use super::{AnonymousLifetimeMode, LoweringContext, ParamMode}; use super::{ImplTraitContext, ImplTraitPosition}; use crate::Arena; use rustc_ast::ast::*; use rustc_ast::node_id::NodeMap; use rustc_ast::ptr::P; use rustc_ast::visit::{self, AssocCtxt, Visitor}; use rustc_data_structures::fx::FxHashSet; use rustc_errors::struct_span_err; use rustc_hir as hir; use rustc_hir::def::{DefKind, Res}; use rustc_hir::def_id::LocalDefId; use rustc_span::source_map::{respan, DesugaringKind}; use rustc_span::symbol::{kw, sym, Ident}; use rustc_span::Span; use rustc_target::spec::abi; use smallvec::{smallvec, SmallVec}; use std::collections::BTreeSet; use tracing::debug; pub(super) struct ItemLowerer<'a, 'lowering, 'hir> { pub(super) lctx: &'a mut LoweringContext<'lowering, 'hir>, } impl ItemLowerer<'_, '_, '_> { fn with_trait_impl_ref(&mut self, impl_ref: &Option, f: impl FnOnce(&mut Self)) { let old = self.lctx.is_in_trait_impl; self.lctx.is_in_trait_impl = if let &None = impl_ref { false } else { true }; f(self); self.lctx.is_in_trait_impl = old; } } impl<'a> Visitor<'a> for ItemLowerer<'a, '_, '_> { fn visit_mod(&mut self, m: &'a Mod, _s: Span, _attrs: &[Attribute], n: NodeId) { let hir_id = self.lctx.lower_node_id(n); self.lctx.modules.insert( hir_id, hir::ModuleItems { items: BTreeSet::new(), trait_items: BTreeSet::new(), impl_items: BTreeSet::new(), }, ); let old = self.lctx.current_module; self.lctx.current_module = hir_id; visit::walk_mod(self, m); self.lctx.current_module = old; } fn visit_item(&mut self, item: &'a Item) { let mut item_hir_id = None; self.lctx.with_hir_id_owner(item.id, |lctx| { lctx.without_in_scope_lifetime_defs(|lctx| { if let Some(hir_item) = lctx.lower_item(item) { item_hir_id = Some(hir_item.hir_id); lctx.insert_item(hir_item); } }) }); if let Some(hir_id) = item_hir_id { self.lctx.with_parent_item_lifetime_defs(hir_id, |this| { let this = &mut ItemLowerer { lctx: this }; if let ItemKind::Impl { ref of_trait, .. } = item.kind { this.with_trait_impl_ref(of_trait, |this| visit::walk_item(this, item)); } else { visit::walk_item(this, item); } }); } } fn visit_assoc_item(&mut self, item: &'a AssocItem, ctxt: AssocCtxt) { self.lctx.with_hir_id_owner(item.id, |lctx| match ctxt { AssocCtxt::Trait => { let hir_item = lctx.lower_trait_item(item); let id = hir::TraitItemId { hir_id: hir_item.hir_id }; lctx.trait_items.insert(id, hir_item); lctx.modules.get_mut(&lctx.current_module).unwrap().trait_items.insert(id); } AssocCtxt::Impl => { let hir_item = lctx.lower_impl_item(item); let id = hir::ImplItemId { hir_id: hir_item.hir_id }; lctx.impl_items.insert(id, hir_item); lctx.modules.get_mut(&lctx.current_module).unwrap().impl_items.insert(id); } }); visit::walk_assoc_item(self, item, ctxt); } } impl<'hir> LoweringContext<'_, 'hir> { // Same as the method above, but accepts `hir::GenericParam`s // instead of `ast::GenericParam`s. // This should only be used with generics that have already had their // in-band lifetimes added. In practice, this means that this function is // only used when lowering a child item of a trait or impl. fn with_parent_item_lifetime_defs( &mut self, parent_hir_id: hir::HirId, f: impl FnOnce(&mut LoweringContext<'_, '_>) -> T, ) -> T { let old_len = self.in_scope_lifetimes.len(); let parent_generics = match self.items.get(&parent_hir_id).unwrap().kind { hir::ItemKind::Impl { ref generics, .. } | hir::ItemKind::Trait(_, _, ref generics, ..) => &generics.params[..], _ => &[], }; let lt_def_names = parent_generics.iter().filter_map(|param| match param.kind { hir::GenericParamKind::Lifetime { .. } => Some(param.name.normalize_to_macros_2_0()), _ => None, }); self.in_scope_lifetimes.extend(lt_def_names); let res = f(self); self.in_scope_lifetimes.truncate(old_len); res } // Clears (and restores) the `in_scope_lifetimes` field. Used when // visiting nested items, which never inherit in-scope lifetimes // from their surrounding environment. fn without_in_scope_lifetime_defs( &mut self, f: impl FnOnce(&mut LoweringContext<'_, '_>) -> T, ) -> T { let old_in_scope_lifetimes = std::mem::replace(&mut self.in_scope_lifetimes, vec![]); // this vector is only used when walking over impl headers, // input types, and the like, and should not be non-empty in // between items assert!(self.lifetimes_to_define.is_empty()); let res = f(self); assert!(self.in_scope_lifetimes.is_empty()); self.in_scope_lifetimes = old_in_scope_lifetimes; res } pub(super) fn lower_mod(&mut self, m: &Mod) -> hir::Mod<'hir> { hir::Mod { inner: m.inner, item_ids: self .arena .alloc_from_iter(m.items.iter().flat_map(|x| self.lower_item_id(x))), } } pub(super) fn lower_item_id(&mut self, i: &Item) -> SmallVec<[hir::ItemId; 1]> { let node_ids = match i.kind { ItemKind::Use(ref use_tree) => { let mut vec = smallvec![i.id]; self.lower_item_id_use_tree(use_tree, i.id, &mut vec); vec } ItemKind::MacroDef(..) => SmallVec::new(), ItemKind::Fn(..) | ItemKind::Impl { of_trait: None, .. } => smallvec![i.id], _ => smallvec![i.id], }; node_ids .into_iter() .map(|node_id| hir::ItemId { id: self.allocate_hir_id_counter(node_id) }) .collect() } fn lower_item_id_use_tree( &mut self, tree: &UseTree, base_id: NodeId, vec: &mut SmallVec<[NodeId; 1]>, ) { match tree.kind { UseTreeKind::Nested(ref nested_vec) => { for &(ref nested, id) in nested_vec { vec.push(id); self.lower_item_id_use_tree(nested, id, vec); } } UseTreeKind::Glob => {} UseTreeKind::Simple(_, id1, id2) => { for (_, &id) in self.expect_full_res_from_use(base_id).skip(1).zip([id1, id2].iter()) { vec.push(id); } } } } pub fn lower_item(&mut self, i: &Item) -> Option> { let mut ident = i.ident; let mut vis = self.lower_visibility(&i.vis, None); let attrs = self.lower_attrs(&i.attrs); if let ItemKind::MacroDef(MacroDef { ref body, macro_rules }) = i.kind { if !macro_rules || self.sess.contains_name(&i.attrs, sym::macro_export) { let hir_id = self.lower_node_id(i.id); let body = P(self.lower_mac_args(body)); self.exported_macros.push(hir::MacroDef { ident, vis, attrs, hir_id, span: i.span, ast: MacroDef { body, macro_rules }, }); } else { self.non_exported_macro_attrs.extend(attrs.iter().cloned()); } return None; } let kind = self.lower_item_kind(i.span, i.id, &mut ident, attrs, &mut vis, &i.kind); Some(hir::Item { hir_id: self.lower_node_id(i.id), ident, attrs, kind, vis, span: i.span }) } fn lower_item_kind( &mut self, span: Span, id: NodeId, ident: &mut Ident, attrs: &'hir [Attribute], vis: &mut hir::Visibility<'hir>, i: &ItemKind, ) -> hir::ItemKind<'hir> { match *i { ItemKind::ExternCrate(orig_name) => hir::ItemKind::ExternCrate(orig_name), ItemKind::Use(ref use_tree) => { // Start with an empty prefix. let prefix = Path { segments: vec![], span: use_tree.span }; self.lower_use_tree(use_tree, &prefix, id, vis, ident, attrs) } ItemKind::Static(ref t, m, ref e) => { let (ty, body_id) = self.lower_const_item(t, span, e.as_deref()); hir::ItemKind::Static(ty, m, body_id) } ItemKind::Const(_, ref t, ref e) => { let (ty, body_id) = self.lower_const_item(t, span, e.as_deref()); hir::ItemKind::Const(ty, body_id) } ItemKind::Fn(_, FnSig { ref decl, header }, ref generics, ref body) => { let fn_def_id = self.resolver.local_def_id(id); self.with_new_scopes(|this| { this.current_item = Some(ident.span); // Note: we don't need to change the return type from `T` to // `impl Future` here because lower_body // only cares about the input argument patterns in the function // declaration (decl), not the return types. let asyncness = header.asyncness; let body_id = this.lower_maybe_async_body(span, &decl, asyncness, body.as_deref()); let (generics, decl) = this.add_in_band_defs( generics, fn_def_id, AnonymousLifetimeMode::PassThrough, |this, idty| { let ret_id = asyncness.opt_return_id(); this.lower_fn_decl( &decl, Some((fn_def_id.to_def_id(), idty)), true, ret_id, ) }, ); let sig = hir::FnSig { decl, header: this.lower_fn_header(header) }; hir::ItemKind::Fn(sig, generics, body_id) }) } ItemKind::Mod(ref m) => hir::ItemKind::Mod(self.lower_mod(m)), ItemKind::ForeignMod(ref nm) => hir::ItemKind::ForeignMod(self.lower_foreign_mod(nm)), ItemKind::GlobalAsm(ref ga) => hir::ItemKind::GlobalAsm(self.lower_global_asm(ga)), ItemKind::TyAlias(_, ref gen, _, Some(ref ty)) => { // We lower // // type Foo = impl Trait // // to // // type Foo = Foo1 // opaque type Foo1: Trait let ty = self.lower_ty( ty, ImplTraitContext::OtherOpaqueTy { capturable_lifetimes: &mut FxHashSet::default(), origin: hir::OpaqueTyOrigin::Misc, }, ); let generics = self.lower_generics(gen, ImplTraitContext::disallowed()); hir::ItemKind::TyAlias(ty, generics) } ItemKind::TyAlias(_, ref generics, _, None) => { let ty = self.arena.alloc(self.ty(span, hir::TyKind::Err)); let generics = self.lower_generics(generics, ImplTraitContext::disallowed()); hir::ItemKind::TyAlias(ty, generics) } ItemKind::Enum(ref enum_definition, ref generics) => hir::ItemKind::Enum( hir::EnumDef { variants: self.arena.alloc_from_iter( enum_definition.variants.iter().map(|x| self.lower_variant(x)), ), }, self.lower_generics(generics, ImplTraitContext::disallowed()), ), ItemKind::Struct(ref struct_def, ref generics) => { let struct_def = self.lower_variant_data(struct_def); hir::ItemKind::Struct( struct_def, self.lower_generics(generics, ImplTraitContext::disallowed()), ) } ItemKind::Union(ref vdata, ref generics) => { let vdata = self.lower_variant_data(vdata); hir::ItemKind::Union( vdata, self.lower_generics(generics, ImplTraitContext::disallowed()), ) } ItemKind::Impl { unsafety, polarity, defaultness, constness, generics: ref ast_generics, of_trait: ref trait_ref, self_ty: ref ty, items: ref impl_items, } => { let def_id = self.resolver.local_def_id(id); // Lower the "impl header" first. This ordering is important // for in-band lifetimes! Consider `'a` here: // // impl Foo<'a> for u32 { // fn method(&'a self) { .. } // } // // Because we start by lowering the `Foo<'a> for u32` // part, we will add `'a` to the list of generics on // the impl. When we then encounter it later in the // method, it will not be considered an in-band // lifetime to be added, but rather a reference to a // parent lifetime. let lowered_trait_impl_id = self.lower_node_id(id); let (generics, (trait_ref, lowered_ty)) = self.add_in_band_defs( ast_generics, def_id, AnonymousLifetimeMode::CreateParameter, |this, _| { let trait_ref = trait_ref.as_ref().map(|trait_ref| { this.lower_trait_ref(trait_ref, ImplTraitContext::disallowed()) }); if let Some(ref trait_ref) = trait_ref { if let Res::Def(DefKind::Trait, def_id) = trait_ref.path.res { this.trait_impls .entry(def_id) .or_default() .push(lowered_trait_impl_id); } } let lowered_ty = this.lower_ty(ty, ImplTraitContext::disallowed()); (trait_ref, lowered_ty) }, ); let new_impl_items = self.with_in_scope_lifetime_defs(&ast_generics.params, |this| { this.arena.alloc_from_iter( impl_items.iter().map(|item| this.lower_impl_item_ref(item)), ) }); // `defaultness.has_value()` is never called for an `impl`, always `true` in order // to not cause an assertion failure inside the `lower_defaultness` function. let has_val = true; let (defaultness, defaultness_span) = self.lower_defaultness(defaultness, has_val); hir::ItemKind::Impl { unsafety: self.lower_unsafety(unsafety), polarity, defaultness, defaultness_span, constness: self.lower_constness(constness), generics, of_trait: trait_ref, self_ty: lowered_ty, items: new_impl_items, } } ItemKind::Trait(is_auto, unsafety, ref generics, ref bounds, ref items) => { let bounds = self.lower_param_bounds(bounds, ImplTraitContext::disallowed()); let items = self .arena .alloc_from_iter(items.iter().map(|item| self.lower_trait_item_ref(item))); hir::ItemKind::Trait( is_auto, self.lower_unsafety(unsafety), self.lower_generics(generics, ImplTraitContext::disallowed()), bounds, items, ) } ItemKind::TraitAlias(ref generics, ref bounds) => hir::ItemKind::TraitAlias( self.lower_generics(generics, ImplTraitContext::disallowed()), self.lower_param_bounds(bounds, ImplTraitContext::disallowed()), ), ItemKind::MacroDef(..) | ItemKind::MacCall(..) => { panic!("`TyMac` should have been expanded by now") } } } fn lower_const_item( &mut self, ty: &Ty, span: Span, body: Option<&Expr>, ) -> (&'hir hir::Ty<'hir>, hir::BodyId) { let mut capturable_lifetimes; let itctx = if self.sess.features_untracked().impl_trait_in_bindings { capturable_lifetimes = FxHashSet::default(); ImplTraitContext::OtherOpaqueTy { capturable_lifetimes: &mut capturable_lifetimes, origin: hir::OpaqueTyOrigin::Misc, } } else { ImplTraitContext::Disallowed(ImplTraitPosition::Binding) }; let ty = self.lower_ty(ty, itctx); (ty, self.lower_const_body(span, body)) } fn lower_use_tree( &mut self, tree: &UseTree, prefix: &Path, id: NodeId, vis: &mut hir::Visibility<'hir>, ident: &mut Ident, attrs: &'hir [Attribute], ) -> hir::ItemKind<'hir> { debug!("lower_use_tree(tree={:?})", tree); debug!("lower_use_tree: vis = {:?}", vis); let path = &tree.prefix; let segments = prefix.segments.iter().chain(path.segments.iter()).cloned().collect(); match tree.kind { UseTreeKind::Simple(rename, id1, id2) => { *ident = tree.ident(); // First, apply the prefix to the path. let mut path = Path { segments, span: path.span }; // Correctly resolve `self` imports. if path.segments.len() > 1 && path.segments.last().unwrap().ident.name == kw::SelfLower { let _ = path.segments.pop(); if rename.is_none() { *ident = path.segments.last().unwrap().ident; } } let mut resolutions = self.expect_full_res_from_use(id); // We want to return *something* from this function, so hold onto the first item // for later. let ret_res = self.lower_res(resolutions.next().unwrap_or(Res::Err)); // Here, we are looping over namespaces, if they exist for the definition // being imported. We only handle type and value namespaces because we // won't be dealing with macros in the rest of the compiler. // Essentially a single `use` which imports two names is desugared into // two imports. for (res, &new_node_id) in resolutions.zip([id1, id2].iter()) { let ident = *ident; let mut path = path.clone(); for seg in &mut path.segments { seg.id = self.resolver.next_node_id(); } let span = path.span; self.with_hir_id_owner(new_node_id, |this| { let new_id = this.lower_node_id(new_node_id); let res = this.lower_res(res); let path = this.lower_path_extra(res, &path, ParamMode::Explicit, None); let kind = hir::ItemKind::Use(path, hir::UseKind::Single); let vis = this.rebuild_vis(&vis); this.insert_item(hir::Item { hir_id: new_id, ident, attrs, kind, vis, span, }); }); } let path = self.lower_path_extra(ret_res, &path, ParamMode::Explicit, None); hir::ItemKind::Use(path, hir::UseKind::Single) } UseTreeKind::Glob => { let path = self.lower_path(id, &Path { segments, span: path.span }, ParamMode::Explicit); hir::ItemKind::Use(path, hir::UseKind::Glob) } UseTreeKind::Nested(ref trees) => { // Nested imports are desugared into simple imports. // So, if we start with // // ``` // pub(x) use foo::{a, b}; // ``` // // we will create three items: // // ``` // pub(x) use foo::a; // pub(x) use foo::b; // pub(x) use foo::{}; // <-- this is called the `ListStem` // ``` // // The first two are produced by recursively invoking // `lower_use_tree` (and indeed there may be things // like `use foo::{a::{b, c}}` and so forth). They // wind up being directly added to // `self.items`. However, the structure of this // function also requires us to return one item, and // for that we return the `{}` import (called the // `ListStem`). let prefix = Path { segments, span: prefix.span.to(path.span) }; // Add all the nested `PathListItem`s to the HIR. for &(ref use_tree, id) in trees { let new_hir_id = self.lower_node_id(id); let mut prefix = prefix.clone(); // Give the segments new node-ids since they are being cloned. for seg in &mut prefix.segments { seg.id = self.resolver.next_node_id(); } // Each `use` import is an item and thus are owners of the // names in the path. Up to this point the nested import is // the current owner, since we want each desugared import to // own its own names, we have to adjust the owner before // lowering the rest of the import. self.with_hir_id_owner(id, |this| { let mut vis = this.rebuild_vis(&vis); let mut ident = *ident; let kind = this.lower_use_tree(use_tree, &prefix, id, &mut vis, &mut ident, attrs); this.insert_item(hir::Item { hir_id: new_hir_id, ident, attrs, kind, vis, span: use_tree.span, }); }); } // Subtle and a bit hacky: we lower the privacy level // of the list stem to "private" most of the time, but // not for "restricted" paths. The key thing is that // we don't want it to stay as `pub` (with no caveats) // because that affects rustdoc and also the lints // about `pub` items. But we can't *always* make it // private -- particularly not for restricted paths -- // because it contains node-ids that would then be // unused, failing the check that HirIds are "densely // assigned". match vis.node { hir::VisibilityKind::Public | hir::VisibilityKind::Crate(_) | hir::VisibilityKind::Inherited => { *vis = respan(prefix.span.shrink_to_lo(), hir::VisibilityKind::Inherited); } hir::VisibilityKind::Restricted { .. } => { // Do nothing here, as described in the comment on the match. } } let res = self.expect_full_res_from_use(id).next().unwrap_or(Res::Err); let res = self.lower_res(res); let path = self.lower_path_extra(res, &prefix, ParamMode::Explicit, None); hir::ItemKind::Use(path, hir::UseKind::ListStem) } } } /// Paths like the visibility path in `pub(super) use foo::{bar, baz}` are repeated /// many times in the HIR tree; for each occurrence, we need to assign distinct /// `NodeId`s. (See, e.g., #56128.) fn rebuild_use_path(&mut self, path: &hir::Path<'hir>) -> &'hir hir::Path<'hir> { debug!("rebuild_use_path(path = {:?})", path); let segments = self.arena.alloc_from_iter(path.segments.iter().map(|seg| hir::PathSegment { ident: seg.ident, hir_id: seg.hir_id.map(|_| self.next_id()), res: seg.res, args: None, infer_args: seg.infer_args, })); self.arena.alloc(hir::Path { span: path.span, res: path.res, segments }) } fn rebuild_vis(&mut self, vis: &hir::Visibility<'hir>) -> hir::Visibility<'hir> { let vis_kind = match vis.node { hir::VisibilityKind::Public => hir::VisibilityKind::Public, hir::VisibilityKind::Crate(sugar) => hir::VisibilityKind::Crate(sugar), hir::VisibilityKind::Inherited => hir::VisibilityKind::Inherited, hir::VisibilityKind::Restricted { ref path, hir_id: _ } => { hir::VisibilityKind::Restricted { path: self.rebuild_use_path(path), hir_id: self.next_id(), } } }; respan(vis.span, vis_kind) } fn lower_foreign_item(&mut self, i: &ForeignItem) -> hir::ForeignItem<'hir> { let def_id = self.resolver.local_def_id(i.id); hir::ForeignItem { hir_id: self.lower_node_id(i.id), ident: i.ident, attrs: self.lower_attrs(&i.attrs), kind: match i.kind { ForeignItemKind::Fn(_, ref sig, ref generics, _) => { let fdec = &sig.decl; let (generics, (fn_dec, fn_args)) = self.add_in_band_defs( generics, def_id, AnonymousLifetimeMode::PassThrough, |this, _| { ( // Disallow `impl Trait` in foreign items. this.lower_fn_decl(fdec, None, false, None), this.lower_fn_params_to_names(fdec), ) }, ); hir::ForeignItemKind::Fn(fn_dec, fn_args, generics) } ForeignItemKind::Static(ref t, m, _) => { let ty = self.lower_ty(t, ImplTraitContext::disallowed()); hir::ForeignItemKind::Static(ty, m) } ForeignItemKind::TyAlias(..) => hir::ForeignItemKind::Type, ForeignItemKind::MacCall(_) => panic!("macro shouldn't exist here"), }, vis: self.lower_visibility(&i.vis, None), span: i.span, } } fn lower_foreign_mod(&mut self, fm: &ForeignMod) -> hir::ForeignMod<'hir> { hir::ForeignMod { abi: fm.abi.map_or(abi::Abi::C, |abi| self.lower_abi(abi)), items: self.arena.alloc_from_iter(fm.items.iter().map(|x| self.lower_foreign_item(x))), } } fn lower_global_asm(&mut self, ga: &GlobalAsm) -> &'hir hir::GlobalAsm { self.arena.alloc(hir::GlobalAsm { asm: ga.asm }) } fn lower_variant(&mut self, v: &Variant) -> hir::Variant<'hir> { hir::Variant { attrs: self.lower_attrs(&v.attrs), data: self.lower_variant_data(&v.data), disr_expr: v.disr_expr.as_ref().map(|e| self.lower_anon_const(e)), id: self.lower_node_id(v.id), ident: v.ident, span: v.span, } } fn lower_variant_data(&mut self, vdata: &VariantData) -> hir::VariantData<'hir> { match *vdata { VariantData::Struct(ref fields, recovered) => hir::VariantData::Struct( self.arena .alloc_from_iter(fields.iter().enumerate().map(|f| self.lower_struct_field(f))), recovered, ), VariantData::Tuple(ref fields, id) => hir::VariantData::Tuple( self.arena .alloc_from_iter(fields.iter().enumerate().map(|f| self.lower_struct_field(f))), self.lower_node_id(id), ), VariantData::Unit(id) => hir::VariantData::Unit(self.lower_node_id(id)), } } fn lower_struct_field(&mut self, (index, f): (usize, &StructField)) -> hir::StructField<'hir> { let ty = if let TyKind::Path(ref qself, ref path) = f.ty.kind { let t = self.lower_path_ty( &f.ty, qself, path, ParamMode::ExplicitNamed, // no `'_` in declarations (Issue #61124) ImplTraitContext::disallowed(), ); self.arena.alloc(t) } else { self.lower_ty(&f.ty, ImplTraitContext::disallowed()) }; hir::StructField { span: f.span, hir_id: self.lower_node_id(f.id), ident: match f.ident { Some(ident) => ident, // FIXME(jseyfried): positional field hygiene. None => Ident::new(sym::integer(index), f.span), }, vis: self.lower_visibility(&f.vis, None), ty, attrs: self.lower_attrs(&f.attrs), } } fn lower_trait_item(&mut self, i: &AssocItem) -> hir::TraitItem<'hir> { let trait_item_def_id = self.resolver.local_def_id(i.id); let (generics, kind) = match i.kind { AssocItemKind::Const(_, ref ty, ref default) => { let ty = self.lower_ty(ty, ImplTraitContext::disallowed()); let body = default.as_ref().map(|x| self.lower_const_body(i.span, Some(x))); (hir::Generics::empty(), hir::TraitItemKind::Const(ty, body)) } AssocItemKind::Fn(_, ref sig, ref generics, None) => { let names = self.lower_fn_params_to_names(&sig.decl); let (generics, sig) = self.lower_method_sig(generics, sig, trait_item_def_id, false, None); (generics, hir::TraitItemKind::Fn(sig, hir::TraitFn::Required(names))) } AssocItemKind::Fn(_, ref sig, ref generics, Some(ref body)) => { let body_id = self.lower_fn_body_block(i.span, &sig.decl, Some(body)); let (generics, sig) = self.lower_method_sig(generics, sig, trait_item_def_id, false, None); (generics, hir::TraitItemKind::Fn(sig, hir::TraitFn::Provided(body_id))) } AssocItemKind::TyAlias(_, ref generics, ref bounds, ref default) => { let ty = default.as_ref().map(|x| self.lower_ty(x, ImplTraitContext::disallowed())); let generics = self.lower_generics(generics, ImplTraitContext::disallowed()); let kind = hir::TraitItemKind::Type( self.lower_param_bounds(bounds, ImplTraitContext::disallowed()), ty, ); (generics, kind) } AssocItemKind::MacCall(..) => panic!("macro item shouldn't exist at this point"), }; hir::TraitItem { hir_id: self.lower_node_id(i.id), ident: i.ident, attrs: self.lower_attrs(&i.attrs), generics, kind, span: i.span, } } fn lower_trait_item_ref(&mut self, i: &AssocItem) -> hir::TraitItemRef { let (kind, has_default) = match &i.kind { AssocItemKind::Const(_, _, default) => (hir::AssocItemKind::Const, default.is_some()), AssocItemKind::TyAlias(_, _, _, default) => { (hir::AssocItemKind::Type, default.is_some()) } AssocItemKind::Fn(_, sig, _, default) => { (hir::AssocItemKind::Fn { has_self: sig.decl.has_self() }, default.is_some()) } AssocItemKind::MacCall(..) => unimplemented!(), }; let id = hir::TraitItemId { hir_id: self.lower_node_id(i.id) }; let defaultness = hir::Defaultness::Default { has_value: has_default }; hir::TraitItemRef { id, ident: i.ident, span: i.span, defaultness, kind } } /// Construct `ExprKind::Err` for the given `span`. crate fn expr_err(&mut self, span: Span) -> hir::Expr<'hir> { self.expr(span, hir::ExprKind::Err, AttrVec::new()) } fn lower_impl_item(&mut self, i: &AssocItem) -> hir::ImplItem<'hir> { let impl_item_def_id = self.resolver.local_def_id(i.id); let (generics, kind) = match &i.kind { AssocItemKind::Const(_, ty, expr) => { let ty = self.lower_ty(ty, ImplTraitContext::disallowed()); ( hir::Generics::empty(), hir::ImplItemKind::Const(ty, self.lower_const_body(i.span, expr.as_deref())), ) } AssocItemKind::Fn(_, sig, generics, body) => { self.current_item = Some(i.span); let asyncness = sig.header.asyncness; let body_id = self.lower_maybe_async_body(i.span, &sig.decl, asyncness, body.as_deref()); let impl_trait_return_allow = !self.is_in_trait_impl; let (generics, sig) = self.lower_method_sig( generics, sig, impl_item_def_id, impl_trait_return_allow, asyncness.opt_return_id(), ); (generics, hir::ImplItemKind::Fn(sig, body_id)) } AssocItemKind::TyAlias(_, generics, _, ty) => { let generics = self.lower_generics(generics, ImplTraitContext::disallowed()); let kind = match ty { None => { let ty = self.arena.alloc(self.ty(i.span, hir::TyKind::Err)); hir::ImplItemKind::TyAlias(ty) } Some(ty) => { let ty = self.lower_ty( ty, ImplTraitContext::OtherOpaqueTy { capturable_lifetimes: &mut FxHashSet::default(), origin: hir::OpaqueTyOrigin::Misc, }, ); hir::ImplItemKind::TyAlias(ty) } }; (generics, kind) } AssocItemKind::MacCall(..) => panic!("`TyMac` should have been expanded by now"), }; // Since `default impl` is not yet implemented, this is always true in impls. let has_value = true; let (defaultness, _) = self.lower_defaultness(i.kind.defaultness(), has_value); hir::ImplItem { hir_id: self.lower_node_id(i.id), ident: i.ident, attrs: self.lower_attrs(&i.attrs), generics, vis: self.lower_visibility(&i.vis, None), defaultness, kind, span: i.span, } } fn lower_impl_item_ref(&mut self, i: &AssocItem) -> hir::ImplItemRef<'hir> { // Since `default impl` is not yet implemented, this is always true in impls. let has_value = true; let (defaultness, _) = self.lower_defaultness(i.kind.defaultness(), has_value); hir::ImplItemRef { id: hir::ImplItemId { hir_id: self.lower_node_id(i.id) }, ident: i.ident, span: i.span, vis: self.lower_visibility(&i.vis, Some(i.id)), defaultness, kind: match &i.kind { AssocItemKind::Const(..) => hir::AssocItemKind::Const, AssocItemKind::TyAlias(..) => hir::AssocItemKind::Type, AssocItemKind::Fn(_, sig, ..) => { hir::AssocItemKind::Fn { has_self: sig.decl.has_self() } } AssocItemKind::MacCall(..) => unimplemented!(), }, } } /// If an `explicit_owner` is given, this method allocates the `HirId` in /// the address space of that item instead of the item currently being /// lowered. This can happen during `lower_impl_item_ref()` where we need to /// lower a `Visibility` value although we haven't lowered the owning /// `ImplItem` in question yet. fn lower_visibility( &mut self, v: &Visibility, explicit_owner: Option, ) -> hir::Visibility<'hir> { let node = match v.node { VisibilityKind::Public => hir::VisibilityKind::Public, VisibilityKind::Crate(sugar) => hir::VisibilityKind::Crate(sugar), VisibilityKind::Restricted { ref path, id } => { debug!("lower_visibility: restricted path id = {:?}", id); let lowered_id = if let Some(owner) = explicit_owner { self.lower_node_id_with_owner(id, owner) } else { self.lower_node_id(id) }; let res = self.expect_full_res(id); let res = self.lower_res(res); hir::VisibilityKind::Restricted { path: self.lower_path_extra(res, path, ParamMode::Explicit, explicit_owner), hir_id: lowered_id, } } VisibilityKind::Inherited => hir::VisibilityKind::Inherited, }; respan(v.span, node) } fn lower_defaultness( &self, d: Defaultness, has_value: bool, ) -> (hir::Defaultness, Option) { match d { Defaultness::Default(sp) => (hir::Defaultness::Default { has_value }, Some(sp)), Defaultness::Final => { assert!(has_value); (hir::Defaultness::Final, None) } } } fn record_body( &mut self, params: &'hir [hir::Param<'hir>], value: hir::Expr<'hir>, ) -> hir::BodyId { let body = hir::Body { generator_kind: self.generator_kind, params, value }; let id = body.id(); self.bodies.insert(id, body); id } pub(super) fn lower_body( &mut self, f: impl FnOnce(&mut Self) -> (&'hir [hir::Param<'hir>], hir::Expr<'hir>), ) -> hir::BodyId { let prev_gen_kind = self.generator_kind.take(); let task_context = self.task_context.take(); let (parameters, result) = f(self); let body_id = self.record_body(parameters, result); self.task_context = task_context; self.generator_kind = prev_gen_kind; body_id } fn lower_param(&mut self, param: &Param) -> hir::Param<'hir> { hir::Param { attrs: self.lower_attrs(¶m.attrs), hir_id: self.lower_node_id(param.id), pat: self.lower_pat(¶m.pat), ty_span: param.ty.span, span: param.span, } } pub(super) fn lower_fn_body( &mut self, decl: &FnDecl, body: impl FnOnce(&mut Self) -> hir::Expr<'hir>, ) -> hir::BodyId { self.lower_body(|this| { ( this.arena.alloc_from_iter(decl.inputs.iter().map(|x| this.lower_param(x))), body(this), ) }) } fn lower_fn_body_block( &mut self, span: Span, decl: &FnDecl, body: Option<&Block>, ) -> hir::BodyId { self.lower_fn_body(decl, |this| this.lower_block_expr_opt(span, body)) } fn lower_block_expr_opt(&mut self, span: Span, block: Option<&Block>) -> hir::Expr<'hir> { match block { Some(block) => self.lower_block_expr(block), None => self.expr_err(span), } } pub(super) fn lower_const_body(&mut self, span: Span, expr: Option<&Expr>) -> hir::BodyId { self.lower_body(|this| { ( &[], match expr { Some(expr) => this.lower_expr_mut(expr), None => this.expr_err(span), }, ) }) } fn lower_maybe_async_body( &mut self, span: Span, decl: &FnDecl, asyncness: Async, body: Option<&Block>, ) -> hir::BodyId { let closure_id = match asyncness { Async::Yes { closure_id, .. } => closure_id, Async::No => return self.lower_fn_body_block(span, decl, body), }; self.lower_body(|this| { let mut parameters: Vec> = Vec::new(); let mut statements: Vec> = Vec::new(); // Async function parameters are lowered into the closure body so that they are // captured and so that the drop order matches the equivalent non-async functions. // // from: // // async fn foo(: , : , : ) { // // } // // into: // // fn foo(__arg0: , __arg1: , __arg2: ) { // async move { // let __arg2 = __arg2; // let = __arg2; // let __arg1 = __arg1; // let = __arg1; // let __arg0 = __arg0; // let = __arg0; // drop-temps { } // see comments later in fn for details // } // } // // If `` is a simple ident, then it is lowered to a single // `let = ;` statement as an optimization. // // Note that the body is embedded in `drop-temps`; an // equivalent desugaring would be `return { // };`. The key point is that we wish to drop all the // let-bound variables and temporaries created in the body // (and its tail expression!) before we drop the // parameters (c.f. rust-lang/rust#64512). for (index, parameter) in decl.inputs.iter().enumerate() { let parameter = this.lower_param(parameter); let span = parameter.pat.span; // Check if this is a binding pattern, if so, we can optimize and avoid adding a // `let = __argN;` statement. In this case, we do not rename the parameter. let (ident, is_simple_parameter) = match parameter.pat.kind { hir::PatKind::Binding(hir::BindingAnnotation::Unannotated, _, ident, _) => { (ident, true) } _ => { // Replace the ident for bindings that aren't simple. let name = format!("__arg{}", index); let ident = Ident::from_str(&name); (ident, false) } }; let desugared_span = this.mark_span_with_reason(DesugaringKind::Async, span, None); // Construct a parameter representing `__argN: ` to replace the parameter of the // async function. // // If this is the simple case, this parameter will end up being the same as the // original parameter, but with a different pattern id. let mut stmt_attrs = AttrVec::new(); stmt_attrs.extend(parameter.attrs.iter().cloned()); let (new_parameter_pat, new_parameter_id) = this.pat_ident(desugared_span, ident); let new_parameter = hir::Param { attrs: parameter.attrs, hir_id: parameter.hir_id, pat: new_parameter_pat, ty_span: parameter.ty_span, span: parameter.span, }; if is_simple_parameter { // If this is the simple case, then we only insert one statement that is // `let = ;`. We re-use the original argument's pattern so that // `HirId`s are densely assigned. let expr = this.expr_ident(desugared_span, ident, new_parameter_id); let stmt = this.stmt_let_pat( stmt_attrs, desugared_span, Some(expr), parameter.pat, hir::LocalSource::AsyncFn, ); statements.push(stmt); } else { // If this is not the simple case, then we construct two statements: // // ``` // let __argN = __argN; // let = __argN; // ``` // // The first statement moves the parameter into the closure and thus ensures // that the drop order is correct. // // The second statement creates the bindings that the user wrote. // Construct the `let mut __argN = __argN;` statement. It must be a mut binding // because the user may have specified a `ref mut` binding in the next // statement. let (move_pat, move_id) = this.pat_ident_binding_mode( desugared_span, ident, hir::BindingAnnotation::Mutable, ); let move_expr = this.expr_ident(desugared_span, ident, new_parameter_id); let move_stmt = this.stmt_let_pat( AttrVec::new(), desugared_span, Some(move_expr), move_pat, hir::LocalSource::AsyncFn, ); // Construct the `let = __argN;` statement. We re-use the original // parameter's pattern so that `HirId`s are densely assigned. let pattern_expr = this.expr_ident(desugared_span, ident, move_id); let pattern_stmt = this.stmt_let_pat( stmt_attrs, desugared_span, Some(pattern_expr), parameter.pat, hir::LocalSource::AsyncFn, ); statements.push(move_stmt); statements.push(pattern_stmt); }; parameters.push(new_parameter); } let body_span = body.map_or(span, |b| b.span); let async_expr = this.make_async_expr( CaptureBy::Value, closure_id, None, body_span, hir::AsyncGeneratorKind::Fn, |this| { // Create a block from the user's function body: let user_body = this.lower_block_expr_opt(body_span, body); // Transform into `drop-temps { }`, an expression: let desugared_span = this.mark_span_with_reason(DesugaringKind::Async, user_body.span, None); let user_body = this.expr_drop_temps( desugared_span, this.arena.alloc(user_body), AttrVec::new(), ); // As noted above, create the final block like // // ``` // { // let $param_pattern = $raw_param; // ... // drop-temps { } // } // ``` let body = this.block_all( desugared_span, this.arena.alloc_from_iter(statements), Some(user_body), ); this.expr_block(body, AttrVec::new()) }, ); ( this.arena.alloc_from_iter(parameters), this.expr(body_span, async_expr, AttrVec::new()), ) }) } fn lower_method_sig( &mut self, generics: &Generics, sig: &FnSig, fn_def_id: LocalDefId, impl_trait_return_allow: bool, is_async: Option, ) -> (hir::Generics<'hir>, hir::FnSig<'hir>) { let header = self.lower_fn_header(sig.header); let (generics, decl) = self.add_in_band_defs( generics, fn_def_id, AnonymousLifetimeMode::PassThrough, |this, idty| { this.lower_fn_decl( &sig.decl, Some((fn_def_id.to_def_id(), idty)), impl_trait_return_allow, is_async, ) }, ); (generics, hir::FnSig { header, decl }) } fn lower_fn_header(&mut self, h: FnHeader) -> hir::FnHeader { hir::FnHeader { unsafety: self.lower_unsafety(h.unsafety), asyncness: self.lower_asyncness(h.asyncness), constness: self.lower_constness(h.constness), abi: self.lower_extern(h.ext), } } pub(super) fn lower_abi(&mut self, abi: StrLit) -> abi::Abi { abi::lookup(&abi.symbol_unescaped.as_str()).unwrap_or_else(|| { self.error_on_invalid_abi(abi); abi::Abi::Rust }) } pub(super) fn lower_extern(&mut self, ext: Extern) -> abi::Abi { match ext { Extern::None => abi::Abi::Rust, Extern::Implicit => abi::Abi::C, Extern::Explicit(abi) => self.lower_abi(abi), } } fn error_on_invalid_abi(&self, abi: StrLit) { struct_span_err!(self.sess, abi.span, E0703, "invalid ABI: found `{}`", abi.symbol) .span_label(abi.span, "invalid ABI") .help(&format!("valid ABIs: {}", abi::all_names().join(", "))) .emit(); } fn lower_asyncness(&mut self, a: Async) -> hir::IsAsync { match a { Async::Yes { .. } => hir::IsAsync::Async, Async::No => hir::IsAsync::NotAsync, } } fn lower_constness(&mut self, c: Const) -> hir::Constness { match c { Const::Yes(_) => hir::Constness::Const, Const::No => hir::Constness::NotConst, } } pub(super) fn lower_unsafety(&mut self, u: Unsafe) -> hir::Unsafety { match u { Unsafe::Yes(_) => hir::Unsafety::Unsafe, Unsafe::No => hir::Unsafety::Normal, } } pub(super) fn lower_generics_mut( &mut self, generics: &Generics, itctx: ImplTraitContext<'_, 'hir>, ) -> GenericsCtor<'hir> { // Collect `?Trait` bounds in where clause and move them to parameter definitions. // FIXME: this could probably be done with less rightward drift. It also looks like two // control paths where `report_error` is called are the only paths that advance to after the // match statement, so the error reporting could probably just be moved there. let mut add_bounds: NodeMap> = Default::default(); for pred in &generics.where_clause.predicates { if let WherePredicate::BoundPredicate(ref bound_pred) = *pred { 'next_bound: for bound in &bound_pred.bounds { if let GenericBound::Trait(_, TraitBoundModifier::Maybe) = *bound { let report_error = |this: &mut Self| { this.diagnostic().span_err( bound_pred.bounded_ty.span, "`?Trait` bounds are only permitted at the \ point where a type parameter is declared", ); }; // Check if the where clause type is a plain type parameter. match bound_pred.bounded_ty.kind { TyKind::Path(None, ref path) if path.segments.len() == 1 && bound_pred.bound_generic_params.is_empty() => { if let Some(Res::Def(DefKind::TyParam, def_id)) = self .resolver .get_partial_res(bound_pred.bounded_ty.id) .map(|d| d.base_res()) { if let Some(def_id) = def_id.as_local() { for param in &generics.params { if let GenericParamKind::Type { .. } = param.kind { if def_id == self.resolver.local_def_id(param.id) { add_bounds .entry(param.id) .or_default() .push(bound.clone()); continue 'next_bound; } } } } } report_error(self) } _ => report_error(self), } } } } } GenericsCtor { params: self.lower_generic_params_mut(&generics.params, &add_bounds, itctx).collect(), where_clause: self.lower_where_clause(&generics.where_clause), span: generics.span, } } pub(super) fn lower_generics( &mut self, generics: &Generics, itctx: ImplTraitContext<'_, 'hir>, ) -> hir::Generics<'hir> { let generics_ctor = self.lower_generics_mut(generics, itctx); generics_ctor.into_generics(self.arena) } fn lower_where_clause(&mut self, wc: &WhereClause) -> hir::WhereClause<'hir> { self.with_anonymous_lifetime_mode(AnonymousLifetimeMode::ReportError, |this| { hir::WhereClause { predicates: this.arena.alloc_from_iter( wc.predicates.iter().map(|predicate| this.lower_where_predicate(predicate)), ), span: wc.span, } }) } fn lower_where_predicate(&mut self, pred: &WherePredicate) -> hir::WherePredicate<'hir> { match *pred { WherePredicate::BoundPredicate(WhereBoundPredicate { ref bound_generic_params, ref bounded_ty, ref bounds, span, }) => { self.with_in_scope_lifetime_defs(&bound_generic_params, |this| { hir::WherePredicate::BoundPredicate(hir::WhereBoundPredicate { bound_generic_params: this.lower_generic_params( bound_generic_params, &NodeMap::default(), ImplTraitContext::disallowed(), ), bounded_ty: this.lower_ty(bounded_ty, ImplTraitContext::disallowed()), bounds: this.arena.alloc_from_iter(bounds.iter().filter_map(|bound| { match *bound { // Ignore `?Trait` bounds. // They were copied into type parameters already. GenericBound::Trait(_, TraitBoundModifier::Maybe) => None, _ => Some( this.lower_param_bound(bound, ImplTraitContext::disallowed()), ), } })), span, }) }) } WherePredicate::RegionPredicate(WhereRegionPredicate { ref lifetime, ref bounds, span, }) => hir::WherePredicate::RegionPredicate(hir::WhereRegionPredicate { span, lifetime: self.lower_lifetime(lifetime), bounds: self.lower_param_bounds(bounds, ImplTraitContext::disallowed()), }), WherePredicate::EqPredicate(WhereEqPredicate { id, ref lhs_ty, ref rhs_ty, span }) => { hir::WherePredicate::EqPredicate(hir::WhereEqPredicate { hir_id: self.lower_node_id(id), lhs_ty: self.lower_ty(lhs_ty, ImplTraitContext::disallowed()), rhs_ty: self.lower_ty(rhs_ty, ImplTraitContext::disallowed()), span, }) } } } } /// Helper struct for delayed construction of Generics. pub(super) struct GenericsCtor<'hir> { pub(super) params: SmallVec<[hir::GenericParam<'hir>; 4]>, where_clause: hir::WhereClause<'hir>, span: Span, } impl<'hir> GenericsCtor<'hir> { pub(super) fn into_generics(self, arena: &'hir Arena<'hir>) -> hir::Generics<'hir> { hir::Generics { params: arena.alloc_from_iter(self.params), where_clause: self.where_clause, span: self.span, } } }