use rustc::lint::*; use rustc::middle::const_eval::ConstVal::{Int, Uint}; use rustc::middle::const_eval::EvalHint::ExprTypeChecked; use rustc::middle::const_eval::{eval_const_expr_partial, ConstVal}; use rustc::middle::ty; use rustc_front::hir::*; use std::cmp::Ordering; use syntax::ast::Lit_::LitBool; use syntax::codemap::Span; use utils::{snippet, span_lint, span_note_and_lint, span_help_and_lint, in_external_macro, expr_block}; /// **What it does:** This lint checks for matches with a single arm where an `if let` will usually suffice. It is `Warn` by default. /// /// **Why is this bad?** Just readability – `if let` nests less than a `match`. /// /// **Known problems:** None /// /// **Example:** /// ``` /// match x { /// Some(ref foo) -> bar(foo), /// _ => () /// } /// ``` declare_lint!(pub SINGLE_MATCH, Warn, "a match statement with a single nontrivial arm (i.e, where the other arm \ is `_ => {}`) is used; recommends `if let` instead"); /// **What it does:** This lint checks for matches where all arms match a reference, suggesting to remove the reference and deref the matched expression instead. It is `Warn` by default. /// /// **Why is this bad?** It just makes the code less readable. That reference destructuring adds nothing to the code. /// /// **Known problems:** None /// /// **Example:** /// /// ``` /// match x { /// &A(ref y) => foo(y), /// &B => bar(), /// _ => frob(&x), /// } /// ``` declare_lint!(pub MATCH_REF_PATS, Warn, "a match has all arms prefixed with `&`; the match expression can be \ dereferenced instead"); /// **What it does:** This lint checks for matches where match expression is a `bool`. It suggests to replace the expression with an `if...else` block. It is `Warn` by default. /// /// **Why is this bad?** It makes the code less readable. /// /// **Known problems:** None /// /// **Example:** /// /// ``` /// let condition: bool = true; /// match condition { /// true => foo(), /// false => bar(), /// } /// ``` declare_lint!(pub MATCH_BOOL, Warn, "a match on boolean expression; recommends `if..else` block instead"); /// **What it does:** This lint checks for overlapping match arms. It is `Warn` by default. /// /// **Why is this bad?** It is likely to be an error and if not, makes the code less obvious. /// /// **Known problems:** None /// /// **Example:** /// /// ``` /// let x = 5; /// match x { /// 1 ... 10 => println!("1 ... 10"), /// 5 ... 15 => println!("5 ... 15"), /// _ => (), /// } /// ``` declare_lint!(pub MATCH_OVERLAPPING_ARM, Warn, "a match has overlapping arms"); #[allow(missing_copy_implementations)] pub struct MatchPass; impl LintPass for MatchPass { fn get_lints(&self) -> LintArray { lint_array!(SINGLE_MATCH, MATCH_REF_PATS, MATCH_BOOL) } } impl LateLintPass for MatchPass { fn check_expr(&mut self, cx: &LateContext, expr: &Expr) { if in_external_macro(cx, expr.span) { return; } if let ExprMatch(ref ex, ref arms, MatchSource::Normal) = expr.node { check_single_match(cx, ex, arms, expr); check_match_bool(cx, ex, arms, expr); check_overlapping_arms(cx, arms); } if let ExprMatch(ref ex, ref arms, source) = expr.node { check_match_ref_pats(cx, ex, arms, source, expr); } } } fn check_single_match(cx: &LateContext, ex: &Expr, arms: &[Arm], expr: &Expr) { if arms.len() == 2 && // both of the arms have a single pattern and no guard arms[0].pats.len() == 1 && arms[0].guard.is_none() && arms[1].pats.len() == 1 && arms[1].guard.is_none() && // and the second pattern is a `_` wildcard: this is not strictly necessary, // since the exhaustiveness check will ensure the last one is a catch-all, // but in some cases, an explicit match is preferred to catch situations // when an enum is extended, so we don't consider these cases arms[1].pats[0].node == PatWild && // we don't want any content in the second arm (unit or empty block) is_unit_expr(&arms[1].body) && // finally, MATCH_BOOL doesn't apply here (cx.tcx.expr_ty(ex).sty != ty::TyBool || cx.current_level(MATCH_BOOL) == Allow) { span_help_and_lint(cx, SINGLE_MATCH, expr.span, "you seem to be trying to use match for destructuring a \ single pattern. Consider using `if let`", &format!("try\nif let {} = {} {}", snippet(cx, arms[0].pats[0].span, ".."), snippet(cx, ex.span, ".."), expr_block(cx, &arms[0].body, None, ".."))); } } fn check_match_bool(cx: &LateContext, ex: &Expr, arms: &[Arm], expr: &Expr) { // type of expression == bool if cx.tcx.expr_ty(ex).sty == ty::TyBool { if arms.len() == 2 && arms[0].pats.len() == 1 { // no guards let exprs = if let PatLit(ref arm_bool) = arms[0].pats[0].node { if let ExprLit(ref lit) = arm_bool.node { match lit.node { LitBool(true) => Some((&*arms[0].body, &*arms[1].body)), LitBool(false) => Some((&*arms[1].body, &*arms[0].body)), _ => None, } } else { None } } else { None }; if let Some((ref true_expr, ref false_expr)) = exprs { if !is_unit_expr(true_expr) { if !is_unit_expr(false_expr) { span_help_and_lint(cx, MATCH_BOOL, expr.span, "you seem to be trying to match on a boolean expression. \ Consider using an if..else block:", &format!("try\nif {} {} else {}", snippet(cx, ex.span, "b"), expr_block(cx, true_expr, None, ".."), expr_block(cx, false_expr, None, ".."))); } else { span_help_and_lint(cx, MATCH_BOOL, expr.span, "you seem to be trying to match on a boolean expression. \ Consider using an if..else block:", &format!("try\nif {} {}", snippet(cx, ex.span, "b"), expr_block(cx, true_expr, None, ".."))); } } else if !is_unit_expr(false_expr) { span_help_and_lint(cx, MATCH_BOOL, expr.span, "you seem to be trying to match on a boolean expression. \ Consider using an if..else block:", &format!("try\nif !{} {}", snippet(cx, ex.span, "b"), expr_block(cx, false_expr, None, ".."))); } else { span_lint(cx, MATCH_BOOL, expr.span, "you seem to be trying to match on a boolean expression. \ Consider using an if..else block"); } } else { span_lint(cx, MATCH_BOOL, expr.span, "you seem to be trying to match on a boolean expression. \ Consider using an if..else block"); } } else { span_lint(cx, MATCH_BOOL, expr.span, "you seem to be trying to match on a boolean expression. \ Consider using an if..else block"); } } } fn check_overlapping_arms(cx: &LateContext, arms: &[Arm]) { if arms.len() >= 2 { let ranges = all_ranges(cx, arms); let overlap = match type_ranges(&ranges) { TypedRanges::IntRanges(ranges) => overlaping(&ranges).map(|(start, end)| (start.span, end.span)), TypedRanges::UintRanges(ranges) => overlaping(&ranges).map(|(start, end)| (start.span, end.span)), TypedRanges::None => None, }; if let Some((start, end)) = overlap { span_note_and_lint(cx, MATCH_OVERLAPPING_ARM, start, "some ranges overlap", end, "overlaps with this"); } } } fn check_match_ref_pats(cx: &LateContext, ex: &Expr, arms: &[Arm], source: MatchSource, expr: &Expr) { if has_only_ref_pats(arms) { if let ExprAddrOf(Mutability::MutImmutable, ref inner) = ex.node { let template = match_template(cx, expr.span, source, "", inner); span_lint(cx, MATCH_REF_PATS, expr.span, &format!( "you don't need to add `&` to both the expression \ and the patterns: use `{}`", template)); } else { let template = match_template(cx, expr.span, source, "*", ex); span_lint(cx, MATCH_REF_PATS, expr.span, &format!( "instead of prefixing all patterns with `&`, you can dereference the \ expression: `{}`", template)); } } } /// Get all arms that are unbounded PatRange-s. fn all_ranges(cx: &LateContext, arms: &[Arm]) -> Vec> { arms.iter() .filter_map(|arm| { if let Arm { ref pats, guard: None, .. } = *arm { Some(pats.iter().filter_map(|pat| { if_let_chain! {[ let PatRange(ref lhs, ref rhs) = pat.node, let Ok(lhs) = eval_const_expr_partial(cx.tcx, &lhs, ExprTypeChecked, None), let Ok(rhs) = eval_const_expr_partial(cx.tcx, &rhs, ExprTypeChecked, None) ], { return Some(SpannedRange { span: pat.span, node: (lhs, rhs) }); }} if_let_chain! {[ let PatLit(ref value) = pat.node, let Ok(value) = eval_const_expr_partial(cx.tcx, &value, ExprTypeChecked, None) ], { return Some(SpannedRange { span: pat.span, node: (value.clone(), value) }); }} None })) } else { None } }) .flat_map(IntoIterator::into_iter) .collect() } #[derive(Debug, Eq, PartialEq)] struct SpannedRange { span: Span, node: (T, T), } #[derive(Debug)] enum TypedRanges { IntRanges(Vec>), UintRanges(Vec>), None, } /// Get all `Int` ranges or all `Uint` ranges. Mixed types are an error anyway and other types than /// `Uint` and `Int` probably don't make sense. fn type_ranges(ranges: &[SpannedRange]) -> TypedRanges { if ranges.is_empty() { TypedRanges::None } else { match ranges[0].node { (Int(_), Int(_)) => { TypedRanges::IntRanges(ranges.iter().filter_map(|range| { if let (Int(start), Int(end)) = range.node { Some(SpannedRange { span: range.span, node: (start, end) }) } else { None } }).collect()) }, (Uint(_), Uint(_)) => { TypedRanges::UintRanges(ranges.iter().filter_map(|range| { if let (Uint(start), Uint(end)) = range.node { Some(SpannedRange { span: range.span, node: (start, end) }) } else { None } }).collect()) }, _ => TypedRanges::None, } } } fn is_unit_expr(expr: &Expr) -> bool { match expr.node { ExprTup(ref v) if v.is_empty() => true, ExprBlock(ref b) if b.stmts.is_empty() && b.expr.is_none() => true, _ => false, } } fn has_only_ref_pats(arms: &[Arm]) -> bool { let mapped = arms.iter().flat_map(|a| &a.pats).map(|p| match p.node { PatRegion(..) => Some(true), // &-patterns PatWild => Some(false), // an "anything" wildcard is also fine _ => None, // any other pattern is not fine }).collect::>>(); // look for Some(v) where there's at least one true element mapped.map_or(false, |v| v.iter().any(|el| *el)) } fn match_template(cx: &LateContext, span: Span, source: MatchSource, op: &str, expr: &Expr) -> String { let expr_snippet = snippet(cx, expr.span, ".."); match source { MatchSource::Normal => { format!("match {}{} {{ ...", op, expr_snippet) } MatchSource::IfLetDesugar { .. } => { format!("if let ... = {}{} {{", op, expr_snippet) } MatchSource::WhileLetDesugar => { format!("while let ... = {}{} {{", op, expr_snippet) } MatchSource::ForLoopDesugar => { cx.sess().span_bug(span, "for loop desugared to match with &-patterns!") } } } fn overlaping(ranges: &[SpannedRange]) -> Option<(&SpannedRange, &SpannedRange)> where T: Copy + Ord { #[derive(Copy, Clone, Debug, Eq, PartialEq)] enum Kind<'a, T: 'a> { Start(T, &'a SpannedRange), End(T, &'a SpannedRange), } impl<'a, T: Copy> Kind<'a, T> { fn range(&self) -> &'a SpannedRange { match *self { Kind::Start(_, r) | Kind::End(_, r) => r } } fn value(self) -> T { match self { Kind::Start(t, _) | Kind::End(t, _) => t } } } impl<'a, T: Copy + Ord> PartialOrd for Kind<'a, T> { fn partial_cmp(&self, other: &Self) -> Option { Some(self.cmp(other)) } } impl<'a, T: Copy + Ord> Ord for Kind<'a, T> { fn cmp(&self, other: &Self) -> Ordering { self.value().cmp(&other.value()) } } let mut values = Vec::with_capacity(2*ranges.len()); for r in ranges { values.push(Kind::Start(r.node.0, &r)); values.push(Kind::End(r.node.1, &r)); } values.sort(); for (a, b) in values.iter().zip(values.iter().skip(1)) { match (a, b) { (&Kind::Start(_, ra), &Kind::End(_, rb)) => if ra.node != rb.node { return Some((ra, rb)) }, (&Kind::End(a, _), &Kind::Start(b, _)) if a != b => (), _ => return Some((&a.range(), &b.range())), } } None } #[test] fn test_overlapping() { use syntax::codemap::DUMMY_SP; let sp = |s, e| SpannedRange { span: DUMMY_SP, node: (s, e) }; assert_eq!(None, overlaping::(&[])); assert_eq!(None, overlaping(&[sp(1, 4)])); assert_eq!(None, overlaping(&[sp(1, 4), sp(5, 6)])); assert_eq!(None, overlaping(&[sp(1, 4), sp(5, 6), sp(10, 11)])); assert_eq!(Some((&sp(1, 4), &sp(3, 6))), overlaping(&[sp(1, 4), sp(3, 6)])); assert_eq!(Some((&sp(5, 6), &sp(6, 11))), overlaping(&[sp(1, 4), sp(5, 6), sp(6, 11)])); }