/*! Sendable hash maps. Very much a work in progress. */ use cmp::Eq; use hash::Hash; use to_bytes::IterBytes; trait SendMap { // FIXME(#3148) ^^^^ once find_ref() works, we can drop V:copy fn insert(&mut self, +k: K, +v: V) -> bool; fn remove(&mut self, k: &K) -> bool; fn clear(&mut self); pure fn len(&const self) -> uint; pure fn is_empty(&const self) -> bool; fn contains_key(&const self, k: &K) -> bool; fn each_ref(&self, blk: fn(k: &K, v: &V) -> bool); fn each_key_ref(&self, blk: fn(k: &K) -> bool); fn each_value_ref(&self, blk: fn(v: &V) -> bool); fn find(&const self, k: &K) -> Option; fn get(&const self, k: &K) -> V; } /// Open addressing with linear probing. mod linear { export LinearMap, linear_map, linear_map_with_capacity, public_methods; const initial_capacity: uint = 32u; // 2^5 struct Bucket { hash: uint, key: K, value: V, } struct LinearMap { k0: u64, k1: u64, resize_at: uint, size: uint, buckets: ~[Option>], } // FIXME(#3148) -- we could rewrite found_entry // to have type option<&bucket> which would be nifty // However, that won't work until #3148 is fixed enum SearchResult { FoundEntry(uint), FoundHole(uint), TableFull } fn resize_at(capacity: uint) -> uint { ((capacity as float) * 3. / 4.) as uint } fn LinearMap() -> LinearMap { linear_map_with_capacity(32) } fn linear_map_with_capacity( initial_capacity: uint) -> LinearMap { let r = rand::Rng(); linear_map_with_capacity_and_keys(r.gen_u64(), r.gen_u64(), initial_capacity) } fn linear_map_with_capacity_and_keys ( k0: u64, k1: u64, initial_capacity: uint) -> LinearMap { LinearMap { k0: k0, k1: k1, resize_at: resize_at(initial_capacity), size: 0, buckets: vec::from_fn(initial_capacity, |_i| None) } } priv impl LinearMap { #[inline(always)] pure fn to_bucket(&const self, h: uint) -> uint { // FIXME(#3041) borrow a more sophisticated technique here from // Gecko, for example borrowing from Knuth, as Eich so // colorfully argues for here: // https://bugzilla.mozilla.org/show_bug.cgi?id=743107#c22 h % self.buckets.len() } #[inline(always)] pure fn next_bucket(&const self, idx: uint, len_buckets: uint) -> uint { let n = (idx + 1) % len_buckets; unsafe{ // argh. log not considered pure. debug!("next_bucket(%?, %?) = %?", idx, len_buckets, n); } return n; } #[inline(always)] pure fn bucket_sequence(&const self, hash: uint, op: fn(uint) -> bool) -> uint { let start_idx = self.to_bucket(hash); let len_buckets = self.buckets.len(); let mut idx = start_idx; loop { if !op(idx) { return idx; } idx = self.next_bucket(idx, len_buckets); if idx == start_idx { return start_idx; } } } #[inline(always)] pure fn bucket_for_key(&const self, buckets: &[Option>], k: &K) -> SearchResult { let hash = k.hash_keyed(self.k0, self.k1) as uint; self.bucket_for_key_with_hash(buckets, hash, k) } #[inline(always)] pure fn bucket_for_key_with_hash(&const self, buckets: &[Option>], hash: uint, k: &K) -> SearchResult { let _ = for self.bucket_sequence(hash) |i| { match buckets[i] { Some(bkt) => if bkt.hash == hash && *k == bkt.key { return FoundEntry(i); }, None => return FoundHole(i) } }; return TableFull; } /// Expands the capacity of the array and re-inserts each /// of the existing buckets. fn expand(&mut self) { let old_capacity = self.buckets.len(); let new_capacity = old_capacity * 2; self.resize_at = ((new_capacity as float) * 3.0 / 4.0) as uint; let mut old_buckets = vec::from_fn(new_capacity, |_i| None); self.buckets <-> old_buckets; for uint::range(0, old_capacity) |i| { let mut bucket = None; bucket <-> old_buckets[i]; self.insert_opt_bucket(move bucket); } } fn insert_opt_bucket(&mut self, +bucket: Option>) { match move bucket { Some(Bucket {hash: move hash, key: move key, value: move value}) => { self.insert_internal(hash, move key, move value); } None => {} } } /// Inserts the key value pair into the buckets. /// Assumes that there will be a bucket. /// True if there was no previous entry with that key fn insert_internal(&mut self, hash: uint, +k: K, +v: V) -> bool { match self.bucket_for_key_with_hash(self.buckets, hash, &k) { TableFull => {fail ~"Internal logic error";} FoundHole(idx) => { debug!("insert fresh (%?->%?) at idx %?, hash %?", k, v, idx, hash); self.buckets[idx] = Some(Bucket {hash: hash, key: k, value: v}); self.size += 1; return true; } FoundEntry(idx) => { debug!("insert overwrite (%?->%?) at idx %?, hash %?", k, v, idx, hash); self.buckets[idx] = Some(Bucket {hash: hash, key: k, value: v}); return false; } } } fn search(&self, hash: uint, op: fn(x: &Option>) -> bool) { let _ = self.bucket_sequence(hash, |i| op(&self.buckets[i])); } } impl LinearMap { fn insert(&mut self, +k: K, +v: V) -> bool { if self.size >= self.resize_at { // n.b.: We could also do this after searching, so // that we do not resize if this call to insert is // simply going to update a key in place. My sense // though is that it's worse to have to search through // buckets to find the right spot twice than to just // resize in this corner case. self.expand(); } let hash = k.hash_keyed(self.k0, self.k1) as uint; self.insert_internal(hash, move k, move v) } fn remove(&mut self, k: &K) -> bool { // Removing from an open-addressed hashtable // is, well, painful. The problem is that // the entry may lie on the probe path for other // entries, so removing it would make you think that // those probe paths are empty. // // To address this we basically have to keep walking, // re-inserting entries we find until we reach an empty // bucket. We know we will eventually reach one because // we insert one ourselves at the beginning (the removed // entry). // // I found this explanation elucidating: // http://www.maths.lse.ac.uk/Courses/MA407/del-hash.pdf let mut idx = match self.bucket_for_key(self.buckets, k) { TableFull | FoundHole(_) => { return false; } FoundEntry(idx) => { idx } }; let len_buckets = self.buckets.len(); self.buckets[idx] = None; idx = self.next_bucket(idx, len_buckets); while self.buckets[idx].is_some() { let mut bucket = None; bucket <-> self.buckets[idx]; self.insert_opt_bucket(move bucket); idx = self.next_bucket(idx, len_buckets); } self.size -= 1; return true; } fn clear(&mut self) { for uint::range(0, self.buckets.len()) |idx| { self.buckets[idx] = None; } self.size = 0; } pure fn len(&const self) -> uint { self.size } pure fn is_empty(&const self) -> bool { self.len() == 0 } fn contains_key(&const self, k: &K) -> bool { match self.bucket_for_key(self.buckets, k) { FoundEntry(_) => {true} TableFull | FoundHole(_) => {false} } } /* FIXME(#3148)--region inference fails to capture needed deps fn find_ref(&self, k: &K) -> option<&self/V> { match self.bucket_for_key(self.buckets, k) { FoundEntry(idx) => { match check self.buckets[idx] { some(ref bkt) => some(&bkt.value) } } TableFull | FoundHole(_) => { none } } } */ fn each_ref(&self, blk: fn(k: &K, v: &V) -> bool) { for vec::each(self.buckets) |slot| { let mut broke = false; do slot.iter |bucket| { if !blk(&bucket.key, &bucket.value) { broke = true; // FIXME(#3064) just write "break;" } } if broke { break; } } } fn each_key_ref(&self, blk: fn(k: &K) -> bool) { self.each_ref(|k, _v| blk(k)) } fn each_value_ref(&self, blk: fn(v: &V) -> bool) { self.each_ref(|_k, v| blk(v)) } } impl LinearMap { fn find(&const self, k: &K) -> Option { match self.bucket_for_key(self.buckets, k) { FoundEntry(idx) => { // FIXME (#3148): Once we rewrite found_entry, this // failure case won't be necessary match self.buckets[idx] { Some(bkt) => {Some(copy bkt.value)} None => fail ~"LinearMap::find: internal logic error" } } TableFull | FoundHole(_) => { None } } } fn get(&const self, k: &K) -> V { let value = self.find(k); if value.is_none() { fail fmt!("No entry found for key: %?", k); } option::unwrap(value) } } impl LinearMap { fn each(&self, blk: fn(+K,+V) -> bool) { self.each_ref(|k,v| blk(copy *k, copy *v)); } } impl LinearMap { fn each_key(&self, blk: fn(+K) -> bool) { self.each_key_ref(|k| blk(copy *k)); } } impl LinearMap { fn each_value(&self, blk: fn(+V) -> bool) { self.each_value_ref(|v| blk(copy *v)); } } } #[test] mod test { import linear::LinearMap; fn int_linear_map() -> LinearMap { return LinearMap(); } #[test] fn inserts() { let mut m = ~int_linear_map(); assert m.insert(1, 2); assert m.insert(2, 4); assert m.get(&1) == 2; assert m.get(&2) == 4; } #[test] fn overwrite() { let mut m = ~int_linear_map(); assert m.insert(1, 2); assert m.get(&1) == 2; assert !m.insert(1, 3); assert m.get(&1) == 3; } #[test] fn conflicts() { let mut m = ~linear::linear_map_with_capacity(4); assert m.insert(1, 2); assert m.insert(5, 3); assert m.insert(9, 4); assert m.get(&9) == 4; assert m.get(&5) == 3; assert m.get(&1) == 2; } #[test] fn conflict_remove() { let mut m = ~linear::linear_map_with_capacity(4); assert m.insert(1, 2); assert m.insert(5, 3); assert m.insert(9, 4); assert m.remove(&1); assert m.get(&9) == 4; assert m.get(&5) == 3; } #[test] fn empty() { let mut m = ~linear::linear_map_with_capacity(4); assert m.insert(1, 2); assert !m.is_empty(); assert m.remove(&1); assert m.is_empty(); } #[test] fn iterate() { let mut m = linear::linear_map_with_capacity(4); for uint::range(0, 32) |i| { assert (&mut m).insert(i, i*2); } let mut observed = 0; for (&m).each |k, v| { assert v == k*2; observed |= (1 << k); } assert observed == 0xFFFF_FFFF; } }