use crate::consts::{constant, Constant}; use if_chain::if_chain; use rustc_ast::ast::RangeLimits; use rustc_errors::Applicability; use rustc_hir::{BinOpKind, Expr, ExprKind, QPath}; use rustc_lint::{LateContext, LateLintPass}; use rustc_middle::ty; use rustc_session::{declare_lint_pass, declare_tool_lint}; use rustc_span::source_map::Spanned; use std::cmp::Ordering; use crate::utils::sugg::Sugg; use crate::utils::{get_parent_expr, is_integer_const, snippet, snippet_opt, span_lint, span_lint_and_then}; use crate::utils::{higher, SpanlessEq}; declare_clippy_lint! { /// **What it does:** Checks for zipping a collection with the range of /// `0.._.len()`. /// /// **Why is this bad?** The code is better expressed with `.enumerate()`. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// # let x = vec![1]; /// x.iter().zip(0..x.len()); /// ``` /// Could be written as /// ```rust /// # let x = vec![1]; /// x.iter().enumerate(); /// ``` pub RANGE_ZIP_WITH_LEN, complexity, "zipping iterator with a range when `enumerate()` would do" } declare_clippy_lint! { /// **What it does:** Checks for exclusive ranges where 1 is added to the /// upper bound, e.g., `x..(y+1)`. /// /// **Why is this bad?** The code is more readable with an inclusive range /// like `x..=y`. /// /// **Known problems:** Will add unnecessary pair of parentheses when the /// expression is not wrapped in a pair but starts with a opening parenthesis /// and ends with a closing one. /// I.e., `let _ = (f()+1)..(f()+1)` results in `let _ = ((f()+1)..=f())`. /// /// Also in many cases, inclusive ranges are still slower to run than /// exclusive ranges, because they essentially add an extra branch that /// LLVM may fail to hoist out of the loop. /// /// **Example:** /// ```rust,ignore /// for x..(y+1) { .. } /// ``` /// Could be written as /// ```rust,ignore /// for x..=y { .. } /// ``` pub RANGE_PLUS_ONE, pedantic, "`x..(y+1)` reads better as `x..=y`" } declare_clippy_lint! { /// **What it does:** Checks for inclusive ranges where 1 is subtracted from /// the upper bound, e.g., `x..=(y-1)`. /// /// **Why is this bad?** The code is more readable with an exclusive range /// like `x..y`. /// /// **Known problems:** None. /// /// **Example:** /// ```rust,ignore /// for x..=(y-1) { .. } /// ``` /// Could be written as /// ```rust,ignore /// for x..y { .. } /// ``` pub RANGE_MINUS_ONE, complexity, "`x..=(y-1)` reads better as `x..y`" } declare_clippy_lint! { /// **What it does:** Checks for range expressions `x..y` where both `x` and `y` /// are constant and `x` is greater or equal to `y`. /// /// **Why is this bad?** Empty ranges yield no values so iterating them is a no-op. /// Moreover, trying to use a reversed range to index a slice will panic at run-time. /// /// **Known problems:** None. /// /// **Example:** /// /// ```rust,no_run /// fn main() { /// (10..=0).for_each(|x| println!("{}", x)); /// /// let arr = [1, 2, 3, 4, 5]; /// let sub = &arr[3..1]; /// } /// ``` /// Use instead: /// ```rust /// fn main() { /// (0..=10).rev().for_each(|x| println!("{}", x)); /// /// let arr = [1, 2, 3, 4, 5]; /// let sub = &arr[1..3]; /// } /// ``` pub REVERSED_EMPTY_RANGES, correctness, "reversing the limits of range expressions, resulting in empty ranges" } declare_lint_pass!(Ranges => [ RANGE_ZIP_WITH_LEN, RANGE_PLUS_ONE, RANGE_MINUS_ONE, REVERSED_EMPTY_RANGES, ]); impl<'a, 'tcx> LateLintPass<'a, 'tcx> for Ranges { fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr<'_>) { if let ExprKind::MethodCall(ref path, _, ref args) = expr.kind { let name = path.ident.as_str(); if name == "zip" && args.len() == 2 { let iter = &args[0].kind; let zip_arg = &args[1]; if_chain! { // `.iter()` call if let ExprKind::MethodCall(ref iter_path, _, ref iter_args ) = *iter; if iter_path.ident.name == sym!(iter); // range expression in `.zip()` call: `0..x.len()` if let Some(higher::Range { start: Some(start), end: Some(end), .. }) = higher::range(cx, zip_arg); if is_integer_const(cx, start, 0); // `.len()` call if let ExprKind::MethodCall(ref len_path, _, ref len_args) = end.kind; if len_path.ident.name == sym!(len) && len_args.len() == 1; // `.iter()` and `.len()` called on same `Path` if let ExprKind::Path(QPath::Resolved(_, ref iter_path)) = iter_args[0].kind; if let ExprKind::Path(QPath::Resolved(_, ref len_path)) = len_args[0].kind; if SpanlessEq::new(cx).eq_path_segments(&iter_path.segments, &len_path.segments); then { span_lint(cx, RANGE_ZIP_WITH_LEN, expr.span, &format!("It is more idiomatic to use `{}.iter().enumerate()`", snippet(cx, iter_args[0].span, "_"))); } } } } check_exclusive_range_plus_one(cx, expr); check_inclusive_range_minus_one(cx, expr); check_reversed_empty_range(cx, expr); } } // exclusive range plus one: `x..(y+1)` fn check_exclusive_range_plus_one(cx: &LateContext<'_, '_>, expr: &Expr<'_>) { if_chain! { if let Some(higher::Range { start, end: Some(end), limits: RangeLimits::HalfOpen }) = higher::range(cx, expr); if let Some(y) = y_plus_one(cx, end); then { let span = if expr.span.from_expansion() { expr.span .ctxt() .outer_expn_data() .call_site } else { expr.span }; span_lint_and_then( cx, RANGE_PLUS_ONE, span, "an inclusive range would be more readable", |diag| { let start = start.map_or(String::new(), |x| Sugg::hir(cx, x, "x").to_string()); let end = Sugg::hir(cx, y, "y"); if let Some(is_wrapped) = &snippet_opt(cx, span) { if is_wrapped.starts_with('(') && is_wrapped.ends_with(')') { diag.span_suggestion( span, "use", format!("({}..={})", start, end), Applicability::MaybeIncorrect, ); } else { diag.span_suggestion( span, "use", format!("{}..={}", start, end), Applicability::MachineApplicable, // snippet ); } } }, ); } } } // inclusive range minus one: `x..=(y-1)` fn check_inclusive_range_minus_one(cx: &LateContext<'_, '_>, expr: &Expr<'_>) { if_chain! { if let Some(higher::Range { start, end: Some(end), limits: RangeLimits::Closed }) = higher::range(cx, expr); if let Some(y) = y_minus_one(cx, end); then { span_lint_and_then( cx, RANGE_MINUS_ONE, expr.span, "an exclusive range would be more readable", |diag| { let start = start.map_or(String::new(), |x| Sugg::hir(cx, x, "x").to_string()); let end = Sugg::hir(cx, y, "y"); diag.span_suggestion( expr.span, "use", format!("{}..{}", start, end), Applicability::MachineApplicable, // snippet ); }, ); } } } fn check_reversed_empty_range(cx: &LateContext<'_, '_>, expr: &Expr<'_>) { fn inside_indexing_expr(cx: &LateContext<'_, '_>, expr: &Expr<'_>) -> bool { matches!( get_parent_expr(cx, expr), Some(Expr { kind: ExprKind::Index(..), .. }) ) } fn is_empty_range(limits: RangeLimits, ordering: Ordering) -> bool { match limits { RangeLimits::HalfOpen => ordering != Ordering::Less, RangeLimits::Closed => ordering == Ordering::Greater, } } if_chain! { if let Some(higher::Range { start: Some(start), end: Some(end), limits }) = higher::range(cx, expr); let ty = cx.tables.expr_ty(start); if let ty::Int(_) | ty::Uint(_) = ty.kind; if let Some((start_idx, _)) = constant(cx, cx.tables, start); if let Some((end_idx, _)) = constant(cx, cx.tables, end); if let Some(ordering) = Constant::partial_cmp(cx.tcx, ty, &start_idx, &end_idx); if is_empty_range(limits, ordering); then { if inside_indexing_expr(cx, expr) { let (reason, outcome) = if ordering == Ordering::Equal { ("empty", "always yield an empty slice") } else { ("reversed", "panic at run-time") }; span_lint( cx, REVERSED_EMPTY_RANGES, expr.span, &format!("this range is {} and using it to index a slice will {}", reason, outcome), ); } else { span_lint_and_then( cx, REVERSED_EMPTY_RANGES, expr.span, "this range is empty so it will yield no values", |diag| { if ordering != Ordering::Equal { let start_snippet = snippet(cx, start.span, "_"); let end_snippet = snippet(cx, end.span, "_"); let dots = match limits { RangeLimits::HalfOpen => "..", RangeLimits::Closed => "..=" }; diag.span_suggestion( expr.span, "consider using the following if you are attempting to iterate over this \ range in reverse", format!("({}{}{}).rev()", end_snippet, dots, start_snippet), Applicability::MaybeIncorrect, ); } }, ); } } } } fn y_plus_one<'t>(cx: &LateContext<'_, '_>, expr: &'t Expr<'_>) -> Option<&'t Expr<'t>> { match expr.kind { ExprKind::Binary( Spanned { node: BinOpKind::Add, .. }, ref lhs, ref rhs, ) => { if is_integer_const(cx, lhs, 1) { Some(rhs) } else if is_integer_const(cx, rhs, 1) { Some(lhs) } else { None } }, _ => None, } } fn y_minus_one<'t>(cx: &LateContext<'_, '_>, expr: &'t Expr<'_>) -> Option<&'t Expr<'t>> { match expr.kind { ExprKind::Binary( Spanned { node: BinOpKind::Sub, .. }, ref lhs, ref rhs, ) if is_integer_const(cx, rhs, 1) => Some(lhs), _ => None, } }