unsafe { raw::set_len(self, newlen); } } /** * Like `filter()`, but in place. Preserves order of `v`. Linear time. */ fn retain(&mut self, f: &fn(t: &T) -> bool) { let len = self.len(); let mut deleted: uint = 0; for i in range(0u, len) { if !f(&self[i]) { deleted += 1; } else if deleted > 0 { self.swap(i - deleted, i); } } if deleted > 0 { self.truncate(len - deleted); } } /** * Partitions the vector into those that satisfies the predicate, and * those that do not. */ #[inline] fn partition(self, f: &fn(&T) -> bool) -> (~[T], ~[T]) { let mut lefts = ~[]; let mut rights = ~[]; for elt in self.move_iter() { if f(&elt) { lefts.push(elt); } else { rights.push(elt); } } (lefts, rights) } /** * Expands a vector in place, initializing the new elements to the result of * a function * * Function `init_op` is called `n` times with the values [0..`n`) * * # Arguments * * * n - The number of elements to add * * init_op - A function to call to retreive each appended element's * value */ fn grow_fn(&mut self, n: uint, op: &fn(uint) -> T) { let new_len = self.len() + n; self.reserve_at_least(new_len); let mut i: uint = 0u; while i < n { self.push(op(i)); i += 1u; } } } impl Mutable for ~[T] { /// Clear the vector, removing all values. fn clear(&mut self) { self.truncate(0) } } #[allow(missing_doc)] pub trait OwnedCopyableVector { fn push_all(&mut self, rhs: &[T]); fn grow(&mut self, n: uint, initval: &T); fn grow_set(&mut self, index: uint, initval: &T, val: T); } impl OwnedCopyableVector for ~[T] { /// Iterates over the slice `rhs`, copies each element, and then appends it to /// the vector provided `v`. The `rhs` vector is traversed in-order. /// /// # Example /// /// ~~~ {.rust} /// let mut a = ~[1]; /// a.push_all([2, 3, 4]); /// assert!(a == ~[1, 2, 3, 4]); /// ~~~ #[inline] fn push_all(&mut self, rhs: &[T]) { let new_len = self.len() + rhs.len(); self.reserve(new_len); for elt in rhs.iter() { self.push((*elt).clone()) } } /** * Expands a vector in place, initializing the new elements to a given value * * # Arguments * * * n - The number of elements to add * * initval - The value for the new elements */ fn grow(&mut self, n: uint, initval: &T) { let new_len = self.len() + n; self.reserve_at_least(new_len); let mut i: uint = 0u; while i < n { self.push((*initval).clone()); i += 1u; } } /** * Sets the value of a vector element at a given index, growing the vector as * needed * * Sets the element at position `index` to `val`. If `index` is past the end * of the vector, expands the vector by replicating `initval` to fill the * intervening space. */ fn grow_set(&mut self, index: uint, initval: &T, val: T) { let l = self.len(); if index >= l { self.grow(index - l + 1u, initval); } self[index] = val; } } #[allow(missing_doc)] pub trait OwnedEqVector { fn dedup(&mut self); } impl OwnedEqVector for ~[T] { /** * Remove consecutive repeated elements from a vector; if the vector is * sorted, this removes all duplicates. */ fn dedup(&mut self) { unsafe { // Although we have a mutable reference to `self`, we cannot make // *arbitrary* changes. There exists the possibility that this // vector is contained with an `@mut` box and hence is still // readable by the outside world during the `Eq` comparisons. // Moreover, those comparisons could fail, so we must ensure // that the vector is in a valid state at all time. // // The way that we handle this is by using swaps; we iterate // over all the elements, swapping as we go so that at the end // the elements we wish to keep are in the front, and those we // wish to reject are at the back. We can then truncate the // vector. This operation is still O(n). // // Example: We start in this state, where `r` represents "next // read" and `w` represents "next_write`. // // r // +---+---+---+---+---+---+ // | 0 | 1 | 1 | 2 | 3 | 3 | // +---+---+---+---+---+---+ // w // // Comparing self[r] against self[w-1], tis is not a duplicate, so // we swap self[r] and self[w] (no effect as r==w) and then increment both // r and w, leaving us with: // // r // +---+---+---+---+---+---+ // | 0 | 1 | 1 | 2 | 3 | 3 | // +---+---+---+---+---+---+ // w // // Comparing self[r] against self[w-1], this value is a duplicate, // so we increment `r` but leave everything else unchanged: // // r // +---+---+---+---+---+---+ // | 0 | 1 | 1 | 2 | 3 | 3 | // +---+---+---+---+---+---+ // w // // Comparing self[r] against self[w-1], this is not a duplicate, // so swap self[r] and self[w] and advance r and w: // // r // +---+---+---+---+---+---+ // | 0 | 1 | 2 | 1 | 3 | 3 | // +---+---+---+---+---+---+ // w // // Not a duplicate, repeat: // // r // +---+---+---+---+---+---+ // | 0 | 1 | 2 | 3 | 1 | 3 | // +---+---+---+---+---+---+ // w // // Duplicate, advance r. End of vec. Truncate to w. let ln = self.len(); if ln < 1 { return; } // Avoid bounds checks by using unsafe pointers. let p = vec::raw::to_mut_ptr(*self); let mut r = 1; let mut w = 1; while r < ln { let p_r = ptr::mut_offset(p, r as int); let p_wm1 = ptr::mut_offset(p, (w - 1) as int); if *p_r != *p_wm1 { if r != w { let p_w = ptr::mut_offset(p_wm1, 1); util::swap(&mut *p_r, &mut *p_w); } w += 1; } r += 1; } self.truncate(w); } } } #[allow(missing_doc)] pub trait MutableVector<'self, T> { fn mut_slice(self, start: uint, end: uint) -> &'self mut [T]; fn mut_slice_from(self, start: uint) -> &'self mut [T]; fn mut_slice_to(self, end: uint) -> &'self mut [T]; fn mut_iter(self) -> VecMutIterator<'self, T>; fn mut_rev_iter(self) -> MutRevIterator<'self, T>; fn swap(self, a: uint, b: uint); /** * Divides one `&mut` into two. The first will * contain all indices from `0..mid` (excluding the index `mid` * itself) and the second will contain all indices from * `mid..len` (excluding the index `len` itself). */ fn mut_split(self, mid: uint) -> (&'self mut [T], &'self mut [T]); fn reverse(self); /** * Consumes `src` and moves as many elements as it can into `self` * from the range [start,end). * * Returns the number of elements copied (the shorter of self.len() * and end - start). * * # Arguments * * * src - A mutable vector of `T` * * start - The index into `src` to start copying from * * end - The index into `str` to stop copying from */ fn move_from(self, src: ~[T], start: uint, end: uint) -> uint; unsafe fn unsafe_mut_ref(self, index: uint) -> *mut T; unsafe fn unsafe_set(self, index: uint, val: T); fn as_mut_buf(self, f: &fn(*mut T, uint) -> U) -> U; } impl<'self,T> MutableVector<'self, T> for &'self mut [T] { /// Return a slice that points into another slice. #[inline] fn mut_slice(self, start: uint, end: uint) -> &'self mut [T] { assert!(start <= end); assert!(end <= self.len()); do self.as_mut_buf |p, _len| { unsafe { cast::transmute(Slice { data: ptr::mut_offset(p, start as int) as *T, len: (end - start) * sys::nonzero_size_of::() }) } } } /** * Returns a slice of self from `start` to the end of the vec. * * Fails when `start` points outside the bounds of self. */ #[inline] fn mut_slice_from(self, start: uint) -> &'self mut [T] { let len = self.len(); self.mut_slice(start, len) } /** * Returns a slice of self from the start of the vec to `end`. * * Fails when `end` points outside the bounds of self. */ #[inline] fn mut_slice_to(self, end: uint) -> &'self mut [T] { self.mut_slice(0, end) } #[inline] fn mut_split(self, mid: uint) -> (&'self mut [T], &'self mut [T]) { unsafe { let len = self.len(); let self2: &'self mut [T] = cast::transmute_copy(&self); (self.mut_slice(0, mid), self2.mut_slice(mid, len)) } } #[inline] fn mut_iter(self) -> VecMutIterator<'self, T> { unsafe { let p = vec::raw::to_mut_ptr(self); if sys::size_of::() == 0 { VecMutIterator{ptr: p, end: (p as uint + self.len()) as *mut T, lifetime: cast::transmute(p)} } else { VecMutIterator{ptr: p, end: p.offset_inbounds(self.len() as int), lifetime: cast::transmute(p)} } } } #[inline] fn mut_rev_iter(self) -> MutRevIterator<'self, T> { self.mut_iter().invert() } /** * Swaps two elements in a vector * * # Arguments * * * a - The index of the first element * * b - The index of the second element */ fn swap(self, a: uint, b: uint) { unsafe { // Can't take two mutable loans from one vector, so instead just cast // them to their raw pointers to do the swap let pa: *mut T = &mut self[a]; let pb: *mut T = &mut self[b]; ptr::swap_ptr(pa, pb); } } /// Reverse the order of elements in a vector, in place fn reverse(self) { let mut i: uint = 0; let ln = self.len(); while i < ln / 2 { self.swap(i, ln - i - 1); i += 1; } } #[inline] fn move_from(self, mut src: ~[T], start: uint, end: uint) -> uint { for (a, b) in self.mut_iter().zip(src.mut_slice(start, end).mut_iter()) { util::swap(a, b); } cmp::min(self.len(), end-start) } #[inline] unsafe fn unsafe_mut_ref(self, index: uint) -> *mut T { ptr::mut_offset(self.repr().data as *mut T, index as int) } #[inline] unsafe fn unsafe_set(self, index: uint, val: T) { *self.unsafe_mut_ref(index) = val; } /// Similar to `as_imm_buf` but passing a `*mut T` #[inline] fn as_mut_buf(self, f: &fn(*mut T, uint) -> U) -> U { let Slice{ data, len } = self.repr(); f(data as *mut T, len / sys::nonzero_size_of::()) } } /// Trait for &[T] where T is Cloneable pub trait MutableCloneableVector { /// Copies as many elements from `src` as it can into `self` /// (the shorter of self.len() and src.len()). Returns the number of elements copied. fn copy_from(self, &[T]) -> uint; } impl<'self, T:Clone> MutableCloneableVector for &'self mut [T] { #[inline] fn copy_from(self, src: &[T]) -> uint { for (a, b) in self.mut_iter().zip(src.iter()) { *a = b.clone(); } cmp::min(self.len(), src.len()) } } /** * Constructs a vector from an unsafe pointer to a buffer * * # Arguments * * * ptr - An unsafe pointer to a buffer of `T` * * elts - The number of elements in the buffer */ // Wrapper for fn in raw: needs to be called by net_tcp::on_tcp_read_cb pub unsafe fn from_buf(ptr: *T, elts: uint) -> ~[T] { raw::from_buf_raw(ptr, elts) } /// Unsafe operations pub mod raw { use cast; use clone::Clone; use option::Some; use ptr; use sys; use unstable::intrinsics; use vec::{with_capacity, ImmutableVector, MutableVector}; use unstable::intrinsics::contains_managed; use unstable::raw::{Box, Vec, Slice}; /** * Sets the length of a vector * * This will explicitly set the size of the vector, without actually * modifing its buffers, so it is up to the caller to ensure that * the vector is actually the specified size. */ #[inline] pub unsafe fn set_len(v: &mut ~[T], new_len: uint) { if contains_managed::() { let repr: **mut Box> = cast::transmute(v); (**repr).data.fill = new_len * sys::nonzero_size_of::(); } else { let repr: **mut Vec<()> = cast::transmute(v); (**repr).fill = new_len * sys::nonzero_size_of::(); } } /** * Returns an unsafe pointer to the vector's buffer * * The caller must ensure that the vector outlives the pointer this * function returns, or else it will end up pointing to garbage. * * Modifying the vector may cause its buffer to be reallocated, which * would also make any pointers to it invalid. */ #[inline] pub fn to_ptr(v: &[T]) -> *T { v.repr().data } /** see `to_ptr()` */ #[inline] pub fn to_mut_ptr(v: &mut [T]) -> *mut T { v.repr().data as *mut T } /** * Form a slice from a pointer and length (as a number of units, * not bytes). */ #[inline] pub unsafe fn buf_as_slice(p: *T, len: uint, f: &fn(v: &[T]) -> U) -> U { f(cast::transmute(Slice { data: p, len: len * sys::nonzero_size_of::() })) } /** * Form a slice from a pointer and length (as a number of units, * not bytes). */ #[inline] pub unsafe fn mut_buf_as_slice(p: *mut T, len: uint, f: &fn(v: &mut [T]) -> U) -> U { f(cast::transmute(Slice { data: p as *T, len: len * sys::nonzero_size_of::() })) } /** * Unchecked vector indexing. */ #[inline] pub unsafe fn get(v: &[T], i: uint) -> T { v.as_imm_buf(|p, _len| (*ptr::offset(p, i as int)).clone()) } /** * Unchecked vector index assignment. Does not drop the * old value and hence is only suitable when the vector * is newly allocated. */ #[inline] pub unsafe fn init_elem(v: &mut [T], i: uint, val: T) { let mut box = Some(val); do v.as_mut_buf |p, _len| { intrinsics::move_val_init(&mut(*ptr::mut_offset(p, i as int)), box.take_unwrap()); } } /** * Constructs a vector from an unsafe pointer to a buffer * * # Arguments * * * ptr - An unsafe pointer to a buffer of `T` * * elts - The number of elements in the buffer */ // Was in raw, but needs to be called by net_tcp::on_tcp_read_cb #[inline] pub unsafe fn from_buf_raw(ptr: *T, elts: uint) -> ~[T] { let mut dst = with_capacity(elts); set_len(&mut dst, elts); dst.as_mut_buf(|p_dst, _len_dst| ptr::copy_memory(p_dst, ptr, elts)); dst } /** * Copies data from one vector to another. * * Copies `count` bytes from `src` to `dst`. The source and destination * may overlap. */ #[inline] pub unsafe fn copy_memory(dst: &mut [T], src: &[T], count: uint) { assert!(dst.len() >= count); assert!(src.len() >= count); do dst.as_mut_buf |p_dst, _len_dst| { do src.as_imm_buf |p_src, _len_src| { ptr::copy_memory(p_dst, p_src, count) } } } } /// Operations on `[u8]` pub mod bytes { use libc; use num; use vec::raw; use vec; use ptr; /// A trait for operations on mutable operations on `[u8]` pub trait MutableByteVector { /// Sets all bytes of the receiver to the given value. fn set_memory(self, value: u8); } impl<'self> MutableByteVector for &'self mut [u8] { #[inline] fn set_memory(self, value: u8) { do self.as_mut_buf |p, len| { unsafe { ptr::set_memory(p, value, len) }; } } } /// Bytewise string comparison pub fn memcmp(a: &~[u8], b: &~[u8]) -> int { let a_len = a.len(); let b_len = b.len(); let n = num::min(a_len, b_len) as libc::size_t; let r = unsafe { libc::memcmp(raw::to_ptr(*a) as *libc::c_void, raw::to_ptr(*b) as *libc::c_void, n) as int }; if r != 0 { r } else { if a_len == b_len { 0 } else if a_len < b_len { -1 } else { 1 } } } /// Bytewise less than or equal pub fn lt(a: &~[u8], b: &~[u8]) -> bool { memcmp(a, b) < 0 } /// Bytewise less than or equal pub fn le(a: &~[u8], b: &~[u8]) -> bool { memcmp(a, b) <= 0 } /// Bytewise equality pub fn eq(a: &~[u8], b: &~[u8]) -> bool { memcmp(a, b) == 0 } /// Bytewise inequality pub fn ne(a: &~[u8], b: &~[u8]) -> bool { memcmp(a, b) != 0 } /// Bytewise greater than or equal pub fn ge(a: &~[u8], b: &~[u8]) -> bool { memcmp(a, b) >= 0 } /// Bytewise greater than pub fn gt(a: &~[u8], b: &~[u8]) -> bool { memcmp(a, b) > 0 } /** * Copies data from one vector to another. * * Copies `count` bytes from `src` to `dst`. The source and destination * may overlap. */ #[inline] pub fn copy_memory(dst: &mut [u8], src: &[u8], count: uint) { // Bound checks are done at vec::raw::copy_memory. unsafe { vec::raw::copy_memory(dst, src, count) } } } impl Clone for ~[A] { #[inline] fn clone(&self) -> ~[A] { self.iter().map(|item| item.clone()).collect() } } // This works because every lifetime is a sub-lifetime of 'static impl<'self, A> Zero for &'self [A] { fn zero() -> &'self [A] { &'self [] } fn is_zero(&self) -> bool { self.is_empty() } } impl Zero for ~[A] { fn zero() -> ~[A] { ~[] } fn is_zero(&self) -> bool { self.len() == 0 } } impl Zero for @[A] { fn zero() -> @[A] { @[] } fn is_zero(&self) -> bool { self.len() == 0 } } macro_rules! iterator { /* FIXME: #4375 Cannot attach documentation/attributes to a macro generated struct. (struct $name:ident -> $ptr:ty, $elem:ty) => { pub struct $name<'self, T> { priv ptr: $ptr, priv end: $ptr, priv lifetime: $elem // FIXME: #5922 } };*/ (impl $name:ident -> $elem:ty) => { impl<'self, T> Iterator<$elem> for $name<'self, T> { #[inline] fn next(&mut self) -> Option<$elem> { // could be implemented with slices, but this avoids bounds checks unsafe { if self.ptr == self.end { None } else { let old = self.ptr; self.ptr = if sys::size_of::() == 0 { // purposefully don't use 'ptr.offset' because for // vectors with 0-size elements this would return the // same pointer. cast::transmute(self.ptr as uint + 1) } else { self.ptr.offset_inbounds(1) }; Some(cast::transmute(old)) } } } #[inline] fn size_hint(&self) -> (uint, Option) { let diff = (self.end as uint) - (self.ptr as uint); let exact = diff / sys::nonzero_size_of::(); (exact, Some(exact)) } } } } macro_rules! double_ended_iterator { (impl $name:ident -> $elem:ty) => { impl<'self, T> DoubleEndedIterator<$elem> for $name<'self, T> { #[inline] fn next_back(&mut self) -> Option<$elem> { // could be implemented with slices, but this avoids bounds checks unsafe { if self.end == self.ptr { None } else { self.end = if sys::size_of::() == 0 { // See above for why 'ptr.offset' isn't used cast::transmute(self.end as uint - 1) } else { self.end.offset_inbounds(-1) }; Some(cast::transmute(self.end)) } } } } } } impl<'self, T> RandomAccessIterator<&'self T> for VecIterator<'self, T> { #[inline] fn indexable(&self) -> uint { let (exact, _) = self.size_hint(); exact } fn idx(&self, index: uint) -> Option<&'self T> { unsafe { if index < self.indexable() { cast::transmute(self.ptr.offset(index as int)) } else { None } } } } //iterator!{struct VecIterator -> *T, &'self T} /// An iterator for iterating over a vector. pub struct VecIterator<'self, T> { priv ptr: *T, priv end: *T, priv lifetime: &'self T // FIXME: #5922 } iterator!{impl VecIterator -> &'self T} double_ended_iterator!{impl VecIterator -> &'self T} pub type RevIterator<'self, T> = Invert>; impl<'self, T> Clone for VecIterator<'self, T> { fn clone(&self) -> VecIterator<'self, T> { *self } } //iterator!{struct VecMutIterator -> *mut T, &'self mut T} /// An iterator for mutating the elements of a vector. pub struct VecMutIterator<'self, T> { priv ptr: *mut T, priv end: *mut T, priv lifetime: &'self mut T // FIXME: #5922 } iterator!{impl VecMutIterator -> &'self mut T} double_ended_iterator!{impl VecMutIterator -> &'self mut T} pub type MutRevIterator<'self, T> = Invert>; /// An iterator that moves out of a vector. #[deriving(Clone)] pub struct MoveIterator { priv v: ~[T], priv idx: uint, } impl Iterator for MoveIterator { fn next(&mut self) -> Option { // this is peculiar, but is required for safety with respect // to dtors. It traverses the first half of the vec, and // removes them by swapping them with the last element (and // popping), which results in the second half in reverse // order, and so these can just be pop'd off. That is, // // [1,2,3,4,5] => 1, [5,2,3,4] => 2, [5,4,3] => 3, [5,4] => 4, // [5] -> 5, [] let l = self.v.len(); if self.idx < l { self.v.swap(self.idx, l - 1); self.idx += 1; } self.v.pop_opt() } } /// An iterator that moves out of a vector in reverse order. #[deriving(Clone)] pub struct MoveRevIterator { priv v: ~[T] } impl Iterator for MoveRevIterator { fn next(&mut self) -> Option { self.v.pop_opt() } } impl FromIterator for ~[A] { fn from_iterator>(iterator: &mut T) -> ~[A] { let (lower, _) = iterator.size_hint(); let mut xs = with_capacity(lower); for x in *iterator { xs.push(x); } xs } } impl Extendable for ~[A] { fn extend>(&mut self, iterator: &mut T) { let (lower, _) = iterator.size_hint(); let len = self.len(); self.reserve(len + lower); for x in *iterator { self.push(x); } } } #[cfg(test)] mod tests { use option::{None, Option, Some}; use sys; use vec::*; use cmp::*; fn square(n: uint) -> uint { n * n } fn square_ref(n: &uint) -> uint { square(*n) } fn is_three(n: &uint) -> bool { *n == 3u } fn is_odd(n: &uint) -> bool { *n % 2u == 1u } fn is_equal(x: &uint, y:&uint) -> bool { *x == *y } fn square_if_odd_r(n: &uint) -> Option { if *n % 2u == 1u { Some(*n * *n) } else { None } } fn square_if_odd_v(n: uint) -> Option { if n % 2u == 1u { Some(n * n) } else { None } } fn add(x: uint, y: &uint) -> uint { x + *y } #[test] fn test_unsafe_ptrs() { unsafe { // Test on-stack copy-from-buf. let a = ~[1, 2, 3]; let mut ptr = raw::to_ptr(a); let b = from_buf(ptr, 3u); assert_eq!(b.len(), 3u); assert_eq!(b[0], 1); assert_eq!(b[1], 2); assert_eq!(b[2], 3); // Test on-heap copy-from-buf. let c = ~[1, 2, 3, 4, 5]; ptr = raw::to_ptr(c); let d = from_buf(ptr, 5u); assert_eq!(d.len(), 5u); assert_eq!(d[0], 1); assert_eq!(d[1], 2); assert_eq!(d[2], 3); assert_eq!(d[3], 4); assert_eq!(d[4], 5); } } #[test] fn test_from_fn() { // Test on-stack from_fn. let mut v = from_fn(3u, square); assert_eq!(v.len(), 3u); assert_eq!(v[0], 0u); assert_eq!(v[1], 1u); assert_eq!(v[2], 4u); // Test on-heap from_fn. v = from_fn(5u, square); assert_eq!(v.len(), 5u); assert_eq!(v[0], 0u); assert_eq!(v[1], 1u); assert_eq!(v[2], 4u); assert_eq!(v[3], 9u); assert_eq!(v[4], 16u); } #[test] fn test_from_elem() { // Test on-stack from_elem. let mut v = from_elem(2u, 10u); assert_eq!(v.len(), 2u); assert_eq!(v[0], 10u); assert_eq!(v[1], 10u); // Test on-heap from_elem. v = from_elem(6u, 20u); assert_eq!(v[0], 20u); assert_eq!(v[1], 20u); assert_eq!(v[2], 20u); assert_eq!(v[3], 20u); assert_eq!(v[4], 20u); assert_eq!(v[5], 20u); } #[test] fn test_is_empty() { let xs: [int, ..0] = []; assert!(xs.is_empty()); assert!(![0].is_empty()); } #[test] fn test_len_divzero() { type Z = [i8, ..0]; let v0 : &[Z] = &[]; let v1 : &[Z] = &[[]]; let v2 : &[Z] = &[[], []]; assert_eq!(sys::size_of::(), 0); assert_eq!(v0.len(), 0); assert_eq!(v1.len(), 1); assert_eq!(v2.len(), 2); } #[test] fn test_head() { let mut a = ~[11]; assert_eq!(a.head(), &11); a = ~[11, 12]; assert_eq!(a.head(), &11); } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_head_empty() { let a: ~[int] = ~[]; a.head(); } #[test] fn test_head_opt() { let mut a = ~[]; assert_eq!(a.head_opt(), None); a = ~[11]; assert_eq!(a.head_opt().unwrap(), &11); a = ~[11, 12]; assert_eq!(a.head_opt().unwrap(), &11); } #[test] fn test_tail() { let mut a = ~[11]; assert_eq!(a.tail(), &[]); a = ~[11, 12]; assert_eq!(a.tail(), &[12]); } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_tail_empty() { let a: ~[int] = ~[]; a.tail(); } #[test] fn test_tailn() { let mut a = ~[11, 12, 13]; assert_eq!(a.tailn(0), &[11, 12, 13]); a = ~[11, 12, 13]; assert_eq!(a.tailn(2), &[13]); } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_tailn_empty() { let a: ~[int] = ~[]; a.tailn(2); } #[test] fn test_init() { let mut a = ~[11]; assert_eq!(a.init(), &[]); a = ~[11, 12]; assert_eq!(a.init(), &[11]); } #[init] #[should_fail] #[ignore(cfg(windows))] fn test_init_empty() { let a: ~[int] = ~[]; a.init(); } #[test] fn test_initn() { let mut a = ~[11, 12, 13]; assert_eq!(a.initn(0), &[11, 12, 13]); a = ~[11, 12, 13]; assert_eq!(a.initn(2), &[11]); } #[init] #[should_fail] #[ignore(cfg(windows))] fn test_initn_empty() { let a: ~[int] = ~[]; a.initn(2); } #[test] fn test_last() { let mut a = ~[11]; assert_eq!(a.last(), &11); a = ~[11, 12]; assert_eq!(a.last(), &12); } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_last_empty() { let a: ~[int] = ~[]; a.last(); } #[test] fn test_last_opt() { let mut a = ~[]; assert_eq!(a.last_opt(), None); a = ~[11]; assert_eq!(a.last_opt().unwrap(), &11); a = ~[11, 12]; assert_eq!(a.last_opt().unwrap(), &12); } #[test] fn test_slice() { // Test fixed length vector. let vec_fixed = [1, 2, 3, 4]; let v_a = vec_fixed.slice(1u, vec_fixed.len()).to_owned(); assert_eq!(v_a.len(), 3u); assert_eq!(v_a[0], 2); assert_eq!(v_a[1], 3); assert_eq!(v_a[2], 4); // Test on stack. let vec_stack = &[1, 2, 3]; let v_b = vec_stack.slice(1u, 3u).to_owned(); assert_eq!(v_b.len(), 2u); assert_eq!(v_b[0], 2); assert_eq!(v_b[1], 3); // Test on managed heap. let vec_managed = @[1, 2, 3, 4, 5]; let v_c = vec_managed.slice(0u, 3u).to_owned(); assert_eq!(v_c.len(), 3u); assert_eq!(v_c[0], 1); assert_eq!(v_c[1], 2); assert_eq!(v_c[2], 3); // Test on exchange heap. let vec_unique = ~[1, 2, 3, 4, 5, 6]; let v_d = vec_unique.slice(1u, 6u).to_owned(); assert_eq!(v_d.len(), 5u); assert_eq!(v_d[0], 2); assert_eq!(v_d[1], 3); assert_eq!(v_d[2], 4); assert_eq!(v_d[3], 5); assert_eq!(v_d[4], 6); } #[test] fn test_slice_from() { let vec = &[1, 2, 3, 4]; assert_eq!(vec.slice_from(0), vec); assert_eq!(vec.slice_from(2), &[3, 4]); assert_eq!(vec.slice_from(4), &[]); } #[test] fn test_slice_to() { let vec = &[1, 2, 3, 4]; assert_eq!(vec.slice_to(4), vec); assert_eq!(vec.slice_to(2), &[1, 2]); assert_eq!(vec.slice_to(0), &[]); } #[test] fn test_pop() { // Test on-heap pop. let mut v = ~[1, 2, 3, 4, 5]; let e = v.pop(); assert_eq!(v.len(), 4u); assert_eq!(v[0], 1); assert_eq!(v[1], 2); assert_eq!(v[2], 3); assert_eq!(v[3], 4); assert_eq!(e, 5); } #[test] fn test_pop_opt() { let mut v = ~[5]; let e = v.pop_opt(); assert_eq!(v.len(), 0); assert_eq!(e, Some(5)); let f = v.pop_opt(); assert_eq!(f, None); let g = v.pop_opt(); assert_eq!(g, None); } fn test_swap_remove() { let mut v = ~[1, 2, 3, 4, 5]; let mut e = v.swap_remove(0); assert_eq!(v.len(), 4); assert_eq!(e, 1); assert_eq!(v[0], 5); e = v.swap_remove(3); assert_eq!(v.len(), 3); assert_eq!(e, 4); assert_eq!(v[0], 5); assert_eq!(v[1], 2); assert_eq!(v[2], 3); } #[test] fn test_swap_remove_noncopyable() { // Tests that we don't accidentally run destructors twice. let mut v = ~[::unstable::sync::Exclusive::new(()), ::unstable::sync::Exclusive::new(()), ::unstable::sync::Exclusive::new(())]; let mut _e = v.swap_remove(0); assert_eq!(v.len(), 2); _e = v.swap_remove(1); assert_eq!(v.len(), 1); _e = v.swap_remove(0); assert_eq!(v.len(), 0); } #[test] fn test_push() { // Test on-stack push(). let mut v = ~[]; v.push(1); assert_eq!(v.len(), 1u); assert_eq!(v[0], 1); // Test on-heap push(). v.push(2); assert_eq!(v.len(), 2u); assert_eq!(v[0], 1); assert_eq!(v[1], 2); } #[test] fn test_grow() { // Test on-stack grow(). let mut v = ~[]; v.grow(2u, &1); assert_eq!(v.len(), 2u); assert_eq!(v[0], 1); assert_eq!(v[1], 1); // Test on-heap grow(). v.grow(3u, &2); assert_eq!(v.len(), 5u); assert_eq!(v[0], 1); assert_eq!(v[1], 1); assert_eq!(v[2], 2); assert_eq!(v[3], 2); assert_eq!(v[4], 2); } #[test] fn test_grow_fn() { let mut v = ~[]; v.grow_fn(3u, square); assert_eq!(v.len(), 3u); assert_eq!(v[0], 0u); assert_eq!(v[1], 1u); assert_eq!(v[2], 4u); } #[test] fn test_grow_set() { let mut v = ~[1, 2, 3]; v.grow_set(4u, &4, 5); assert_eq!(v.len(), 5u); assert_eq!(v[0], 1); assert_eq!(v[1], 2); assert_eq!(v[2], 3); assert_eq!(v[3], 4); assert_eq!(v[4], 5); } #[test] fn test_truncate() { let mut v = ~[@6,@5,@4]; v.truncate(1); assert_eq!(v.len(), 1); assert_eq!(*(v[0]), 6); // If the unsafe block didn't drop things properly, we blow up here. } #[test] fn test_clear() { let mut v = ~[@6,@5,@4]; v.clear(); assert_eq!(v.len(), 0); // If the unsafe block didn't drop things properly, we blow up here. } #[test] fn test_dedup() { fn case(a: ~[uint], b: ~[uint]) { let mut v = a; v.dedup(); assert_eq!(v, b); } case(~[], ~[]); case(~[1], ~[1]); case(~[1,1], ~[1]); case(~[1,2,3], ~[1,2,3]); case(~[1,1,2,3], ~[1,2,3]); case(~[1,2,2,3], ~[1,2,3]); case(~[1,2,3,3], ~[1,2,3]); case(~[1,1,2,2,2,3,3], ~[1,2,3]); } #[test] fn test_dedup_unique() { let mut v0 = ~[~1, ~1, ~2, ~3]; v0.dedup(); let mut v1 = ~[~1, ~2, ~2, ~3]; v1.dedup(); let mut v2 = ~[~1, ~2, ~3, ~3]; v2.dedup(); /* * If the ~pointers were leaked or otherwise misused, valgrind and/or * rustrt should raise errors. */ } #[test] fn test_dedup_shared() { let mut v0 = ~[@1, @1, @2, @3]; v0.dedup(); let mut v1 = ~[@1, @2, @2, @3]; v1.dedup(); let mut v2 = ~[@1, @2, @3, @3]; v2.dedup(); /* * If the @pointers were leaked or otherwise misused, valgrind and/or * rustrt should raise errors. */ } #[test] fn test_map() { // Test on-stack map. let v = &[1u, 2u, 3u]; let mut w = v.map(square_ref); assert_eq!(w.len(), 3u); assert_eq!(w[0], 1u); assert_eq!(w[1], 4u); assert_eq!(w[2], 9u); // Test on-heap map. let v = ~[1u, 2u, 3u, 4u, 5u]; w = v.map(square_ref); assert_eq!(w.len(), 5u); assert_eq!(w[0], 1u); assert_eq!(w[1], 4u); assert_eq!(w[2], 9u); assert_eq!(w[3], 16u); assert_eq!(w[4], 25u); } #[test] fn test_retain() { let mut v = ~[1, 2, 3, 4, 5]; v.retain(is_odd); assert_eq!(v, ~[1, 3, 5]); } #[test] fn test_each_permutation() { let mut results: ~[~[int]]; results = ~[]; do each_permutation([]) |v| { results.push(v.to_owned()); true }; assert_eq!(results, ~[~[]]); results = ~[]; do each_permutation([7]) |v| { results.push(v.to_owned()); true }; assert_eq!(results, ~[~[7]]); results = ~[]; do each_permutation([1,1]) |v| { results.push(v.to_owned()); true }; assert_eq!(results, ~[~[1,1],~[1,1]]); results = ~[]; do each_permutation([5,2,0]) |v| { results.push(v.to_owned()); true }; assert!(results == ~[~[5,2,0],~[5,0,2],~[2,5,0],~[2,0,5],~[0,5,2],~[0,2,5]]); } #[test] fn test_zip_unzip() { let z1 = ~[(1, 4), (2, 5), (3, 6)]; let (left, right) = unzip(z1); assert_eq!((1, 4), (left[0], right[0])); assert_eq!((2, 5), (left[1], right[1])); assert_eq!((3, 6), (left[2], right[2])); } #[test] fn test_position_elem() { assert!([].position_elem(&1).is_none()); let v1 = ~[1, 2, 3, 3, 2, 5]; assert_eq!(v1.position_elem(&1), Some(0u)); assert_eq!(v1.position_elem(&2), Some(1u)); assert_eq!(v1.position_elem(&5), Some(5u)); assert!(v1.position_elem(&4).is_none()); } #[test] fn test_rposition() { fn f(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'b' } fn g(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'd' } let v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')]; assert_eq!(v.rposition(f), Some(3u)); assert!(v.rposition(g).is_none()); } #[test] fn test_bsearch_elem() { assert_eq!([1,2,3,4,5].bsearch_elem(&5), Some(4)); assert_eq!([1,2,3,4,5].bsearch_elem(&4), Some(3)); assert_eq!([1,2,3,4,5].bsearch_elem(&3), Some(2)); assert_eq!([1,2,3,4,5].bsearch_elem(&2), Some(1)); assert_eq!([1,2,3,4,5].bsearch_elem(&1), Some(0)); assert_eq!([2,4,6,8,10].bsearch_elem(&1), None); assert_eq!([2,4,6,8,10].bsearch_elem(&5), None); assert_eq!([2,4,6,8,10].bsearch_elem(&4), Some(1)); assert_eq!([2,4,6,8,10].bsearch_elem(&10), Some(4)); assert_eq!([2,4,6,8].bsearch_elem(&1), None); assert_eq!([2,4,6,8].bsearch_elem(&5), None); assert_eq!([2,4,6,8].bsearch_elem(&4), Some(1)); assert_eq!([2,4,6,8].bsearch_elem(&8), Some(3)); assert_eq!([2,4,6].bsearch_elem(&1), None); assert_eq!([2,4,6].bsearch_elem(&5), None); assert_eq!([2,4,6].bsearch_elem(&4), Some(1)); assert_eq!([2,4,6].bsearch_elem(&6), Some(2)); assert_eq!([2,4].bsearch_elem(&1), None); assert_eq!([2,4].bsearch_elem(&5), None); assert_eq!([2,4].bsearch_elem(&2), Some(0)); assert_eq!([2,4].bsearch_elem(&4), Some(1)); assert_eq!([2].bsearch_elem(&1), None); assert_eq!([2].bsearch_elem(&5), None); assert_eq!([2].bsearch_elem(&2), Some(0)); assert_eq!([].bsearch_elem(&1), None); assert_eq!([].bsearch_elem(&5), None); assert!([1,1,1,1,1].bsearch_elem(&1) != None); assert!([1,1,1,1,2].bsearch_elem(&1) != None); assert!([1,1,1,2,2].bsearch_elem(&1) != None); assert!([1,1,2,2,2].bsearch_elem(&1) != None); assert_eq!([1,2,2,2,2].bsearch_elem(&1), Some(0)); assert_eq!([1,2,3,4,5].bsearch_elem(&6), None); assert_eq!([1,2,3,4,5].bsearch_elem(&0), None); } #[test] fn test_reverse() { let mut v: ~[int] = ~[10, 20]; assert_eq!(v[0], 10); assert_eq!(v[1], 20); v.reverse(); assert_eq!(v[0], 20); assert_eq!(v[1], 10); let mut v3: ~[int] = ~[]; v3.reverse(); assert!(v3.is_empty()); } #[test] fn test_partition() { assert_eq!((~[]).partition(|x: &int| *x < 3), (~[], ~[])); assert_eq!((~[1, 2, 3]).partition(|x: &int| *x < 4), (~[1, 2, 3], ~[])); assert_eq!((~[1, 2, 3]).partition(|x: &int| *x < 2), (~[1], ~[2, 3])); assert_eq!((~[1, 2, 3]).partition(|x: &int| *x < 0), (~[], ~[1, 2, 3])); } #[test] fn test_partitioned() { assert_eq!(([]).partitioned(|x: &int| *x < 3), (~[], ~[])) assert_eq!(([1, 2, 3]).partitioned(|x: &int| *x < 4), (~[1, 2, 3], ~[])); assert_eq!(([1, 2, 3]).partitioned(|x: &int| *x < 2), (~[1], ~[2, 3])); assert_eq!(([1, 2, 3]).partitioned(|x: &int| *x < 0), (~[], ~[1, 2, 3])); } #[test] fn test_concat() { assert_eq!(concat([~[1], ~[2,3]]), ~[1, 2, 3]); assert_eq!([~[1], ~[2,3]].concat_vec(), ~[1, 2, 3]); assert_eq!(concat_slices([&[1], &[2,3]]), ~[1, 2, 3]); assert_eq!([&[1], &[2,3]].concat_vec(), ~[1, 2, 3]); } #[test] fn test_connect() { assert_eq!(connect([], &0), ~[]); assert_eq!(connect([~[1], ~[2, 3]], &0), ~[1, 0, 2, 3]); assert_eq!(connect([~[1], ~[2], ~[3]], &0), ~[1, 0, 2, 0, 3]); assert_eq!([~[1], ~[2, 3]].connect_vec(&0), ~[1, 0, 2, 3]); assert_eq!([~[1], ~[2], ~[3]].connect_vec(&0), ~[1, 0, 2, 0, 3]); assert_eq!(connect_slices([], &0), ~[]); assert_eq!(connect_slices([&[1], &[2, 3]], &0), ~[1, 0, 2, 3]); assert_eq!(connect_slices([&[1], &[2], &[3]], &0), ~[1, 0, 2, 0, 3]); assert_eq!([&[1], &[2, 3]].connect_vec(&0), ~[1, 0, 2, 3]); assert_eq!([&[1], &[2], &[3]].connect_vec(&0), ~[1, 0, 2, 0, 3]); } #[test] fn test_shift() { let mut x = ~[1, 2, 3]; assert_eq!(x.shift(), 1); assert_eq!(&x, &~[2, 3]); assert_eq!(x.shift(), 2); assert_eq!(x.shift(), 3); assert_eq!(x.len(), 0); } #[test] fn test_shift_opt() { let mut x = ~[1, 2, 3]; assert_eq!(x.shift_opt(), Some(1)); assert_eq!(&x, &~[2, 3]); assert_eq!(x.shift_opt(), Some(2)); assert_eq!(x.shift_opt(), Some(3)); assert_eq!(x.shift_opt(), None); assert_eq!(x.len(), 0); } #[test] fn test_unshift() { let mut x = ~[1, 2, 3]; x.unshift(0); assert_eq!(x, ~[0, 1, 2, 3]); } #[test] fn test_insert() { let mut a = ~[1, 2, 4]; a.insert(2, 3); assert_eq!(a, ~[1, 2, 3, 4]); let mut a = ~[1, 2, 3]; a.insert(0, 0); assert_eq!(a, ~[0, 1, 2, 3]); let mut a = ~[1, 2, 3]; a.insert(3, 4); assert_eq!(a, ~[1, 2, 3, 4]); let mut a = ~[]; a.insert(0, 1); assert_eq!(a, ~[1]); } #[test] #[ignore(cfg(windows))] #[should_fail] fn test_insert_oob() { let mut a = ~[1, 2, 3]; a.insert(4, 5); } #[test] fn test_remove() { let mut a = ~[1, 2, 3, 4]; a.remove(2); assert_eq!(a, ~[1, 2, 4]); let mut a = ~[1, 2, 3]; a.remove(0); assert_eq!(a, ~[2, 3]); let mut a = ~[1]; a.remove(0); assert_eq!(a, ~[]); } #[test] #[ignore(cfg(windows))] #[should_fail] fn test_remove_oob() { let mut a = ~[1, 2, 3]; a.remove(3); } #[test] fn test_capacity() { let mut v = ~[0u64]; v.reserve(10u); assert_eq!(v.capacity(), 10u); let mut v = ~[0u32]; v.reserve(10u); assert_eq!(v.capacity(), 10u); } #[test] fn test_slice_2() { let v = ~[1, 2, 3, 4, 5]; let v = v.slice(1u, 3u); assert_eq!(v.len(), 2u); assert_eq!(v[0], 2); assert_eq!(v[1], 3); } #[test] #[ignore(windows)] #[should_fail] fn test_from_fn_fail() { do from_fn(100) |v| { if v == 50 { fail!() } (~0, @0) }; } #[test] #[ignore(windows)] #[should_fail] fn test_build_fail() { do build |push| { push((~0, @0)); push((~0, @0)); push((~0, @0)); push((~0, @0)); fail!(); }; } #[test] #[ignore(windows)] #[should_fail] fn test_grow_fn_fail() { let mut v = ~[]; do v.grow_fn(100) |i| { if i == 50 { fail!() } (~0, @0) } } #[test] #[ignore(windows)] #[should_fail] fn test_map_fail() { let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; let mut i = 0; do v.map |_elt| { if i == 2 { fail!() } i += 0; ~[(~0, @0)] }; } #[test] #[ignore(windows)] #[should_fail] fn test_flat_map_fail() { let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; let mut i = 0; do flat_map(v) |_elt| { if i == 2 { fail!() } i += 0; ~[(~0, @0)] }; } #[test] #[ignore(windows)] #[should_fail] fn test_rposition_fail() { let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; let mut i = 0; do v.rposition |_elt| { if i == 2 { fail!() } i += 0; false }; } #[test] #[ignore(windows)] #[should_fail] fn test_permute_fail() { let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; let mut i = 0; do each_permutation(v) |_elt| { if i == 2 { fail!() } i += 0; true }; } #[test] #[ignore(windows)] #[should_fail] fn test_as_imm_buf_fail() { let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; do v.as_imm_buf |_buf, _i| { fail!() } } #[test] #[ignore(cfg(windows))] #[should_fail] fn test_as_mut_buf_fail() { let mut v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)]; do v.as_mut_buf |_buf, _i| { fail!() } } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_copy_memory_oob() { unsafe { let mut a = [1, 2, 3, 4]; let b = [1, 2, 3, 4, 5]; raw::copy_memory(a, b, 5); } } #[test] fn test_total_ord() { [1, 2, 3, 4].cmp(& &[1, 2, 3]) == Greater; [1, 2, 3].cmp(& &[1, 2, 3, 4]) == Less; [1, 2, 3, 4].cmp(& &[1, 2, 3, 4]) == Equal; [1, 2, 3, 4, 5, 5, 5, 5].cmp(& &[1, 2, 3, 4, 5, 6]) == Less; [2, 2].cmp(& &[1, 2, 3, 4]) == Greater; } #[test] fn test_iterator() { use iterator::*; let xs = [1, 2, 5, 10, 11]; let mut it = xs.iter(); assert_eq!(it.size_hint(), (5, Some(5))); assert_eq!(it.next().unwrap(), &1); assert_eq!(it.size_hint(), (4, Some(4))); assert_eq!(it.next().unwrap(), &2); assert_eq!(it.size_hint(), (3, Some(3))); assert_eq!(it.next().unwrap(), &5); assert_eq!(it.size_hint(), (2, Some(2))); assert_eq!(it.next().unwrap(), &10); assert_eq!(it.size_hint(), (1, Some(1))); assert_eq!(it.next().unwrap(), &11); assert_eq!(it.size_hint(), (0, Some(0))); assert!(it.next().is_none()); } #[test] fn test_random_access_iterator() { use iterator::*; let xs = [1, 2, 5, 10, 11]; let mut it = xs.iter(); assert_eq!(it.indexable(), 5); assert_eq!(it.idx(0).unwrap(), &1); assert_eq!(it.idx(2).unwrap(), &5); assert_eq!(it.idx(4).unwrap(), &11); assert!(it.idx(5).is_none()); assert_eq!(it.next().unwrap(), &1); assert_eq!(it.indexable(), 4); assert_eq!(it.idx(0).unwrap(), &2); assert_eq!(it.idx(3).unwrap(), &11); assert!(it.idx(4).is_none()); assert_eq!(it.next().unwrap(), &2); assert_eq!(it.indexable(), 3); assert_eq!(it.idx(1).unwrap(), &10); assert!(it.idx(3).is_none()); assert_eq!(it.next().unwrap(), &5); assert_eq!(it.indexable(), 2); assert_eq!(it.idx(1).unwrap(), &11); assert_eq!(it.next().unwrap(), &10); assert_eq!(it.indexable(), 1); assert_eq!(it.idx(0).unwrap(), &11); assert!(it.idx(1).is_none()); assert_eq!(it.next().unwrap(), &11); assert_eq!(it.indexable(), 0); assert!(it.idx(0).is_none()); assert!(it.next().is_none()); } #[test] fn test_iter_size_hints() { use iterator::*; let mut xs = [1, 2, 5, 10, 11]; assert_eq!(xs.iter().size_hint(), (5, Some(5))); assert_eq!(xs.rev_iter().size_hint(), (5, Some(5))); assert_eq!(xs.mut_iter().size_hint(), (5, Some(5))); assert_eq!(xs.mut_rev_iter().size_hint(), (5, Some(5))); } #[test] fn test_iter_clone() { let xs = [1, 2, 5]; let mut it = xs.iter(); it.next(); let mut jt = it.clone(); assert_eq!(it.next(), jt.next()); assert_eq!(it.next(), jt.next()); assert_eq!(it.next(), jt.next()); } #[test] fn test_mut_iterator() { use iterator::*; let mut xs = [1, 2, 3, 4, 5]; for x in xs.mut_iter() { *x += 1; } assert_eq!(xs, [2, 3, 4, 5, 6]) } #[test] fn test_rev_iterator() { use iterator::*; let xs = [1, 2, 5, 10, 11]; let ys = [11, 10, 5, 2, 1]; let mut i = 0; for &x in xs.rev_iter() { assert_eq!(x, ys[i]); i += 1; } assert_eq!(i, 5); } #[test] fn test_mut_rev_iterator() { use iterator::*; let mut xs = [1u, 2, 3, 4, 5]; for (i,x) in xs.mut_rev_iter().enumerate() { *x += i; } assert_eq!(xs, [5, 5, 5, 5, 5]) } #[test] fn test_move_iterator() { use iterator::*; let xs = ~[1u,2,3,4,5]; assert_eq!(xs.move_iter().fold(0, |a: uint, b: uint| 10*a + b), 12345); } #[test] fn test_move_rev_iterator() { use iterator::*; let xs = ~[1u,2,3,4,5]; assert_eq!(xs.move_rev_iter().fold(0, |a: uint, b: uint| 10*a + b), 54321); } #[test] fn test_split_iterator() { let xs = &[1i,2,3,4,5]; assert_eq!(xs.split_iter(|x| *x % 2 == 0).collect::<~[&[int]]>(), ~[&[1], &[3], &[5]]); assert_eq!(xs.split_iter(|x| *x == 1).collect::<~[&[int]]>(), ~[&[], &[2,3,4,5]]); assert_eq!(xs.split_iter(|x| *x == 5).collect::<~[&[int]]>(), ~[&[1,2,3,4], &[]]); assert_eq!(xs.split_iter(|x| *x == 10).collect::<~[&[int]]>(), ~[&[1,2,3,4,5]]); assert_eq!(xs.split_iter(|_| true).collect::<~[&[int]]>(), ~[&[], &[], &[], &[], &[], &[]]); let xs: &[int] = &[]; assert_eq!(xs.split_iter(|x| *x == 5).collect::<~[&[int]]>(), ~[&[]]); } #[test] fn test_splitn_iterator() { let xs = &[1i,2,3,4,5]; assert_eq!(xs.splitn_iter(0, |x| *x % 2 == 0).collect::<~[&[int]]>(), ~[&[1,2,3,4,5]]); assert_eq!(xs.splitn_iter(1, |x| *x % 2 == 0).collect::<~[&[int]]>(), ~[&[1], &[3,4,5]]); assert_eq!(xs.splitn_iter(3, |_| true).collect::<~[&[int]]>(), ~[&[], &[], &[], &[4,5]]); let xs: &[int] = &[]; assert_eq!(xs.splitn_iter(1, |x| *x == 5).collect::<~[&[int]]>(), ~[&[]]); } #[test] fn test_rsplit_iterator() { let xs = &[1i,2,3,4,5]; assert_eq!(xs.rsplit_iter(|x| *x % 2 == 0).collect::<~[&[int]]>(), ~[&[5], &[3], &[1]]); assert_eq!(xs.rsplit_iter(|x| *x == 1).collect::<~[&[int]]>(), ~[&[2,3,4,5], &[]]); assert_eq!(xs.rsplit_iter(|x| *x == 5).collect::<~[&[int]]>(), ~[&[], &[1,2,3,4]]); assert_eq!(xs.rsplit_iter(|x| *x == 10).collect::<~[&[int]]>(), ~[&[1,2,3,4,5]]); let xs: &[int] = &[]; assert_eq!(xs.rsplit_iter(|x| *x == 5).collect::<~[&[int]]>(), ~[&[]]); } #[test] fn test_rsplitn_iterator() { let xs = &[1,2,3,4,5]; assert_eq!(xs.rsplitn_iter(0, |x| *x % 2 == 0).collect::<~[&[int]]>(), ~[&[1,2,3,4,5]]); assert_eq!(xs.rsplitn_iter(1, |x| *x % 2 == 0).collect::<~[&[int]]>(), ~[&[5], &[1,2,3]]); assert_eq!(xs.rsplitn_iter(3, |_| true).collect::<~[&[int]]>(), ~[&[], &[], &[], &[1,2]]); let xs: &[int] = &[]; assert_eq!(xs.rsplitn_iter(1, |x| *x == 5).collect::<~[&[int]]>(), ~[&[]]); } #[test] fn test_window_iterator() { let v = &[1i,2,3,4]; assert_eq!(v.window_iter(2).collect::<~[&[int]]>(), ~[&[1,2], &[2,3], &[3,4]]); assert_eq!(v.window_iter(3).collect::<~[&[int]]>(), ~[&[1i,2,3], &[2,3,4]]); assert!(v.window_iter(6).next().is_none()); } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_window_iterator_0() { let v = &[1i,2,3,4]; let _it = v.window_iter(0); } #[test] fn test_chunk_iterator() { let v = &[1i,2,3,4,5]; assert_eq!(v.chunk_iter(2).collect::<~[&[int]]>(), ~[&[1i,2], &[3,4], &[5]]); assert_eq!(v.chunk_iter(3).collect::<~[&[int]]>(), ~[&[1i,2,3], &[4,5]]); assert_eq!(v.chunk_iter(6).collect::<~[&[int]]>(), ~[&[1i,2,3,4,5]]); assert_eq!(v.chunk_iter(2).invert().collect::<~[&[int]]>(), ~[&[5i], &[3,4], &[1,2]]); let it = v.chunk_iter(2); assert_eq!(it.indexable(), 3); assert_eq!(it.idx(0).unwrap(), &[1,2]); assert_eq!(it.idx(1).unwrap(), &[3,4]); assert_eq!(it.idx(2).unwrap(), &[5]); assert_eq!(it.idx(3), None); } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_chunk_iterator_0() { let v = &[1i,2,3,4]; let _it = v.chunk_iter(0); } #[test] fn test_move_from() { let mut a = [1,2,3,4,5]; let b = ~[6,7,8]; assert_eq!(a.move_from(b, 0, 3), 3); assert_eq!(a, [6,7,8,4,5]); let mut a = [7,2,8,1]; let b = ~[3,1,4,1,5,9]; assert_eq!(a.move_from(b, 0, 6), 4); assert_eq!(a, [3,1,4,1]); let mut a = [1,2,3,4]; let b = ~[5,6,7,8,9,0]; assert_eq!(a.move_from(b, 2, 3), 1); assert_eq!(a, [7,2,3,4]); let mut a = [1,2,3,4,5]; let b = ~[5,6,7,8,9,0]; assert_eq!(a.mut_slice(2,4).move_from(b,1,6), 2); assert_eq!(a, [1,2,6,7,5]); } #[test] fn test_copy_from() { let mut a = [1,2,3,4,5]; let b = [6,7,8]; assert_eq!(a.copy_from(b), 3); assert_eq!(a, [6,7,8,4,5]); let mut c = [7,2,8,1]; let d = [3,1,4,1,5,9]; assert_eq!(c.copy_from(d), 4); assert_eq!(c, [3,1,4,1]); } #[test] fn test_reverse_part() { let mut values = [1,2,3,4,5]; values.mut_slice(1, 4).reverse(); assert_eq!(values, [1,4,3,2,5]); } #[test] fn test_permutations0() { let values = []; let mut v : ~[~[int]] = ~[]; do each_permutation(values) |p| { v.push(p.to_owned()); true }; assert_eq!(v, ~[~[]]); } #[test] fn test_permutations1() { let values = [1]; let mut v : ~[~[int]] = ~[]; do each_permutation(values) |p| { v.push(p.to_owned()); true }; assert_eq!(v, ~[~[1]]); } #[test] fn test_permutations2() { let values = [1,2]; let mut v : ~[~[int]] = ~[]; do each_permutation(values) |p| { v.push(p.to_owned()); true }; assert_eq!(v, ~[~[1,2],~[2,1]]); } #[test] fn test_permutations3() { let values = [1,2,3]; let mut v : ~[~[int]] = ~[]; do each_permutation(values) |p| { v.push(p.to_owned()); true }; assert_eq!(v, ~[~[1,2,3],~[1,3,2],~[2,1,3],~[2,3,1],~[3,1,2],~[3,2,1]]); } #[test] fn test_vec_zero() { use num::Zero; macro_rules! t ( ($ty:ty) => {{ let v: $ty = Zero::zero(); assert!(v.is_empty()); assert!(v.is_zero()); }} ); t!(&[int]); t!(@[int]); t!(~[int]); } #[test] fn test_bytes_set_memory() { use vec::bytes::MutableByteVector; let mut values = [1u8,2,3,4,5]; values.mut_slice(0,5).set_memory(0xAB); assert_eq!(values, [0xAB, 0xAB, 0xAB, 0xAB, 0xAB]); values.mut_slice(2,4).set_memory(0xFF); assert_eq!(values, [0xAB, 0xAB, 0xFF, 0xFF, 0xAB]); } #[test] #[should_fail] fn test_overflow_does_not_cause_segfault() { let mut v = ~[]; v.reserve(-1); v.push(1); v.push(2); } #[test] fn test_mut_split() { let mut values = [1u8,2,3,4,5]; { let (left, right) = values.mut_split(2); assert_eq!(left.slice(0, left.len()), [1, 2]); for p in left.mut_iter() { *p += 1; } assert_eq!(right.slice(0, right.len()), [3, 4, 5]); for p in right.mut_iter() { *p += 2; } } assert_eq!(values, [2, 3, 5, 6, 7]); } #[deriving(Clone, Eq)] struct Foo; #[test] fn test_iter_zero_sized() { let mut v = ~[Foo, Foo, Foo]; assert_eq!(v.len(), 3); let mut cnt = 0; for f in v.iter() { assert!(*f == Foo); cnt += 1; } assert_eq!(cnt, 3); for f in v.slice(1, 3).iter() { assert!(*f == Foo); cnt += 1; } assert_eq!(cnt, 5); for f in v.mut_iter() { assert!(*f == Foo); cnt += 1; } assert_eq!(cnt, 8); for f in v.move_iter() { assert!(f == Foo); cnt += 1; } assert_eq!(cnt, 11); let xs = ~[Foo, Foo, Foo]; assert_eq!(fmt!("%?", xs.slice(0, 2).to_owned()), ~"~[{}, {}]"); let xs: [Foo, ..3] = [Foo, Foo, Foo]; assert_eq!(fmt!("%?", xs.slice(0, 2).to_owned()), ~"~[{}, {}]"); cnt = 0; for f in xs.iter() { assert!(*f == Foo); cnt += 1; } assert!(cnt == 3); } } #[cfg(test)] mod bench { use extra::test::BenchHarness; use vec; use option::*; #[bench] fn iterator(bh: &mut BenchHarness) { // peculiar numbers to stop LLVM from optimising the summation // out. let v = vec::from_fn(100, |i| i ^ (i << 1) ^ (i >> 1)); do bh.iter { let mut sum = 0; for x in v.iter() { sum += *x; } // sum == 11806, to stop dead code elimination. if sum == 0 {fail!()} } } #[bench] fn mut_iterator(bh: &mut BenchHarness) { let mut v = vec::from_elem(100, 0); do bh.iter { let mut i = 0; for x in v.mut_iter() { *x = i; i += 1; } } } #[bench] fn add(b: &mut BenchHarness) { let xs: &[int] = [5, ..10]; let ys: &[int] = [5, ..10]; do b.iter() { xs + ys; } } }