//! Like [`std::time::Instant`], but for memory. //! //! Measures the total size of all currently allocated objects. use std::fmt; use cfg_if::cfg_if; #[derive(Copy, Clone)] pub struct MemoryUsage { pub allocated: Bytes, } impl fmt::Display for MemoryUsage { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { self.allocated.fmt(f) } } impl std::ops::Sub for MemoryUsage { type Output = MemoryUsage; fn sub(self, rhs: MemoryUsage) -> MemoryUsage { MemoryUsage { allocated: self.allocated - rhs.allocated } } } impl MemoryUsage { pub fn now() -> MemoryUsage { cfg_if! { if #[cfg(all(feature = "jemalloc", not(target_env = "msvc")))] { jemalloc_ctl::epoch::advance().unwrap(); MemoryUsage { allocated: Bytes(jemalloc_ctl::stats::allocated::read().unwrap() as isize), } } else if #[cfg(all(target_os = "linux", target_env = "gnu"))] { memusage_linux() } else if #[cfg(windows)] { // There doesn't seem to be an API for determining heap usage, so we try to // approximate that by using the Commit Charge value. use winapi::um::processthreadsapi::*; use winapi::um::psapi::*; use std::mem::{MaybeUninit, size_of}; let proc = unsafe { GetCurrentProcess() }; let mut mem_counters = MaybeUninit::uninit(); let cb = size_of::(); let ret = unsafe { GetProcessMemoryInfo(proc, mem_counters.as_mut_ptr(), cb as u32) }; assert!(ret != 0); let usage = unsafe { mem_counters.assume_init().PagefileUsage }; MemoryUsage { allocated: Bytes(usage as isize) } } else { MemoryUsage { allocated: Bytes(0) } } } } } #[cfg(all(target_os = "linux", target_env = "gnu", not(feature = "jemalloc")))] fn memusage_linux() -> MemoryUsage { // Linux/glibc has 2 APIs for allocator introspection that we can use: mallinfo and mallinfo2. // mallinfo uses `int` fields and cannot handle memory usage exceeding 2 GB. // mallinfo2 is very recent, so its presence needs to be detected at runtime. // Both are abysmally slow. use std::ffi::CStr; use std::sync::atomic::{AtomicUsize, Ordering}; static MALLINFO2: AtomicUsize = AtomicUsize::new(1); let mut mallinfo2 = MALLINFO2.load(Ordering::Relaxed); if mallinfo2 == 1 { let cstr = CStr::from_bytes_with_nul(b"mallinfo2\0").unwrap(); mallinfo2 = unsafe { libc::dlsym(libc::RTLD_DEFAULT, cstr.as_ptr()) } as usize; // NB: races don't matter here, since they'll always store the same value MALLINFO2.store(mallinfo2, Ordering::Relaxed); } if mallinfo2 == 0 { // mallinfo2 does not exist, use mallinfo. let alloc = unsafe { libc::mallinfo() }.uordblks as isize; MemoryUsage { allocated: Bytes(alloc) } } else { let mallinfo2: fn() -> libc::mallinfo2 = unsafe { std::mem::transmute(mallinfo2) }; let alloc = mallinfo2().uordblks as isize; MemoryUsage { allocated: Bytes(alloc) } } } #[derive(Default, PartialEq, Eq, PartialOrd, Ord, Hash, Clone, Copy)] pub struct Bytes(isize); impl Bytes { pub fn megabytes(self) -> isize { self.0 / 1024 / 1024 } } impl fmt::Display for Bytes { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let bytes = self.0; let mut value = bytes; let mut suffix = "b"; if value.abs() > 4096 { value /= 1024; suffix = "kb"; if value.abs() > 4096 { value /= 1024; suffix = "mb"; } } f.pad(&format!("{}{}", value, suffix)) } } impl std::ops::AddAssign for Bytes { fn add_assign(&mut self, x: usize) { self.0 += x as isize; } } impl std::ops::Sub for Bytes { type Output = Bytes; fn sub(self, rhs: Bytes) -> Bytes { Bytes(self.0 - rhs.0) } }