// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. /*! * String manipulation * * Strings are a packed UTF-8 representation of text, stored as null * terminated buffers of u8 bytes. Strings should be indexed in bytes, * for efficiency, but UTF-8 unsafe operations should be avoided. */ use at_vec; use cast; use char; use char::Char; use clone::Clone; use container::{Container, Mutable}; use iter::Times; use iterator::{Iterator, FromIterator, Extendable, IteratorUtil}; use iterator::{Filter, AdditiveIterator, Map}; use iterator::{Invert, DoubleEndedIterator, DoubleEndedIteratorUtil}; use libc; use num::Zero; use option::{None, Option, Some}; use ptr; use ptr::RawPtr; use to_str::ToStr; use uint; use unstable::raw::Repr; use vec; use vec::{OwnedVector, OwnedCopyableVector, ImmutableVector, MutableVector}; /* Section: Conditions */ condition! { not_utf8: (~str) -> ~str; } /* Section: Creating a string */ /// Convert a vector of bytes to a new UTF-8 string /// /// # Failure /// /// Raises the `not_utf8` condition if invalid UTF-8 pub fn from_bytes(vv: &[u8]) -> ~str { use str::not_utf8::cond; if !is_utf8(vv) { let first_bad_byte = *vv.iter().find_(|&b| !is_utf8([*b])).get(); cond.raise(fmt!("from_bytes: input is not UTF-8; first bad byte is %u", first_bad_byte as uint)) } else { return unsafe { raw::from_bytes(vv) } } } /// Consumes a vector of bytes to create a new utf-8 string /// /// # Failure /// /// Raises the `not_utf8` condition if invalid UTF-8 pub fn from_bytes_owned(vv: ~[u8]) -> ~str { use str::not_utf8::cond; if !is_utf8(vv) { let first_bad_byte = *vv.iter().find_(|&b| !is_utf8([*b])).get(); cond.raise(fmt!("from_bytes: input is not UTF-8; first bad byte is %u", first_bad_byte as uint)) } else { return unsafe { raw::from_bytes_owned(vv) } } } /// Converts a vector to a string slice without performing any allocations. /// /// Once the slice has been validated as utf-8, it is transmuted in-place and /// returned as a '&str' instead of a '&[u8]' /// /// # Failure /// /// Fails if invalid UTF-8 pub fn from_bytes_slice<'a>(vector: &'a [u8]) -> &'a str { unsafe { assert!(is_utf8(vector)); let mut s = vector.repr(); s.len += 1; cast::transmute(s) } } impl ToStr for ~str { #[inline] fn to_str(&self) -> ~str { self.to_owned() } } impl<'self> ToStr for &'self str { #[inline] fn to_str(&self) -> ~str { self.to_owned() } } impl ToStr for @str { #[inline] fn to_str(&self) -> ~str { self.to_owned() } } /// Convert a byte to a UTF-8 string /// /// # Failure /// /// Fails if invalid UTF-8 pub fn from_byte(b: u8) -> ~str { assert!(b < 128u8); unsafe { cast::transmute(~[b, 0u8]) } } /// Convert a char to a string pub fn from_char(ch: char) -> ~str { let mut buf = ~""; buf.push_char(ch); buf } /// Convert a vector of chars to a string pub fn from_chars(chs: &[char]) -> ~str { let mut buf = ~""; buf.reserve(chs.len()); foreach ch in chs.iter() { buf.push_char(*ch) } buf } #[doc(hidden)] pub fn push_str(lhs: &mut ~str, rhs: &str) { lhs.push_str(rhs) } #[allow(missing_doc)] pub trait StrVector { pub fn concat(&self) -> ~str; pub fn connect(&self, sep: &str) -> ~str; } impl<'self, S: Str> StrVector for &'self [S] { /// Concatenate a vector of strings. pub fn concat(&self) -> ~str { if self.is_empty() { return ~""; } let len = self.iter().transform(|s| s.as_slice().len()).sum(); let mut s = with_capacity(len); unsafe { do s.as_mut_buf |buf, _| { let mut buf = buf; foreach ss in self.iter() { do ss.as_slice().as_imm_buf |ssbuf, sslen| { let sslen = sslen - 1; ptr::copy_memory(buf, ssbuf, sslen); buf = buf.offset(sslen as int); } } } raw::set_len(&mut s, len); } s } /// Concatenate a vector of strings, placing a given separator between each. pub fn connect(&self, sep: &str) -> ~str { if self.is_empty() { return ~""; } // concat is faster if sep.is_empty() { return self.concat(); } // this is wrong without the guarantee that `self` is non-empty let len = sep.len() * (self.len() - 1) + self.iter().transform(|s| s.as_slice().len()).sum(); let mut s = ~""; let mut first = true; s.reserve(len); unsafe { do s.as_mut_buf |buf, _| { do sep.as_imm_buf |sepbuf, seplen| { let seplen = seplen - 1; let mut buf = cast::transmute_mut_unsafe(buf); foreach ss in self.iter() { do ss.as_slice().as_imm_buf |ssbuf, sslen| { let sslen = sslen - 1; if first { first = false; } else { ptr::copy_memory(buf, sepbuf, seplen); buf = buf.offset(seplen as int); } ptr::copy_memory(buf, ssbuf, sslen); buf = buf.offset(sslen as int); } } } } raw::set_len(&mut s, len); } s } } /// Something that can be used to compare against a character pub trait CharEq { /// Determine if the splitter should split at the given character fn matches(&self, char) -> bool; /// Indicate if this is only concerned about ASCII characters, /// which can allow for a faster implementation. fn only_ascii(&self) -> bool; } impl CharEq for char { #[inline] fn matches(&self, c: char) -> bool { *self == c } fn only_ascii(&self) -> bool { (*self as uint) < 128 } } impl<'self> CharEq for &'self fn(char) -> bool { #[inline] fn matches(&self, c: char) -> bool { (*self)(c) } fn only_ascii(&self) -> bool { false } } impl CharEq for extern "Rust" fn(char) -> bool { #[inline] fn matches(&self, c: char) -> bool { (*self)(c) } fn only_ascii(&self) -> bool { false } } impl<'self, C: CharEq> CharEq for &'self [C] { #[inline] fn matches(&self, c: char) -> bool { self.iter().any(|m| m.matches(c)) } fn only_ascii(&self) -> bool { self.iter().all(|m| m.only_ascii()) } } /* Section: Iterators */ /// External iterator for a string's characters and their byte offsets. /// Use with the `std::iterator` module. #[deriving(Clone)] pub struct CharOffsetIterator<'self> { priv index_front: uint, priv index_back: uint, priv string: &'self str, } impl<'self> Iterator<(uint, char)> for CharOffsetIterator<'self> { #[inline] fn next(&mut self) -> Option<(uint, char)> { if self.index_front < self.index_back { let CharRange {ch, next} = self.string.char_range_at(self.index_front); let index = self.index_front; self.index_front = next; Some((index, ch)) } else { None } } } impl<'self> DoubleEndedIterator<(uint, char)> for CharOffsetIterator<'self> { #[inline] fn next_back(&mut self) -> Option<(uint, char)> { if self.index_front < self.index_back { let CharRange {ch, next} = self.string.char_range_at_reverse(self.index_back); self.index_back = next; Some((next, ch)) } else { None } } } /// External iterator for a string's characters and their byte offsets in reverse order. /// Use with the `std::iterator` module. pub type CharOffsetRevIterator<'self> = Invert>; /// External iterator for a string's characters. /// Use with the `std::iterator` module. pub type CharIterator<'self> = Map<'self, (uint, char), char, CharOffsetIterator<'self>>; /// External iterator for a string's characters in reverse order. /// Use with the `std::iterator` module. pub type CharRevIterator<'self> = Invert>>; /// External iterator for a string's bytes. /// Use with the `std::iterator` module. pub type ByteIterator<'self> = Map<'self, &'self u8, u8, vec::VecIterator<'self, u8>>; /// External iterator for a string's bytes in reverse order. /// Use with the `std::iterator` module. pub type ByteRevIterator<'self> = Invert>>; /// An iterator over the substrings of a string, separated by `sep`. #[deriving(Clone)] pub struct CharSplitIterator<'self,Sep> { priv string: &'self str, priv position: uint, priv sep: Sep, /// The number of splits remaining priv count: uint, /// Whether an empty string at the end is allowed priv allow_trailing_empty: bool, priv finished: bool, priv only_ascii: bool } /// An iterator over the words of a string, separated by an sequence of whitespace pub type WordIterator<'self> = Filter<'self, &'self str, CharSplitIterator<'self, extern "Rust" fn(char) -> bool>>; /// An iterator over the lines of a string, separated by either `\n` or (`\r\n`). pub type AnyLineIterator<'self> = Map<'self, &'self str, &'self str, CharSplitIterator<'self, char>>; impl<'self, Sep: CharEq> Iterator<&'self str> for CharSplitIterator<'self, Sep> { #[inline] fn next(&mut self) -> Option<&'self str> { if self.finished { return None } let l = self.string.len(); let start = self.position; if self.only_ascii { // this gives a *huge* speed up for splitting on ASCII // characters (e.g. '\n' or ' ') while self.position < l && self.count > 0 { let byte = self.string[self.position]; if self.sep.matches(byte as char) { let slice = unsafe { raw::slice_bytes(self.string, start, self.position) }; self.position += 1; self.count -= 1; return Some(slice); } self.position += 1; } } else { while self.position < l && self.count > 0 { let CharRange {ch, next} = self.string.char_range_at(self.position); if self.sep.matches(ch) { let slice = unsafe { raw::slice_bytes(self.string, start, self.position) }; self.position = next; self.count -= 1; return Some(slice); } self.position = next; } } self.finished = true; if self.allow_trailing_empty || start < l { Some(unsafe { raw::slice_bytes(self.string, start, l) }) } else { None } } } /// An iterator over the start and end indicies of the matches of a /// substring within a larger string #[deriving(Clone)] pub struct MatchesIndexIterator<'self> { priv haystack: &'self str, priv needle: &'self str, priv position: uint, } /// An iterator over the substrings of a string separated by a given /// search string #[deriving(Clone)] pub struct StrSplitIterator<'self> { priv it: MatchesIndexIterator<'self>, priv last_end: uint, priv finished: bool } impl<'self> Iterator<(uint, uint)> for MatchesIndexIterator<'self> { #[inline] fn next(&mut self) -> Option<(uint, uint)> { // See Issue #1932 for why this is a naive search let (h_len, n_len) = (self.haystack.len(), self.needle.len()); let mut match_start = 0; let mut match_i = 0; while self.position < h_len { if self.haystack[self.position] == self.needle[match_i] { if match_i == 0 { match_start = self.position; } match_i += 1; self.position += 1; if match_i == n_len { // found a match! return Some((match_start, self.position)); } } else { // failed match, backtrack if match_i > 0 { match_i = 0; self.position = match_start; } self.position += 1; } } None } } impl<'self> Iterator<&'self str> for StrSplitIterator<'self> { #[inline] fn next(&mut self) -> Option<&'self str> { if self.finished { return None; } match self.it.next() { Some((from, to)) => { let ret = Some(self.it.haystack.slice(self.last_end, from)); self.last_end = to; ret } None => { self.finished = true; Some(self.it.haystack.slice(self.last_end, self.it.haystack.len())) } } } } /// Replace all occurrences of one string with another /// /// # Arguments /// /// * s - The string containing substrings to replace /// * from - The string to replace /// * to - The replacement string /// /// # Return value /// /// The original string with all occurances of `from` replaced with `to` pub fn replace(s: &str, from: &str, to: &str) -> ~str { let mut result = ~""; let mut last_end = 0; foreach (start, end) in s.matches_index_iter(from) { result.push_str(unsafe{raw::slice_bytes(s, last_end, start)}); result.push_str(to); last_end = end; } result.push_str(unsafe{raw::slice_bytes(s, last_end, s.len())}); result } /* Section: Comparing strings */ /// Bytewise slice equality #[cfg(not(test))] #[lang="str_eq"] #[inline] pub fn eq_slice(a: &str, b: &str) -> bool { do a.as_imm_buf |ap, alen| { do b.as_imm_buf |bp, blen| { if (alen != blen) { false } else { unsafe { libc::memcmp(ap as *libc::c_void, bp as *libc::c_void, (alen - 1) as libc::size_t) == 0 } } } } } #[cfg(test)] #[inline] pub fn eq_slice(a: &str, b: &str) -> bool { do a.as_imm_buf |ap, alen| { do b.as_imm_buf |bp, blen| { if (alen != blen) { false } else { unsafe { libc::memcmp(ap as *libc::c_void, bp as *libc::c_void, (alen - 1) as libc::size_t) == 0 } } } } } /// Bytewise string equality #[cfg(not(test))] #[lang="uniq_str_eq"] #[inline] pub fn eq(a: &~str, b: &~str) -> bool { eq_slice(*a, *b) } #[cfg(test)] #[inline] pub fn eq(a: &~str, b: &~str) -> bool { eq_slice(*a, *b) } /* Section: Searching */ // Utility used by various searching functions fn match_at<'a,'b>(haystack: &'a str, needle: &'b str, at: uint) -> bool { let mut i = at; foreach c in needle.byte_iter() { if haystack[i] != c { return false; } i += 1u; } return true; } /* Section: Misc */ // Return the initial codepoint accumulator for the first byte. // The first byte is special, only want bottom 5 bits for width 2, 4 bits // for width 3, and 3 bits for width 4 macro_rules! utf8_first_byte( ($byte:expr, $width:expr) => (($byte & (0x7F >> $width)) as uint) ) // return the value of $ch updated with continuation byte $byte macro_rules! utf8_acc_cont_byte( ($ch:expr, $byte:expr) => (($ch << 6) | ($byte & 63u8) as uint) ) /// Determines if a vector of bytes contains valid UTF-8 pub fn is_utf8(v: &[u8]) -> bool { let mut i = 0u; let total = v.len(); while i < total { if v[i] < 128u8 { i += 1u; } else { let w = utf8_char_width(v[i]); if w == 0u { return false; } let nexti = i + w; if nexti > total { return false; } // 1. Make sure the correct number of continuation bytes are present // 2. Check codepoint ranges (deny overlong encodings) // 2-byte encoding is for codepoints \u0080 to \u07ff // 3-byte encoding is for codepoints \u0800 to \uffff // 4-byte encoding is for codepoints \u10000 to \u10ffff // 2-byte encodings are correct if the width and continuation match up if v[i + 1] & 192u8 != TAG_CONT_U8 { return false; } if w > 2 { let mut ch; ch = utf8_first_byte!(v[i], w); ch = utf8_acc_cont_byte!(ch, v[i + 1]); if v[i + 2] & 192u8 != TAG_CONT_U8 { return false; } ch = utf8_acc_cont_byte!(ch, v[i + 2]); if w == 3 && ch < MAX_TWO_B { return false; } if w > 3 { if v[i + 3] & 192u8 != TAG_CONT_U8 { return false; } ch = utf8_acc_cont_byte!(ch, v[i + 3]); if ch < MAX_THREE_B || ch >= MAX_UNICODE { return false; } } } i = nexti; } } true } /// Determines if a vector of `u16` contains valid UTF-16 pub fn is_utf16(v: &[u16]) -> bool { let len = v.len(); let mut i = 0u; while (i < len) { let u = v[i]; if u <= 0xD7FF_u16 || u >= 0xE000_u16 { i += 1u; } else { if i+1u < len { return false; } let u2 = v[i+1u]; if u < 0xD7FF_u16 || u > 0xDBFF_u16 { return false; } if u2 < 0xDC00_u16 || u2 > 0xDFFF_u16 { return false; } i += 2u; } } return true; } /// Iterates over the utf-16 characters in the specified slice, yielding each /// decoded unicode character to the function provided. /// /// # Failures /// /// * Fails on invalid utf-16 data pub fn utf16_chars(v: &[u16], f: &fn(char)) { let len = v.len(); let mut i = 0u; while (i < len && v[i] != 0u16) { let u = v[i]; if u <= 0xD7FF_u16 || u >= 0xE000_u16 { f(u as char); i += 1u; } else { let u2 = v[i+1u]; assert!(u >= 0xD800_u16 && u <= 0xDBFF_u16); assert!(u2 >= 0xDC00_u16 && u2 <= 0xDFFF_u16); let mut c = (u - 0xD800_u16) as char; c = c << 10; c |= (u2 - 0xDC00_u16) as char; c |= 0x1_0000_u32 as char; f(c); i += 2u; } } } /// Allocates a new string from the utf-16 slice provided pub fn from_utf16(v: &[u16]) -> ~str { let mut buf = ~""; buf.reserve(v.len()); utf16_chars(v, |ch| buf.push_char(ch)); buf } /// Allocates a new string with the specified capacity. The string returned is /// the empty string, but has capacity for much more. #[inline] pub fn with_capacity(capacity: uint) -> ~str { let mut buf = ~""; buf.reserve(capacity); buf } /// As char_len but for a slice of a string /// /// # Arguments /// /// * s - A valid string /// * start - The position inside `s` where to start counting in bytes /// * end - The position where to stop counting /// /// # Return value /// /// The number of Unicode characters in `s` between the given indices. pub fn count_chars(s: &str, start: uint, end: uint) -> uint { assert!(s.is_char_boundary(start)); assert!(s.is_char_boundary(end)); let mut i = start; let mut len = 0u; while i < end { let next = s.char_range_at(i).next; len += 1u; i = next; } return len; } /// Counts the number of bytes taken by the first `n` chars in `s` /// starting from `start`. pub fn count_bytes<'b>(s: &'b str, start: uint, n: uint) -> uint { assert!(s.is_char_boundary(start)); let mut end = start; let mut cnt = n; let l = s.len(); while cnt > 0u { assert!(end < l); let next = s.char_range_at(end).next; cnt -= 1u; end = next; } end - start } // https://tools.ietf.org/html/rfc3629 priv static UTF8_CHAR_WIDTH: [u8, ..256] = [ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // 0x1F 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // 0x3F 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // 0x5F 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // 0x7F 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, // 0x9F 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, // 0xBF 0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, // 0xDF 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, // 0xEF 4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0, // 0xFF ]; /// Given a first byte, determine how many bytes are in this UTF-8 character pub fn utf8_char_width(b: u8) -> uint { return UTF8_CHAR_WIDTH[b] as uint; } #[allow(missing_doc)] pub struct CharRange { ch: char, next: uint } // UTF-8 tags and ranges priv static TAG_CONT_U8: u8 = 128u8; priv static TAG_CONT: uint = 128u; priv static MAX_ONE_B: uint = 128u; priv static TAG_TWO_B: uint = 192u; priv static MAX_TWO_B: uint = 2048u; priv static TAG_THREE_B: uint = 224u; priv static MAX_THREE_B: uint = 65536u; priv static TAG_FOUR_B: uint = 240u; priv static MAX_UNICODE: uint = 1114112u; /// Unsafe operations pub mod raw { use option::Some; use cast; use libc; use ptr; use str::is_utf8; use vec; use vec::MutableVector; use unstable::raw::{Slice, String}; /// Create a Rust string from a *u8 buffer of the given length pub unsafe fn from_buf_len(buf: *u8, len: uint) -> ~str { let mut v: ~[u8] = vec::with_capacity(len + 1); v.as_mut_buf(|vbuf, _len| { ptr::copy_memory(vbuf, buf as *u8, len) }); vec::raw::set_len(&mut v, len); v.push(0u8); assert!(is_utf8(v)); cast::transmute(v) } /// Create a Rust string from a null-terminated C string pub unsafe fn from_c_str(buf: *libc::c_char) -> ~str { let mut curr = buf; let mut i = 0; while *curr != 0 { i += 1; curr = ptr::offset(buf, i); } from_buf_len(buf as *u8, i as uint) } /// Converts a vector of bytes to a new owned string. pub unsafe fn from_bytes(v: &[u8]) -> ~str { do v.as_imm_buf |buf, len| { from_buf_len(buf, len) } } /// Converts an owned vector of bytes to a new owned string. This assumes /// that the utf-8-ness of the vector has already been validated pub unsafe fn from_bytes_owned(mut v: ~[u8]) -> ~str { v.push(0u8); cast::transmute(v) } /// Converts a byte to a string. pub unsafe fn from_byte(u: u8) -> ~str { from_bytes([u]) } /// Form a slice from a C string. Unsafe because the caller must ensure the /// C string has the static lifetime, or else the return value may be /// invalidated later. pub unsafe fn c_str_to_static_slice(s: *libc::c_char) -> &'static str { let s = s as *u8; let mut curr = s; let mut len = 0u; while *curr != 0u8 { len += 1u; curr = ptr::offset(s, len as int); } let v = Slice { data: s, len: len + 1 }; assert!(is_utf8(cast::transmute(v))); cast::transmute(v) } /// Takes a bytewise (not UTF-8) slice from a string. /// /// Returns the substring from [`begin`..`end`). /// /// # Failure /// /// If begin is greater than end. /// If end is greater than the length of the string. #[inline] pub unsafe fn slice_bytes(s: &str, begin: uint, end: uint) -> &str { do s.as_imm_buf |sbuf, n| { assert!((begin <= end)); assert!((end <= n)); cast::transmute(Slice { data: ptr::offset(sbuf, begin as int), len: end - begin + 1, }) } } /// Appends a byte to a string. (Not UTF-8 safe). pub unsafe fn push_byte(s: &mut ~str, b: u8) { let new_len = s.len() + 1; s.reserve_at_least(new_len); do s.as_mut_buf |buf, len| { *ptr::mut_offset(buf, len as int) = b; } set_len(&mut *s, new_len); } /// Appends a vector of bytes to a string. (Not UTF-8 safe). unsafe fn push_bytes(s: &mut ~str, bytes: &[u8]) { let new_len = s.len() + bytes.len(); s.reserve_at_least(new_len); foreach byte in bytes.iter() { push_byte(&mut *s, *byte); } } /// Removes the last byte from a string and returns it. (Not UTF-8 safe). pub unsafe fn pop_byte(s: &mut ~str) -> u8 { let len = s.len(); assert!((len > 0u)); let b = s[len - 1u]; set_len(s, len - 1u); return b; } /// Removes the first byte from a string and returns it. (Not UTF-8 safe). pub unsafe fn shift_byte(s: &mut ~str) -> u8 { let len = s.len(); assert!((len > 0u)); let b = s[0]; *s = s.slice(1, len).to_owned(); return b; } /// Sets the length of the string and adds the null terminator #[inline] pub unsafe fn set_len(v: &mut ~str, new_len: uint) { let v: **mut String = cast::transmute(v); let repr = *v; (*repr).fill = new_len + 1u; let null = ptr::mut_offset(&mut ((*repr).data), new_len as int); *null = 0u8; } #[test] fn test_from_buf_len() { unsafe { let a = ~[65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 0u8]; let b = vec::raw::to_ptr(a); let c = from_buf_len(b, 3u); assert_eq!(c, ~"AAA"); } } } /* Section: Trait implementations */ #[cfg(not(test))] pub mod traits { use ops::Add; use cmp::{TotalOrd, Ordering, Less, Equal, Greater, Eq, Ord, Equiv, TotalEq}; use super::{Str, eq_slice}; use option::{Some, None}; impl<'self> Add<&'self str,~str> for &'self str { #[inline] fn add(&self, rhs: & &'self str) -> ~str { let mut ret = self.to_owned(); ret.push_str(*rhs); ret } } impl<'self> TotalOrd for &'self str { #[inline] fn cmp(&self, other: & &'self str) -> Ordering { foreach (s_b, o_b) in self.byte_iter().zip(other.byte_iter()) { match s_b.cmp(&o_b) { Greater => return Greater, Less => return Less, Equal => () } } self.len().cmp(&other.len()) } } impl TotalOrd for ~str { #[inline] fn cmp(&self, other: &~str) -> Ordering { self.as_slice().cmp(&other.as_slice()) } } impl TotalOrd for @str { #[inline] fn cmp(&self, other: &@str) -> Ordering { self.as_slice().cmp(&other.as_slice()) } } impl<'self> Eq for &'self str { #[inline] fn eq(&self, other: & &'self str) -> bool { eq_slice((*self), (*other)) } #[inline] fn ne(&self, other: & &'self str) -> bool { !(*self).eq(other) } } impl Eq for ~str { #[inline] fn eq(&self, other: &~str) -> bool { eq_slice((*self), (*other)) } #[inline] fn ne(&self, other: &~str) -> bool { !(*self).eq(other) } } impl Eq for @str { #[inline] fn eq(&self, other: &@str) -> bool { eq_slice((*self), (*other)) } #[inline] fn ne(&self, other: &@str) -> bool { !(*self).eq(other) } } impl<'self> TotalEq for &'self str { #[inline] fn equals(&self, other: & &'self str) -> bool { eq_slice((*self), (*other)) } } impl TotalEq for ~str { #[inline] fn equals(&self, other: &~str) -> bool { eq_slice((*self), (*other)) } } impl TotalEq for @str { #[inline] fn equals(&self, other: &@str) -> bool { eq_slice((*self), (*other)) } } impl<'self> Ord for &'self str { #[inline] fn lt(&self, other: & &'self str) -> bool { self.cmp(other) == Less } #[inline] fn le(&self, other: & &'self str) -> bool { self.cmp(other) != Greater } #[inline] fn ge(&self, other: & &'self str) -> bool { self.cmp(other) != Less } #[inline] fn gt(&self, other: & &'self str) -> bool { self.cmp(other) == Greater } } impl Ord for ~str { #[inline] fn lt(&self, other: &~str) -> bool { self.cmp(other) == Less } #[inline] fn le(&self, other: &~str) -> bool { self.cmp(other) != Greater } #[inline] fn ge(&self, other: &~str) -> bool { self.cmp(other) != Less } #[inline] fn gt(&self, other: &~str) -> bool { self.cmp(other) == Greater } } impl Ord for @str { #[inline] fn lt(&self, other: &@str) -> bool { self.cmp(other) == Less } #[inline] fn le(&self, other: &@str) -> bool { self.cmp(other) != Greater } #[inline] fn ge(&self, other: &@str) -> bool { self.cmp(other) != Less } #[inline] fn gt(&self, other: &@str) -> bool { self.cmp(other) == Greater } } impl<'self, S: Str> Equiv for &'self str { #[inline] fn equiv(&self, other: &S) -> bool { eq_slice(*self, other.as_slice()) } } impl<'self, S: Str> Equiv for @str { #[inline] fn equiv(&self, other: &S) -> bool { eq_slice(*self, other.as_slice()) } } impl<'self, S: Str> Equiv for ~str { #[inline] fn equiv(&self, other: &S) -> bool { eq_slice(*self, other.as_slice()) } } } #[cfg(test)] pub mod traits {} /// Any string that can be represented as a slice pub trait Str { /// Work with `self` as a slice. fn as_slice<'a>(&'a self) -> &'a str; /// Convert `self` into a ~str. fn into_owned(self) -> ~str; } impl<'self> Str for &'self str { #[inline] fn as_slice<'a>(&'a self) -> &'a str { *self } #[inline] fn into_owned(self) -> ~str { self.to_owned() } } impl<'self> Str for ~str { #[inline] fn as_slice<'a>(&'a self) -> &'a str { let s: &'a str = *self; s } #[inline] fn into_owned(self) -> ~str { self } } impl<'self> Str for @str { #[inline] fn as_slice<'a>(&'a self) -> &'a str { let s: &'a str = *self; s } #[inline] fn into_owned(self) -> ~str { self.to_owned() } } impl<'self> Container for &'self str { #[inline] fn len(&self) -> uint { do self.as_imm_buf |_p, n| { n - 1u } } } impl Container for ~str { #[inline] fn len(&self) -> uint { self.as_slice().len() } } impl Container for @str { #[inline] fn len(&self) -> uint { self.as_slice().len() } } impl Mutable for ~str { /// Remove all content, make the string empty #[inline] fn clear(&mut self) { unsafe { raw::set_len(self, 0) } } } #[allow(missing_doc)] pub trait StrSlice<'self> { fn contains<'a>(&self, needle: &'a str) -> bool; fn contains_char(&self, needle: char) -> bool; fn iter(&self) -> CharIterator<'self>; fn rev_iter(&self) -> CharRevIterator<'self>; fn byte_iter(&self) -> ByteIterator<'self>; fn byte_rev_iter(&self) -> ByteRevIterator<'self>; fn char_offset_iter(&self) -> CharOffsetIterator<'self>; fn char_offset_rev_iter(&self) -> CharOffsetRevIterator<'self>; fn split_iter(&self, sep: Sep) -> CharSplitIterator<'self, Sep>; fn splitn_iter(&self, sep: Sep, count: uint) -> CharSplitIterator<'self, Sep>; fn split_options_iter(&self, sep: Sep, count: uint, allow_trailing_empty: bool) -> CharSplitIterator<'self, Sep>; fn matches_index_iter(&self, sep: &'self str) -> MatchesIndexIterator<'self>; fn split_str_iter(&self, &'self str) -> StrSplitIterator<'self>; fn line_iter(&self) -> CharSplitIterator<'self, char>; fn any_line_iter(&self) -> AnyLineIterator<'self>; fn word_iter(&self) -> WordIterator<'self>; fn ends_with(&self, needle: &str) -> bool; fn is_whitespace(&self) -> bool; fn is_alphanumeric(&self) -> bool; fn char_len(&self) -> uint; fn slice(&self, begin: uint, end: uint) -> &'self str; fn slice_from(&self, begin: uint) -> &'self str; fn slice_to(&self, end: uint) -> &'self str; fn slice_chars(&self, begin: uint, end: uint) -> &'self str; fn starts_with(&self, needle: &str) -> bool; fn escape_default(&self) -> ~str; fn escape_unicode(&self) -> ~str; fn trim(&self) -> &'self str; fn trim_left(&self) -> &'self str; fn trim_right(&self) -> &'self str; fn trim_chars(&self, to_trim: &C) -> &'self str; fn trim_left_chars(&self, to_trim: &C) -> &'self str; fn trim_right_chars(&self, to_trim: &C) -> &'self str; fn replace(&self, from: &str, to: &str) -> ~str; fn to_owned(&self) -> ~str; fn to_managed(&self) -> @str; fn to_utf16(&self) -> ~[u16]; fn is_char_boundary(&self, index: uint) -> bool; fn char_range_at(&self, start: uint) -> CharRange; fn char_at(&self, i: uint) -> char; fn char_range_at_reverse(&self, start: uint) -> CharRange; fn char_at_reverse(&self, i: uint) -> char; fn as_bytes(&self) -> &'self [u8]; fn find(&self, search: C) -> Option; fn rfind(&self, search: C) -> Option; fn find_str(&self, &str) -> Option; fn repeat(&self, nn: uint) -> ~str; fn slice_shift_char(&self) -> (char, &'self str); fn map_chars(&self, ff: &fn(char) -> char) -> ~str; fn lev_distance(&self, t: &str) -> uint; fn subslice_offset(&self, inner: &str) -> uint; fn as_imm_buf(&self, f: &fn(*u8, uint) -> T) -> T; } /// Extension methods for strings impl<'self> StrSlice<'self> for &'self str { /// Returns true if one string contains another /// /// # Arguments /// /// * needle - The string to look for #[inline] fn contains<'a>(&self, needle: &'a str) -> bool { self.find_str(needle).is_some() } /// Returns true if a string contains a char. /// /// # Arguments /// /// * needle - The char to look for #[inline] fn contains_char(&self, needle: char) -> bool { self.find(needle).is_some() } /// An iterator over the characters of `self`. Note, this iterates /// over unicode code-points, not unicode graphemes. /// /// # Example /// /// ~~~ {.rust} /// let v: ~[char] = "abc åäö".iter().collect(); /// assert_eq!(v, ~['a', 'b', 'c', ' ', 'å', 'ä', 'ö']); /// ~~~ #[inline] fn iter(&self) -> CharIterator<'self> { self.char_offset_iter().transform(|(_, c)| c) } /// An iterator over the characters of `self`, in reverse order. #[inline] fn rev_iter(&self) -> CharRevIterator<'self> { self.iter().invert() } /// An iterator over the bytes of `self` #[inline] fn byte_iter(&self) -> ByteIterator<'self> { self.as_bytes().iter().transform(|&b| b) } /// An iterator over the bytes of `self`, in reverse order #[inline] fn byte_rev_iter(&self) -> ByteRevIterator<'self> { self.byte_iter().invert() } /// An iterator over the characters of `self` and their byte offsets. #[inline] fn char_offset_iter(&self) -> CharOffsetIterator<'self> { CharOffsetIterator { index_front: 0, index_back: self.len(), string: *self } } /// An iterator over the characters of `self` and their byte offsets. #[inline] fn char_offset_rev_iter(&self) -> CharOffsetRevIterator<'self> { self.char_offset_iter().invert() } /// An iterator over substrings of `self`, separated by characters /// matched by `sep`. /// /// # Example /// /// ~~~ {.rust} /// let v: ~[&str] = "Mary had a little lamb".split_iter(' ').collect(); /// assert_eq!(v, ~["Mary", "had", "a", "little", "lamb"]); /// /// let v: ~[&str] = "abc1def2ghi".split_iter(|c: char| c.is_digit()).collect(); /// assert_eq!(v, ~["abc", "def", "ghi"]); /// ~~~ #[inline] fn split_iter(&self, sep: Sep) -> CharSplitIterator<'self, Sep> { self.split_options_iter(sep, self.len(), true) } /// An iterator over substrings of `self`, separated by characters /// matched by `sep`, restricted to splitting at most `count` /// times. #[inline] fn splitn_iter(&self, sep: Sep, count: uint) -> CharSplitIterator<'self, Sep> { self.split_options_iter(sep, count, true) } /// An iterator over substrings of `self`, separated by characters /// matched by `sep`, splitting at most `count` times, and /// possibly not including the trailing empty substring, if it /// exists. #[inline] fn split_options_iter(&self, sep: Sep, count: uint, allow_trailing_empty: bool) -> CharSplitIterator<'self, Sep> { let only_ascii = sep.only_ascii(); CharSplitIterator { string: *self, position: 0, sep: sep, count: count, allow_trailing_empty: allow_trailing_empty, finished: false, only_ascii: only_ascii } } /// An iterator over the start and end indices of each match of /// `sep` within `self`. #[inline] fn matches_index_iter(&self, sep: &'self str) -> MatchesIndexIterator<'self> { assert!(!sep.is_empty()) MatchesIndexIterator { haystack: *self, needle: sep, position: 0 } } /// An iterator over the substrings of `self` separated by `sep`. /// /// # Example /// /// ~~~ {.rust} /// let v: ~[&str] = "abcXXXabcYYYabc".split_str_iter("abc").collect() /// assert_eq!(v, ["", "XXX", "YYY", ""]); /// ~~~ #[inline] fn split_str_iter(&self, sep: &'self str) -> StrSplitIterator<'self> { StrSplitIterator { it: self.matches_index_iter(sep), last_end: 0, finished: false } } /// An iterator over the lines of a string (subsequences separated /// by `\n`). #[inline] fn line_iter(&self) -> CharSplitIterator<'self, char> { self.split_options_iter('\n', self.len(), false) } /// An iterator over the lines of a string, separated by either /// `\n` or (`\r\n`). fn any_line_iter(&self) -> AnyLineIterator<'self> { do self.line_iter().transform |line| { let l = line.len(); if l > 0 && line[l - 1] == '\r' as u8 { line.slice(0, l - 1) } else { line } } } /// An iterator over the words of a string (subsequences separated /// by any sequence of whitespace). #[inline] fn word_iter(&self) -> WordIterator<'self> { self.split_iter(char::is_whitespace).filter(|s| !s.is_empty()) } /// Returns true if the string contains only whitespace /// /// Whitespace characters are determined by `char::is_whitespace` #[inline] fn is_whitespace(&self) -> bool { self.iter().all(char::is_whitespace) } /// Returns true if the string contains only alphanumerics /// /// Alphanumeric characters are determined by `char::is_alphanumeric` #[inline] fn is_alphanumeric(&self) -> bool { self.iter().all(char::is_alphanumeric) } /// Returns the number of characters that a string holds #[inline] fn char_len(&self) -> uint { self.iter().len_() } /// Returns a slice of the given string from the byte range /// [`begin`..`end`) /// /// Fails when `begin` and `end` do not point to valid characters or /// beyond the last character of the string #[inline] fn slice(&self, begin: uint, end: uint) -> &'self str { assert!(self.is_char_boundary(begin)); assert!(self.is_char_boundary(end)); unsafe { raw::slice_bytes(*self, begin, end) } } /// Returns a slice of the string from `begin` to its end. /// /// Fails when `begin` does not point to a valid character, or is /// out of bounds. #[inline] fn slice_from(&self, begin: uint) -> &'self str { self.slice(begin, self.len()) } /// Returns a slice of the string from the beginning to byte /// `end`. /// /// Fails when `end` does not point to a valid character, or is /// out of bounds. #[inline] fn slice_to(&self, end: uint) -> &'self str { self.slice(0, end) } /// Returns a slice of the string from the char range /// [`begin`..`end`). /// /// Fails if `begin` > `end` or the either `begin` or `end` are /// beyond the last character of the string. fn slice_chars(&self, begin: uint, end: uint) -> &'self str { assert!(begin <= end); // not sure how to use the iterators for this nicely. let mut position = 0; let mut count = 0; let l = self.len(); while count < begin && position < l { position = self.char_range_at(position).next; count += 1; } if count < begin { fail!("Attempted to begin slice_chars beyond end of string") } let start_byte = position; while count < end && position < l { position = self.char_range_at(position).next; count += 1; } if count < end { fail!("Attempted to end slice_chars beyond end of string") } self.slice(start_byte, position) } /// Returns true if `needle` is a prefix of the string. fn starts_with<'a>(&self, needle: &'a str) -> bool { let (self_len, needle_len) = (self.len(), needle.len()); if needle_len == 0u { true } else if needle_len > self_len { false } else { match_at(*self, needle, 0u) } } /// Returns true if `needle` is a suffix of the string. fn ends_with(&self, needle: &str) -> bool { let (self_len, needle_len) = (self.len(), needle.len()); if needle_len == 0u { true } else if needle_len > self_len { false } else { match_at(*self, needle, self_len - needle_len) } } /// Escape each char in `s` with char::escape_default. fn escape_default(&self) -> ~str { let mut out: ~str = ~""; out.reserve_at_least(self.len()); foreach c in self.iter() { do c.escape_default |c| { out.push_char(c); } } out } /// Escape each char in `s` with char::escape_unicode. fn escape_unicode(&self) -> ~str { let mut out: ~str = ~""; out.reserve_at_least(self.len()); foreach c in self.iter() { do c.escape_unicode |c| { out.push_char(c); } } out } /// Returns a string with leading and trailing whitespace removed #[inline] fn trim(&self) -> &'self str { self.trim_left().trim_right() } /// Returns a string with leading whitespace removed #[inline] fn trim_left(&self) -> &'self str { self.trim_left_chars(&char::is_whitespace) } /// Returns a string with trailing whitespace removed #[inline] fn trim_right(&self) -> &'self str { self.trim_right_chars(&char::is_whitespace) } /// Returns a string with characters that match `to_trim` removed. /// /// # Arguments /// /// * to_trim - a character matcher /// /// # Example /// /// ~~~ {.rust} /// assert_eq!("11foo1bar11".trim_chars(&'1'), "foo1bar") /// assert_eq!("12foo1bar12".trim_chars(& &['1', '2']), "foo1bar") /// assert_eq!("123foo1bar123".trim_chars(&|c: char| c.is_digit()), "foo1bar") /// ~~~ #[inline] fn trim_chars(&self, to_trim: &C) -> &'self str { self.trim_left_chars(to_trim).trim_right_chars(to_trim) } /// Returns a string with leading `chars_to_trim` removed. /// /// # Arguments /// /// * to_trim - a character matcher /// /// # Example /// /// ~~~ {.rust} /// assert_eq!("11foo1bar11".trim_left_chars(&'1'), "foo1bar11") /// assert_eq!("12foo1bar12".trim_left_chars(& &['1', '2']), "foo1bar12") /// assert_eq!("123foo1bar123".trim_left_chars(&|c: char| c.is_digit()), "foo1bar123") /// ~~~ #[inline] fn trim_left_chars(&self, to_trim: &C) -> &'self str { match self.find(|c: char| !to_trim.matches(c)) { None => "", Some(first) => unsafe { raw::slice_bytes(*self, first, self.len()) } } } /// Returns a string with trailing `chars_to_trim` removed. /// /// # Arguments /// /// * to_trim - a character matcher /// /// # Example /// /// ~~~ {.rust} /// assert_eq!("11foo1bar11".trim_right_chars(&'1'), "11foo1bar") /// assert_eq!("12foo1bar12".trim_right_chars(& &['1', '2']), "12foo1bar") /// assert_eq!("123foo1bar123".trim_right_chars(&|c: char| c.is_digit()), "123foo1bar") /// ~~~ #[inline] fn trim_right_chars(&self, to_trim: &C) -> &'self str { match self.rfind(|c: char| !to_trim.matches(c)) { None => "", Some(last) => { let next = self.char_range_at(last).next; unsafe { raw::slice_bytes(*self, 0u, next) } } } } /// Replace all occurrences of one string with another /// /// # Arguments /// /// * from - The string to replace /// * to - The replacement string /// /// # Return value /// /// The original string with all occurances of `from` replaced with `to` pub fn replace(&self, from: &str, to: &str) -> ~str { let mut result = ~""; let mut last_end = 0; foreach (start, end) in self.matches_index_iter(from) { result.push_str(unsafe{raw::slice_bytes(*self, last_end, start)}); result.push_str(to); last_end = end; } result.push_str(unsafe{raw::slice_bytes(*self, last_end, self.len())}); result } /// Copy a slice into a new unique str #[inline] fn to_owned(&self) -> ~str { do self.as_imm_buf |src, len| { assert!(len > 0); unsafe { let mut v = vec::with_capacity(len); do v.as_mut_buf |dst, _| { ptr::copy_memory(dst, src, len - 1); } vec::raw::set_len(&mut v, len - 1); v.push(0u8); ::cast::transmute(v) } } } #[inline] fn to_managed(&self) -> @str { let v = at_vec::from_fn(self.len() + 1, |i| { if i == self.len() { 0 } else { self[i] } }); unsafe { cast::transmute(v) } } /// Converts to a vector of `u16` encoded as UTF-16. fn to_utf16(&self) -> ~[u16] { let mut u = ~[]; foreach ch in self.iter() { // Arithmetic with u32 literals is easier on the eyes than chars. let mut ch = ch as u32; if (ch & 0xFFFF_u32) == ch { // The BMP falls through (assuming non-surrogate, as it // should) assert!(ch <= 0xD7FF_u32 || ch >= 0xE000_u32); u.push(ch as u16) } else { // Supplementary planes break into surrogates. assert!(ch >= 0x1_0000_u32 && ch <= 0x10_FFFF_u32); ch -= 0x1_0000_u32; let w1 = 0xD800_u16 | ((ch >> 10) as u16); let w2 = 0xDC00_u16 | ((ch as u16) & 0x3FF_u16); u.push_all([w1, w2]) } } u } /// Returns false if the index points into the middle of a multi-byte /// character sequence. fn is_char_boundary(&self, index: uint) -> bool { if index == self.len() { return true; } let b = self[index]; return b < 128u8 || b >= 192u8; } /// Pluck a character out of a string and return the index of the next /// character. /// /// This function can be used to iterate over the unicode characters of a /// string. /// /// # Example /// /// ~~~ {.rust} /// let s = "中华Việt Nam"; /// let i = 0u; /// while i < s.len() { /// let CharRange {ch, next} = s.char_range_at(i); /// printfln!("%u: %c", i, ch); /// i = next; /// } /// ~~~ /// /// # Example output /// /// ~~~ /// 0: 中 /// 3: 华 /// 6: V /// 7: i /// 8: ệ /// 11: t /// 12: /// 13: N /// 14: a /// 15: m /// ~~~ /// /// # Arguments /// /// * s - The string /// * i - The byte offset of the char to extract /// /// # Return value /// /// A record {ch: char, next: uint} containing the char value and the byte /// index of the next unicode character. /// /// # Failure /// /// If `i` is greater than or equal to the length of the string. /// If `i` is not the index of the beginning of a valid UTF-8 character. #[inline] fn char_range_at(&self, i: uint) -> CharRange { if (self[i] < 128u8) { return CharRange {ch: self[i] as char, next: i + 1 }; } // Multibyte case is a fn to allow char_range_at to inline cleanly fn multibyte_char_range_at(s: &str, i: uint) -> CharRange { let mut val = s[i] as uint; let w = UTF8_CHAR_WIDTH[val] as uint; assert!((w != 0)); val = utf8_first_byte!(val, w); val = utf8_acc_cont_byte!(val, s[i + 1]); if w > 2 { val = utf8_acc_cont_byte!(val, s[i + 2]); } if w > 3 { val = utf8_acc_cont_byte!(val, s[i + 3]); } return CharRange {ch: val as char, next: i + w}; } return multibyte_char_range_at(*self, i); } /// Plucks the character starting at the `i`th byte of a string #[inline] fn char_at(&self, i: uint) -> char { self.char_range_at(i).ch } /// Given a byte position and a str, return the previous char and its position. /// /// This function can be used to iterate over a unicode string in reverse. /// /// Returns 0 for next index if called on start index 0. fn char_range_at_reverse(&self, start: uint) -> CharRange { let mut prev = start; // while there is a previous byte == 10...... while prev > 0u && self[prev - 1u] & 192u8 == TAG_CONT_U8 { prev -= 1u; } // now refer to the initial byte of previous char if prev > 0u { prev -= 1u; } else { prev = 0u; } let ch = self.char_at(prev); return CharRange {ch:ch, next:prev}; } /// Plucks the character ending at the `i`th byte of a string #[inline] fn char_at_reverse(&self, i: uint) -> char { self.char_range_at_reverse(i).ch } /// Work with the byte buffer of a string as a byte slice. /// /// The byte slice does not include the null terminator. fn as_bytes(&self) -> &'self [u8] { unsafe { let mut slice = self.repr(); slice.len -= 1; cast::transmute(slice) } } /// Returns the byte index of the first character of `self` that matches `search` /// /// # Return value /// /// `Some` containing the byte index of the last matching character /// or `None` if there is no match fn find(&self, search: C) -> Option { if search.only_ascii() { foreach (i, b) in self.byte_iter().enumerate() { if search.matches(b as char) { return Some(i) } } } else { let mut index = 0; foreach c in self.iter() { if search.matches(c) { return Some(index); } index += c.len_utf8_bytes(); } } None } /// Returns the byte index of the last character of `self` that matches `search` /// /// # Return value /// /// `Some` containing the byte index of the last matching character /// or `None` if there is no match fn rfind(&self, search: C) -> Option { let mut index = self.len(); if search.only_ascii() { foreach b in self.byte_rev_iter() { index -= 1; if search.matches(b as char) { return Some(index); } } } else { foreach c in self.rev_iter() { index -= c.len_utf8_bytes(); if search.matches(c) { return Some(index); } } } None } /// Returns the byte index of the first matching substring /// /// # Arguments /// /// * `needle` - The string to search for /// /// # Return value /// /// `Some` containing the byte index of the first matching substring /// or `None` if there is no match fn find_str(&self, needle: &str) -> Option { if needle.is_empty() { Some(0) } else { self.matches_index_iter(needle) .next() .map_consume(|(start, _end)| start) } } /// Given a string, make a new string with repeated copies of it. fn repeat(&self, nn: uint) -> ~str { do self.as_imm_buf |buf, len| { // ignore the NULL terminator let len = len - 1; let mut ret = with_capacity(nn * len); unsafe { do ret.as_mut_buf |rbuf, _len| { let mut rbuf = rbuf; do nn.times { ptr::copy_memory(rbuf, buf, len); rbuf = rbuf.offset(len as int); } } raw::set_len(&mut ret, nn * len); } ret } } /// Retrieves the first character from a string slice and returns /// it. This does not allocate a new string; instead, it returns a /// slice that point one character beyond the character that was /// shifted. /// /// # Failure /// /// If the string does not contain any characters #[inline] fn slice_shift_char(&self) -> (char, &'self str) { let CharRange {ch, next} = self.char_range_at(0u); let next_s = unsafe { raw::slice_bytes(*self, next, self.len()) }; return (ch, next_s); } /// Apply a function to each character. fn map_chars(&self, ff: &fn(char) -> char) -> ~str { let mut result = with_capacity(self.len()); foreach cc in self.iter() { result.push_char(ff(cc)); } result } /// Levenshtein Distance between two strings. fn lev_distance(&self, t: &str) -> uint { let slen = self.len(); let tlen = t.len(); if slen == 0 { return tlen; } if tlen == 0 { return slen; } let mut dcol = vec::from_fn(tlen + 1, |x| x); foreach (i, sc) in self.iter().enumerate() { let mut current = i; dcol[0] = current + 1; foreach (j, tc) in t.iter().enumerate() { let next = dcol[j + 1]; if sc == tc { dcol[j + 1] = current; } else { dcol[j + 1] = ::cmp::min(current, next); dcol[j + 1] = ::cmp::min(dcol[j + 1], dcol[j]) + 1; } current = next; } } return dcol[tlen]; } /// Returns the byte offset of an inner slice relative to an enclosing outer slice. /// /// Fails if `inner` is not a direct slice contained within self. /// /// # Example /// /// ~~~ {.rust} /// let string = "a\nb\nc"; /// let mut lines = ~[]; /// foreach line in string.line_iter() { lines.push(line) } /// /// assert!(string.subslice_offset(lines[0]) == 0); // &"a" /// assert!(string.subslice_offset(lines[1]) == 2); // &"b" /// assert!(string.subslice_offset(lines[2]) == 4); // &"c" /// ~~~ #[inline] fn subslice_offset(&self, inner: &str) -> uint { do self.as_imm_buf |a, a_len| { do inner.as_imm_buf |b, b_len| { let a_start: uint; let a_end: uint; let b_start: uint; let b_end: uint; unsafe { a_start = cast::transmute(a); a_end = a_len + cast::transmute(a); b_start = cast::transmute(b); b_end = b_len + cast::transmute(b); } assert!(a_start <= b_start); assert!(b_end <= a_end); b_start - a_start } } } /// Work with the byte buffer and length of a slice. /// /// The given length is one byte longer than the 'official' indexable /// length of the string. This is to permit probing the byte past the /// indexable area for a null byte, as is the case in slices pointing /// to full strings, or suffixes of them. #[inline] fn as_imm_buf(&self, f: &fn(*u8, uint) -> T) -> T { let v: &[u8] = unsafe { cast::transmute(*self) }; v.as_imm_buf(f) } } #[allow(missing_doc)] pub trait OwnedStr { fn push_str_no_overallocate(&mut self, rhs: &str); fn push_str(&mut self, rhs: &str); fn push_char(&mut self, c: char); fn pop_char(&mut self) -> char; fn shift_char(&mut self) -> char; fn unshift_char(&mut self, ch: char); fn append(self, rhs: &str) -> ~str; fn reserve(&mut self, n: uint); fn reserve_at_least(&mut self, n: uint); fn capacity(&self) -> uint; fn to_bytes_with_null(self) -> ~[u8]; /// Work with the mutable byte buffer and length of a slice. /// /// The given length is one byte longer than the 'official' indexable /// length of the string. This is to permit probing the byte past the /// indexable area for a null byte, as is the case in slices pointing /// to full strings, or suffixes of them. /// /// Make sure any mutations to this buffer keep this string valid UTF8. fn as_mut_buf(&mut self, f: &fn(*mut u8, uint) -> T) -> T; } impl OwnedStr for ~str { /// Appends a string slice to the back of a string, without overallocating #[inline] fn push_str_no_overallocate(&mut self, rhs: &str) { unsafe { let llen = self.len(); let rlen = rhs.len(); self.reserve(llen + rlen); do self.as_imm_buf |lbuf, _llen| { do rhs.as_imm_buf |rbuf, _rlen| { let dst = ptr::offset(lbuf, llen as int); let dst = cast::transmute_mut_unsafe(dst); ptr::copy_memory(dst, rbuf, rlen); } } raw::set_len(self, llen + rlen); } } /// Appends a string slice to the back of a string #[inline] fn push_str(&mut self, rhs: &str) { unsafe { let llen = self.len(); let rlen = rhs.len(); self.reserve_at_least(llen + rlen); do self.as_imm_buf |lbuf, _llen| { do rhs.as_imm_buf |rbuf, _rlen| { let dst = ptr::offset(lbuf, llen as int); let dst = cast::transmute_mut_unsafe(dst); ptr::copy_memory(dst, rbuf, rlen); } } raw::set_len(self, llen + rlen); } } /// Appends a character to the back of a string #[inline] fn push_char(&mut self, c: char) { assert!((c as uint) < MAX_UNICODE); // FIXME: #7609: should be enforced on all `char` unsafe { let code = c as uint; let nb = if code < MAX_ONE_B { 1u } else if code < MAX_TWO_B { 2u } else if code < MAX_THREE_B { 3u } else { 4u }; let len = self.len(); let new_len = len + nb; self.reserve_at_least(new_len); let off = len as int; do self.as_mut_buf |buf, _len| { match nb { 1u => { *ptr::mut_offset(buf, off) = code as u8; } 2u => { *ptr::mut_offset(buf, off) = (code >> 6u & 31u | TAG_TWO_B) as u8; *ptr::mut_offset(buf, off + 1) = (code & 63u | TAG_CONT) as u8; } 3u => { *ptr::mut_offset(buf, off) = (code >> 12u & 15u | TAG_THREE_B) as u8; *ptr::mut_offset(buf, off + 1) = (code >> 6u & 63u | TAG_CONT) as u8; *ptr::mut_offset(buf, off + 2) = (code & 63u | TAG_CONT) as u8; } 4u => { *ptr::mut_offset(buf, off) = (code >> 18u & 7u | TAG_FOUR_B) as u8; *ptr::mut_offset(buf, off + 1) = (code >> 12u & 63u | TAG_CONT) as u8; *ptr::mut_offset(buf, off + 2) = (code >> 6u & 63u | TAG_CONT) as u8; *ptr::mut_offset(buf, off + 3) = (code & 63u | TAG_CONT) as u8; } _ => {} } } raw::set_len(self, new_len); } } /// Remove the final character from a string and return it /// /// # Failure /// /// If the string does not contain any characters fn pop_char(&mut self) -> char { let end = self.len(); assert!(end > 0u); let CharRange {ch, next} = self.char_range_at_reverse(end); unsafe { raw::set_len(self, next); } return ch; } /// Remove the first character from a string and return it /// /// # Failure /// /// If the string does not contain any characters fn shift_char(&mut self) -> char { let CharRange {ch, next} = self.char_range_at(0u); *self = self.slice(next, self.len()).to_owned(); return ch; } /// Prepend a char to a string fn unshift_char(&mut self, ch: char) { // This could be more efficient. let mut new_str = ~""; new_str.push_char(ch); new_str.push_str(*self); *self = new_str; } /// Concatenate two strings together. #[inline] fn append(self, rhs: &str) -> ~str { let mut new_str = self; new_str.push_str_no_overallocate(rhs); new_str } /// Reserves capacity for exactly `n` bytes in the given string, not including /// the null terminator. /// /// Assuming single-byte characters, the resulting string will be large /// enough to hold a string of length `n`. To account for the null terminator, /// the underlying buffer will have the size `n` + 1. /// /// If the capacity for `s` is already equal to or greater than the requested /// capacity, then no action is taken. /// /// # Arguments /// /// * s - A string /// * n - The number of bytes to reserve space for #[inline] pub fn reserve(&mut self, n: uint) { unsafe { let v: *mut ~[u8] = cast::transmute(self); (*v).reserve(n + 1); } } /// Reserves capacity for at least `n` bytes in the given string, not including /// the null terminator. /// /// Assuming single-byte characters, the resulting string will be large /// enough to hold a string of length `n`. To account for the null terminator, /// the underlying buffer will have the size `n` + 1. /// /// This function will over-allocate in order to amortize the allocation costs /// in scenarios where the caller may need to repeatedly reserve additional /// space. /// /// If the capacity for `s` is already equal to or greater than the requested /// capacity, then no action is taken. /// /// # Arguments /// /// * s - A string /// * n - The number of bytes to reserve space for #[inline] fn reserve_at_least(&mut self, n: uint) { self.reserve(uint::next_power_of_two(n + 1u) - 1u) } /// Returns the number of single-byte characters the string can hold without /// reallocating fn capacity(&self) -> uint { let buf: &~[u8] = unsafe { cast::transmute(self) }; let vcap = buf.capacity(); assert!(vcap > 0u); vcap - 1u } /// Convert to a vector of bytes. This does not allocate a new /// string, and includes the null terminator. #[inline] fn to_bytes_with_null(self) -> ~[u8] { unsafe { cast::transmute(self) } } #[inline] fn as_mut_buf(&mut self, f: &fn(*mut u8, uint) -> T) -> T { let v: &mut ~[u8] = unsafe { cast::transmute(self) }; v.as_mut_buf(f) } } impl Clone for ~str { #[inline] fn clone(&self) -> ~str { self.to_owned() } } impl Clone for @str { #[inline] fn clone(&self) -> @str { *self } } impl> FromIterator for ~str { #[inline] fn from_iterator(iterator: &mut T) -> ~str { let (lower, _) = iterator.size_hint(); let mut buf = with_capacity(lower); buf.extend(iterator); buf } } impl> Extendable for ~str { #[inline] fn extend(&mut self, iterator: &mut T) { let (lower, _) = iterator.size_hint(); let reserve = lower + self.len(); self.reserve_at_least(reserve); foreach ch in *iterator { self.push_char(ch) } } } // This works because every lifetime is a sub-lifetime of 'static impl<'self> Zero for &'self str { fn zero() -> &'self str { "" } fn is_zero(&self) -> bool { self.is_empty() } } impl Zero for ~str { fn zero() -> ~str { ~"" } fn is_zero(&self) -> bool { self.len() == 0 } } impl Zero for @str { fn zero() -> @str { @"" } fn is_zero(&self) -> bool { self.len() == 0 } } #[cfg(test)] mod tests { use iterator::IteratorUtil; use container::Container; use option::Some; use libc::c_char; use libc; use ptr; use str::*; use vec; use vec::{ImmutableVector, CopyableVector}; use cmp::{TotalOrd, Less, Equal, Greater}; #[test] fn test_eq() { assert!((eq(&~"", &~""))); assert!((eq(&~"foo", &~"foo"))); assert!((!eq(&~"foo", &~"bar"))); } #[test] fn test_eq_slice() { assert!((eq_slice("foobar".slice(0, 3), "foo"))); assert!((eq_slice("barfoo".slice(3, 6), "foo"))); assert!((!eq_slice("foo1", "foo2"))); } #[test] fn test_le() { assert!("" <= ""); assert!("" <= "foo"); assert!("foo" <= "foo"); assert!("foo" != "bar"); } #[test] fn test_len() { assert_eq!("".len(), 0u); assert_eq!("hello world".len(), 11u); assert_eq!("\x63".len(), 1u); assert_eq!("\xa2".len(), 2u); assert_eq!("\u03c0".len(), 2u); assert_eq!("\u2620".len(), 3u); assert_eq!("\U0001d11e".len(), 4u); assert_eq!("".char_len(), 0u); assert_eq!("hello world".char_len(), 11u); assert_eq!("\x63".char_len(), 1u); assert_eq!("\xa2".char_len(), 1u); assert_eq!("\u03c0".char_len(), 1u); assert_eq!("\u2620".char_len(), 1u); assert_eq!("\U0001d11e".char_len(), 1u); assert_eq!("ประเทศไทย中华Việt Nam".char_len(), 19u); } #[test] fn test_find() { assert_eq!("hello".find('l'), Some(2u)); assert_eq!("hello".find(|c:char| c == 'o'), Some(4u)); assert!("hello".find('x').is_none()); assert!("hello".find(|c:char| c == 'x').is_none()); assert_eq!("ประเทศไทย中华Việt Nam".find('华'), Some(30u)); assert_eq!("ประเทศไทย中华Việt Nam".find(|c: char| c == '华'), Some(30u)); } #[test] fn test_rfind() { assert_eq!("hello".rfind('l'), Some(3u)); assert_eq!("hello".rfind(|c:char| c == 'o'), Some(4u)); assert!("hello".rfind('x').is_none()); assert!("hello".rfind(|c:char| c == 'x').is_none()); assert_eq!("ประเทศไทย中华Việt Nam".rfind('华'), Some(30u)); assert_eq!("ประเทศไทย中华Việt Nam".rfind(|c: char| c == '华'), Some(30u)); } #[test] fn test_push_str() { let mut s = ~""; s.push_str(""); assert_eq!(s.slice_from(0), ""); s.push_str("abc"); assert_eq!(s.slice_from(0), "abc"); s.push_str("ประเทศไทย中华Việt Nam"); assert_eq!(s.slice_from(0), "abcประเทศไทย中华Việt Nam"); } #[test] fn test_append() { let mut s = ~""; s = s.append(""); assert_eq!(s.slice_from(0), ""); s = s.append("abc"); assert_eq!(s.slice_from(0), "abc"); s = s.append("ประเทศไทย中华Việt Nam"); assert_eq!(s.slice_from(0), "abcประเทศไทย中华Việt Nam"); } #[test] fn test_pop_char() { let mut data = ~"ประเทศไทย中华"; let cc = data.pop_char(); assert_eq!(~"ประเทศไทย中", data); assert_eq!('华', cc); } #[test] fn test_pop_char_2() { let mut data2 = ~"华"; let cc2 = data2.pop_char(); assert_eq!(~"", data2); assert_eq!('华', cc2); } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_pop_char_fail() { let mut data = ~""; let _cc3 = data.pop_char(); } #[test] fn test_push_char() { let mut data = ~"ประเทศไทย中"; data.push_char('华'); data.push_char('b'); // 1 byte data.push_char('¢'); // 2 byte data.push_char('€'); // 3 byte data.push_char('𤭢'); // 4 byte assert_eq!(~"ประเทศไทย中华b¢€𤭢", data); } #[test] fn test_shift_char() { let mut data = ~"ประเทศไทย中"; let cc = data.shift_char(); assert_eq!(~"ระเทศไทย中", data); assert_eq!('ป', cc); } #[test] fn test_unshift_char() { let mut data = ~"ประเทศไทย中"; data.unshift_char('华'); assert_eq!(~"华ประเทศไทย中", data); } #[test] fn test_collect() { let empty = ""; let s: ~str = empty.iter().collect(); assert_eq!(empty, s.as_slice()); let data = "ประเทศไทย中"; let s: ~str = data.iter().collect(); assert_eq!(data, s.as_slice()); } #[test] fn test_extend() { let data = ~"ประเทศไทย中"; let mut cpy = data.clone(); let other = "abc"; let mut it = other.iter(); cpy.extend(&mut it); assert_eq!(cpy, data + other); } #[test] fn test_clear() { let mut empty = ~""; empty.clear(); assert_eq!("", empty.as_slice()); let mut data = ~"ประเทศไทย中"; data.clear(); assert_eq!("", data.as_slice()); data.push_char('华'); assert_eq!("华", data.as_slice()); } #[test] fn test_find_str() { // byte positions assert_eq!("".find_str(""), Some(0u)); assert!("banana".find_str("apple pie").is_none()); let data = "abcabc"; assert_eq!(data.slice(0u, 6u).find_str("ab"), Some(0u)); assert_eq!(data.slice(2u, 6u).find_str("ab"), Some(3u - 2u)); assert!(data.slice(2u, 4u).find_str("ab").is_none()); let mut data = ~"ประเทศไทย中华Việt Nam"; data = data + data; assert!(data.find_str("ไท华").is_none()); assert_eq!(data.slice(0u, 43u).find_str(""), Some(0u)); assert_eq!(data.slice(6u, 43u).find_str(""), Some(6u - 6u)); assert_eq!(data.slice(0u, 43u).find_str("ประ"), Some( 0u)); assert_eq!(data.slice(0u, 43u).find_str("ทศไ"), Some(12u)); assert_eq!(data.slice(0u, 43u).find_str("ย中"), Some(24u)); assert_eq!(data.slice(0u, 43u).find_str("iệt"), Some(34u)); assert_eq!(data.slice(0u, 43u).find_str("Nam"), Some(40u)); assert_eq!(data.slice(43u, 86u).find_str("ประ"), Some(43u - 43u)); assert_eq!(data.slice(43u, 86u).find_str("ทศไ"), Some(55u - 43u)); assert_eq!(data.slice(43u, 86u).find_str("ย中"), Some(67u - 43u)); assert_eq!(data.slice(43u, 86u).find_str("iệt"), Some(77u - 43u)); assert_eq!(data.slice(43u, 86u).find_str("Nam"), Some(83u - 43u)); } #[test] fn test_slice_chars() { fn t(a: &str, b: &str, start: uint) { assert_eq!(a.slice_chars(start, start + b.char_len()), b); } t("hello", "llo", 2); t("hello", "el", 1); assert_eq!("ะเทศไท", "ประเทศไทย中华Việt Nam".slice_chars(2, 8)); } #[test] fn test_concat() { fn t(v: &[~str], s: &str) { assert_eq!(v.concat(), s.to_str()); } t([~"you", ~"know", ~"I'm", ~"no", ~"good"], "youknowI'mnogood"); let v: &[~str] = []; t(v, ""); t([~"hi"], "hi"); } #[test] fn test_connect() { fn t(v: &[~str], sep: &str, s: &str) { assert_eq!(v.connect(sep), s.to_str()); } t([~"you", ~"know", ~"I'm", ~"no", ~"good"], " ", "you know I'm no good"); let v: &[~str] = []; t(v, " ", ""); t([~"hi"], " ", "hi"); } #[test] fn test_concat_slices() { fn t(v: &[&str], s: &str) { assert_eq!(v.concat(), s.to_str()); } t(["you", "know", "I'm", "no", "good"], "youknowI'mnogood"); let v: &[&str] = []; t(v, ""); t(["hi"], "hi"); } #[test] fn test_connect_slices() { fn t(v: &[&str], sep: &str, s: &str) { assert_eq!(v.connect(sep), s.to_str()); } t(["you", "know", "I'm", "no", "good"], " ", "you know I'm no good"); t([], " ", ""); t(["hi"], " ", "hi"); } #[test] fn test_repeat() { assert_eq!("x".repeat(4), ~"xxxx"); assert_eq!("hi".repeat(4), ~"hihihihi"); assert_eq!("ไท华".repeat(3), ~"ไท华ไท华ไท华"); assert_eq!("".repeat(4), ~""); assert_eq!("hi".repeat(0), ~""); } #[test] fn test_unsafe_slice() { assert_eq!("ab", unsafe {raw::slice_bytes("abc", 0, 2)}); assert_eq!("bc", unsafe {raw::slice_bytes("abc", 1, 3)}); assert_eq!("", unsafe {raw::slice_bytes("abc", 1, 1)}); fn a_million_letter_a() -> ~str { let mut i = 0; let mut rs = ~""; while i < 100000 { rs.push_str("aaaaaaaaaa"); i += 1; } rs } fn half_a_million_letter_a() -> ~str { let mut i = 0; let mut rs = ~""; while i < 100000 { rs.push_str("aaaaa"); i += 1; } rs } let letters = a_million_letter_a(); assert!(half_a_million_letter_a() == unsafe {raw::slice_bytes(letters, 0u, 500000)}.to_owned()); } #[test] fn test_starts_with() { assert!(("".starts_with(""))); assert!(("abc".starts_with(""))); assert!(("abc".starts_with("a"))); assert!((!"a".starts_with("abc"))); assert!((!"".starts_with("abc"))); } #[test] fn test_ends_with() { assert!(("".ends_with(""))); assert!(("abc".ends_with(""))); assert!(("abc".ends_with("c"))); assert!((!"a".ends_with("abc"))); assert!((!"".ends_with("abc"))); } #[test] fn test_is_empty() { assert!("".is_empty()); assert!(!"a".is_empty()); } #[test] fn test_replace() { let a = "a"; assert_eq!("".replace(a, "b"), ~""); assert_eq!("a".replace(a, "b"), ~"b"); assert_eq!("ab".replace(a, "b"), ~"bb"); let test = "test"; assert!(" test test ".replace(test, "toast") == ~" toast toast "); assert_eq!(" test test ".replace(test, ""), ~" "); } #[test] fn test_replace_2a() { let data = ~"ประเทศไทย中华"; let repl = ~"دولة الكويت"; let a = ~"ประเ"; let A = ~"دولة الكويتทศไทย中华"; assert_eq!(data.replace(a, repl), A); } #[test] fn test_replace_2b() { let data = ~"ประเทศไทย中华"; let repl = ~"دولة الكويت"; let b = ~"ะเ"; let B = ~"ปรدولة الكويتทศไทย中华"; assert_eq!(data.replace(b, repl), B); } #[test] fn test_replace_2c() { let data = ~"ประเทศไทย中华"; let repl = ~"دولة الكويت"; let c = ~"中华"; let C = ~"ประเทศไทยدولة الكويت"; assert_eq!(data.replace(c, repl), C); } #[test] fn test_replace_2d() { let data = ~"ประเทศไทย中华"; let repl = ~"دولة الكويت"; let d = ~"ไท华"; assert_eq!(data.replace(d, repl), data); } #[test] fn test_slice() { assert_eq!("ab", "abc".slice(0, 2)); assert_eq!("bc", "abc".slice(1, 3)); assert_eq!("", "abc".slice(1, 1)); assert_eq!("\u65e5", "\u65e5\u672c".slice(0, 3)); let data = "ประเทศไทย中华"; assert_eq!("ป", data.slice(0, 3)); assert_eq!("ร", data.slice(3, 6)); assert_eq!("", data.slice(3, 3)); assert_eq!("华", data.slice(30, 33)); fn a_million_letter_X() -> ~str { let mut i = 0; let mut rs = ~""; while i < 100000 { push_str(&mut rs, "华华华华华华华华华华"); i += 1; } rs } fn half_a_million_letter_X() -> ~str { let mut i = 0; let mut rs = ~""; while i < 100000 { push_str(&mut rs, "华华华华华"); i += 1; } rs } let letters = a_million_letter_X(); assert!(half_a_million_letter_X() == letters.slice(0u, 3u * 500000u).to_owned()); } #[test] fn test_slice_2() { let ss = "中华Việt Nam"; assert_eq!("华", ss.slice(3u, 6u)); assert_eq!("Việt Nam", ss.slice(6u, 16u)); assert_eq!("ab", "abc".slice(0u, 2u)); assert_eq!("bc", "abc".slice(1u, 3u)); assert_eq!("", "abc".slice(1u, 1u)); assert_eq!("中", ss.slice(0u, 3u)); assert_eq!("华V", ss.slice(3u, 7u)); assert_eq!("", ss.slice(3u, 3u)); /*0: 中 3: 华 6: V 7: i 8: ệ 11: t 12: 13: N 14: a 15: m */ } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_slice_fail() { "中华Việt Nam".slice(0u, 2u); } #[test] fn test_slice_from() { assert_eq!("abcd".slice_from(0), "abcd"); assert_eq!("abcd".slice_from(2), "cd"); assert_eq!("abcd".slice_from(4), ""); } #[test] fn test_slice_to() { assert_eq!("abcd".slice_to(0), ""); assert_eq!("abcd".slice_to(2), "ab"); assert_eq!("abcd".slice_to(4), "abcd"); } #[test] fn test_trim_left_chars() { let v: &[char] = &[]; assert_eq!(" *** foo *** ".trim_left_chars(&v), " *** foo *** "); assert_eq!(" *** foo *** ".trim_left_chars(& &['*', ' ']), "foo *** "); assert_eq!(" *** *** ".trim_left_chars(& &['*', ' ']), ""); assert_eq!("foo *** ".trim_left_chars(& &['*', ' ']), "foo *** "); assert_eq!("11foo1bar11".trim_left_chars(&'1'), "foo1bar11"); assert_eq!("12foo1bar12".trim_left_chars(& &['1', '2']), "foo1bar12"); assert_eq!("123foo1bar123".trim_left_chars(&|c: char| c.is_digit()), "foo1bar123"); } #[test] fn test_trim_right_chars() { let v: &[char] = &[]; assert_eq!(" *** foo *** ".trim_right_chars(&v), " *** foo *** "); assert_eq!(" *** foo *** ".trim_right_chars(& &['*', ' ']), " *** foo"); assert_eq!(" *** *** ".trim_right_chars(& &['*', ' ']), ""); assert_eq!(" *** foo".trim_right_chars(& &['*', ' ']), " *** foo"); assert_eq!("11foo1bar11".trim_right_chars(&'1'), "11foo1bar"); assert_eq!("12foo1bar12".trim_right_chars(& &['1', '2']), "12foo1bar"); assert_eq!("123foo1bar123".trim_right_chars(&|c: char| c.is_digit()), "123foo1bar"); } #[test] fn test_trim_chars() { let v: &[char] = &[]; assert_eq!(" *** foo *** ".trim_chars(&v), " *** foo *** "); assert_eq!(" *** foo *** ".trim_chars(& &['*', ' ']), "foo"); assert_eq!(" *** *** ".trim_chars(& &['*', ' ']), ""); assert_eq!("foo".trim_chars(& &['*', ' ']), "foo"); assert_eq!("11foo1bar11".trim_chars(&'1'), "foo1bar"); assert_eq!("12foo1bar12".trim_chars(& &['1', '2']), "foo1bar"); assert_eq!("123foo1bar123".trim_chars(&|c: char| c.is_digit()), "foo1bar"); } #[test] fn test_trim_left() { assert_eq!("".trim_left(), ""); assert_eq!("a".trim_left(), "a"); assert_eq!(" ".trim_left(), ""); assert_eq!(" blah".trim_left(), "blah"); assert_eq!(" \u3000 wut".trim_left(), "wut"); assert_eq!("hey ".trim_left(), "hey "); } #[test] fn test_trim_right() { assert_eq!("".trim_right(), ""); assert_eq!("a".trim_right(), "a"); assert_eq!(" ".trim_right(), ""); assert_eq!("blah ".trim_right(), "blah"); assert_eq!("wut \u3000 ".trim_right(), "wut"); assert_eq!(" hey".trim_right(), " hey"); } #[test] fn test_trim() { assert_eq!("".trim(), ""); assert_eq!("a".trim(), "a"); assert_eq!(" ".trim(), ""); assert_eq!(" blah ".trim(), "blah"); assert_eq!("\nwut \u3000 ".trim(), "wut"); assert_eq!(" hey dude ".trim(), "hey dude"); } #[test] fn test_is_whitespace() { assert!("".is_whitespace()); assert!(" ".is_whitespace()); assert!("\u2009".is_whitespace()); // Thin space assert!(" \n\t ".is_whitespace()); assert!(!" _ ".is_whitespace()); } #[test] fn test_shift_byte() { let mut s = ~"ABC"; let b = unsafe{raw::shift_byte(&mut s)}; assert_eq!(s, ~"BC"); assert_eq!(b, 65u8); } #[test] fn test_pop_byte() { let mut s = ~"ABC"; let b = unsafe{raw::pop_byte(&mut s)}; assert_eq!(s, ~"AB"); assert_eq!(b, 67u8); } #[test] fn test_unsafe_from_bytes() { let a = ~[65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 65u8]; let b = unsafe { raw::from_bytes(a) }; assert_eq!(b, ~"AAAAAAA"); } #[test] fn test_from_bytes() { let ss = ~"ศไทย中华Việt Nam"; let bb = ~[0xe0_u8, 0xb8_u8, 0xa8_u8, 0xe0_u8, 0xb9_u8, 0x84_u8, 0xe0_u8, 0xb8_u8, 0x97_u8, 0xe0_u8, 0xb8_u8, 0xa2_u8, 0xe4_u8, 0xb8_u8, 0xad_u8, 0xe5_u8, 0x8d_u8, 0x8e_u8, 0x56_u8, 0x69_u8, 0xe1_u8, 0xbb_u8, 0x87_u8, 0x74_u8, 0x20_u8, 0x4e_u8, 0x61_u8, 0x6d_u8]; assert_eq!(ss, from_bytes(bb)); assert_eq!(~"𐌀𐌖𐌋𐌄𐌑𐌉ปรدولة الكويتทศไทย中华𐍅𐌿𐌻𐍆𐌹𐌻𐌰", from_bytes(bytes!("𐌀𐌖𐌋𐌄𐌑𐌉ปรدولة الكويتทศไทย中华𐍅𐌿𐌻𐍆𐌹𐌻𐌰"))); } #[test] fn test_is_utf8_deny_overlong() { assert!(!is_utf8([0xc0, 0x80])); assert!(!is_utf8([0xc0, 0xae])); assert!(!is_utf8([0xe0, 0x80, 0x80])); assert!(!is_utf8([0xe0, 0x80, 0xaf])); assert!(!is_utf8([0xe0, 0x81, 0x81])); assert!(!is_utf8([0xf0, 0x82, 0x82, 0xac])); } #[test] #[ignore(cfg(windows))] fn test_from_bytes_fail() { use str::not_utf8::cond; let bb = ~[0xff_u8, 0xb8_u8, 0xa8_u8, 0xe0_u8, 0xb9_u8, 0x84_u8, 0xe0_u8, 0xb8_u8, 0x97_u8, 0xe0_u8, 0xb8_u8, 0xa2_u8, 0xe4_u8, 0xb8_u8, 0xad_u8, 0xe5_u8, 0x8d_u8, 0x8e_u8, 0x56_u8, 0x69_u8, 0xe1_u8, 0xbb_u8, 0x87_u8, 0x74_u8, 0x20_u8, 0x4e_u8, 0x61_u8, 0x6d_u8]; let mut error_happened = false; let _x = do cond.trap(|err| { assert_eq!(err, ~"from_bytes: input is not UTF-8; first bad byte is 255"); error_happened = true; ~"" }).inside { from_bytes(bb) }; assert!(error_happened); } #[test] fn test_raw_from_c_str() { unsafe { let a = ~[65, 65, 65, 65, 65, 65, 65, 0]; let b = vec::raw::to_ptr(a); let c = raw::from_c_str(b); assert_eq!(c, ~"AAAAAAA"); } } #[test] fn test_as_bytes() { // no null let v = [ 224, 184, 168, 224, 185, 132, 224, 184, 151, 224, 184, 162, 228, 184, 173, 229, 141, 142, 86, 105, 225, 187, 135, 116, 32, 78, 97, 109 ]; assert_eq!("".as_bytes(), &[]); assert_eq!("abc".as_bytes(), &['a' as u8, 'b' as u8, 'c' as u8]); assert_eq!("ศไทย中华Việt Nam".as_bytes(), v); } #[test] fn test_to_bytes_with_null() { let s = ~"ศไทย中华Việt Nam"; let v = ~[ 224, 184, 168, 224, 185, 132, 224, 184, 151, 224, 184, 162, 228, 184, 173, 229, 141, 142, 86, 105, 225, 187, 135, 116, 32, 78, 97, 109, 0 ]; assert_eq!((~"").to_bytes_with_null(), ~[0]); assert_eq!((~"abc").to_bytes_with_null(), ~['a' as u8, 'b' as u8, 'c' as u8, 0]); assert_eq!(s.to_bytes_with_null(), v); } #[test] #[ignore(cfg(windows))] #[should_fail] fn test_as_bytes_fail() { // Don't double free. (I'm not sure if this exercises the // original problem code path anymore.) let s = ~""; let _bytes = s.as_bytes(); fail!(); } #[test] fn test_as_imm_buf() { do "".as_imm_buf |buf, len| { assert_eq!(len, 1); unsafe { assert_eq!(*ptr::offset(buf, 0), 0); } } do "hello".as_imm_buf |buf, len| { assert_eq!(len, 6); unsafe { assert_eq!(*ptr::offset(buf, 0), 'h' as u8); assert_eq!(*ptr::offset(buf, 1), 'e' as u8); assert_eq!(*ptr::offset(buf, 2), 'l' as u8); assert_eq!(*ptr::offset(buf, 3), 'l' as u8); assert_eq!(*ptr::offset(buf, 4), 'o' as u8); assert_eq!(*ptr::offset(buf, 5), 0); } } } #[test] fn test_subslice_offset() { let a = "kernelsprite"; let b = a.slice(7, a.len()); let c = a.slice(0, a.len() - 6); assert_eq!(a.subslice_offset(b), 7); assert_eq!(a.subslice_offset(c), 0); let string = "a\nb\nc"; let mut lines = ~[]; foreach line in string.line_iter() { lines.push(line) } assert_eq!(string.subslice_offset(lines[0]), 0); assert_eq!(string.subslice_offset(lines[1]), 2); assert_eq!(string.subslice_offset(lines[2]), 4); } #[test] #[should_fail] fn test_subslice_offset_2() { let a = "alchemiter"; let b = "cruxtruder"; a.subslice_offset(b); } #[test] fn vec_str_conversions() { let s1: ~str = ~"All mimsy were the borogoves"; let v: ~[u8] = s1.as_bytes().to_owned(); let s2: ~str = from_bytes(v); let mut i: uint = 0u; let n1: uint = s1.len(); let n2: uint = v.len(); assert_eq!(n1, n2); while i < n1 { let a: u8 = s1[i]; let b: u8 = s2[i]; debug!(a); debug!(b); assert_eq!(a, b); i += 1u; } } #[test] fn test_contains() { assert!("abcde".contains("bcd")); assert!("abcde".contains("abcd")); assert!("abcde".contains("bcde")); assert!("abcde".contains("")); assert!("".contains("")); assert!(!"abcde".contains("def")); assert!(!"".contains("a")); let data = ~"ประเทศไทย中华Việt Nam"; assert!(data.contains("ประเ")); assert!(data.contains("ะเ")); assert!(data.contains("中华")); assert!(!data.contains("ไท华")); } #[test] fn test_contains_char() { assert!("abc".contains_char('b')); assert!("a".contains_char('a')); assert!(!"abc".contains_char('d')); assert!(!"".contains_char('a')); } #[test] fn test_map() { assert_eq!(~"", "".map_chars(|c| unsafe {libc::toupper(c as c_char)} as char)); assert_eq!(~"YMCA", "ymca".map_chars(|c| unsafe {libc::toupper(c as c_char)} as char)); } #[test] fn test_utf16() { let pairs = [(~"𐍅𐌿𐌻𐍆𐌹𐌻𐌰\n", ~[0xd800_u16, 0xdf45_u16, 0xd800_u16, 0xdf3f_u16, 0xd800_u16, 0xdf3b_u16, 0xd800_u16, 0xdf46_u16, 0xd800_u16, 0xdf39_u16, 0xd800_u16, 0xdf3b_u16, 0xd800_u16, 0xdf30_u16, 0x000a_u16]), (~"𐐒𐑉𐐮𐑀𐐲𐑋 𐐏𐐲𐑍\n", ~[0xd801_u16, 0xdc12_u16, 0xd801_u16, 0xdc49_u16, 0xd801_u16, 0xdc2e_u16, 0xd801_u16, 0xdc40_u16, 0xd801_u16, 0xdc32_u16, 0xd801_u16, 0xdc4b_u16, 0x0020_u16, 0xd801_u16, 0xdc0f_u16, 0xd801_u16, 0xdc32_u16, 0xd801_u16, 0xdc4d_u16, 0x000a_u16]), (~"𐌀𐌖𐌋𐌄𐌑𐌉·𐌌𐌄𐌕𐌄𐌋𐌉𐌑\n", ~[0xd800_u16, 0xdf00_u16, 0xd800_u16, 0xdf16_u16, 0xd800_u16, 0xdf0b_u16, 0xd800_u16, 0xdf04_u16, 0xd800_u16, 0xdf11_u16, 0xd800_u16, 0xdf09_u16, 0x00b7_u16, 0xd800_u16, 0xdf0c_u16, 0xd800_u16, 0xdf04_u16, 0xd800_u16, 0xdf15_u16, 0xd800_u16, 0xdf04_u16, 0xd800_u16, 0xdf0b_u16, 0xd800_u16, 0xdf09_u16, 0xd800_u16, 0xdf11_u16, 0x000a_u16 ]), (~"𐒋𐒘𐒈𐒑𐒛𐒒 𐒕𐒓 𐒈𐒚𐒍 𐒏𐒜𐒒𐒖𐒆 𐒕𐒆\n", ~[0xd801_u16, 0xdc8b_u16, 0xd801_u16, 0xdc98_u16, 0xd801_u16, 0xdc88_u16, 0xd801_u16, 0xdc91_u16, 0xd801_u16, 0xdc9b_u16, 0xd801_u16, 0xdc92_u16, 0x0020_u16, 0xd801_u16, 0xdc95_u16, 0xd801_u16, 0xdc93_u16, 0x0020_u16, 0xd801_u16, 0xdc88_u16, 0xd801_u16, 0xdc9a_u16, 0xd801_u16, 0xdc8d_u16, 0x0020_u16, 0xd801_u16, 0xdc8f_u16, 0xd801_u16, 0xdc9c_u16, 0xd801_u16, 0xdc92_u16, 0xd801_u16, 0xdc96_u16, 0xd801_u16, 0xdc86_u16, 0x0020_u16, 0xd801_u16, 0xdc95_u16, 0xd801_u16, 0xdc86_u16, 0x000a_u16 ]) ]; foreach p in pairs.iter() { let (s, u) = (*p).clone(); assert!(s.to_utf16() == u); assert!(from_utf16(u) == s); assert!(from_utf16(s.to_utf16()) == s); assert!(from_utf16(u).to_utf16() == u); } } #[test] fn test_char_at() { let s = ~"ศไทย中华Việt Nam"; let v = ~['ศ','ไ','ท','ย','中','华','V','i','ệ','t',' ','N','a','m']; let mut pos = 0; foreach ch in v.iter() { assert!(s.char_at(pos) == *ch); pos += from_char(*ch).len(); } } #[test] fn test_char_at_reverse() { let s = ~"ศไทย中华Việt Nam"; let v = ~['ศ','ไ','ท','ย','中','华','V','i','ệ','t',' ','N','a','m']; let mut pos = s.len(); foreach ch in v.rev_iter() { assert!(s.char_at_reverse(pos) == *ch); pos -= from_char(*ch).len(); } } #[test] fn test_escape_unicode() { assert_eq!("abc".escape_unicode(), ~"\\x61\\x62\\x63"); assert_eq!("a c".escape_unicode(), ~"\\x61\\x20\\x63"); assert_eq!("\r\n\t".escape_unicode(), ~"\\x0d\\x0a\\x09"); assert_eq!("'\"\\".escape_unicode(), ~"\\x27\\x22\\x5c"); assert_eq!("\x00\x01\xfe\xff".escape_unicode(), ~"\\x00\\x01\\xfe\\xff"); assert_eq!("\u0100\uffff".escape_unicode(), ~"\\u0100\\uffff"); assert_eq!("\U00010000\U0010ffff".escape_unicode(), ~"\\U00010000\\U0010ffff"); assert_eq!("ab\ufb00".escape_unicode(), ~"\\x61\\x62\\ufb00"); assert_eq!("\U0001d4ea\r".escape_unicode(), ~"\\U0001d4ea\\x0d"); } #[test] fn test_escape_default() { assert_eq!("abc".escape_default(), ~"abc"); assert_eq!("a c".escape_default(), ~"a c"); assert_eq!("\r\n\t".escape_default(), ~"\\r\\n\\t"); assert_eq!("'\"\\".escape_default(), ~"\\'\\\"\\\\"); assert_eq!("\u0100\uffff".escape_default(), ~"\\u0100\\uffff"); assert_eq!("\U00010000\U0010ffff".escape_default(), ~"\\U00010000\\U0010ffff"); assert_eq!("ab\ufb00".escape_default(), ~"ab\\ufb00"); assert_eq!("\U0001d4ea\r".escape_default(), ~"\\U0001d4ea\\r"); } #[test] fn test_to_managed() { assert_eq!("abc".to_managed(), @"abc"); assert_eq!("abcdef".slice(1, 5).to_managed(), @"bcde"); } #[test] fn test_total_ord() { "1234".cmp(& &"123") == Greater; "123".cmp(& &"1234") == Less; "1234".cmp(& &"1234") == Equal; "12345555".cmp(& &"123456") == Less; "22".cmp(& &"1234") == Greater; } #[test] fn test_char_range_at() { let data = ~"b¢€𤭢𤭢€¢b"; assert_eq!('b', data.char_range_at(0).ch); assert_eq!('¢', data.char_range_at(1).ch); assert_eq!('€', data.char_range_at(3).ch); assert_eq!('𤭢', data.char_range_at(6).ch); assert_eq!('𤭢', data.char_range_at(10).ch); assert_eq!('€', data.char_range_at(14).ch); assert_eq!('¢', data.char_range_at(17).ch); assert_eq!('b', data.char_range_at(19).ch); } #[test] fn test_char_range_at_reverse_underflow() { assert_eq!("abc".char_range_at_reverse(0).next, 0); } #[test] fn test_add() { #[allow(unnecessary_allocation)]; macro_rules! t ( ($s1:expr, $s2:expr, $e:expr) => { assert_eq!($s1 + $s2, $e); assert_eq!($s1.to_owned() + $s2, $e); assert_eq!($s1.to_managed() + $s2, $e); } ); t!("foo", "bar", ~"foobar"); t!("foo", @"bar", ~"foobar"); t!("foo", ~"bar", ~"foobar"); t!("ศไทย中", "华Việt Nam", ~"ศไทย中华Việt Nam"); t!("ศไทย中", @"华Việt Nam", ~"ศไทย中华Việt Nam"); t!("ศไทย中", ~"华Việt Nam", ~"ศไทย中华Việt Nam"); } #[test] fn test_iterator() { use iterator::*; let s = ~"ศไทย中华Việt Nam"; let v = ~['ศ','ไ','ท','ย','中','华','V','i','ệ','t',' ','N','a','m']; let mut pos = 0; let mut it = s.iter(); foreach c in it { assert_eq!(c, v[pos]); pos += 1; } assert_eq!(pos, v.len()); } #[test] fn test_rev_iterator() { use iterator::*; let s = ~"ศไทย中华Việt Nam"; let v = ~['m', 'a', 'N', ' ', 't', 'ệ','i','V','华','中','ย','ท','ไ','ศ']; let mut pos = 0; let mut it = s.rev_iter(); foreach c in it { assert_eq!(c, v[pos]); pos += 1; } assert_eq!(pos, v.len()); } #[test] fn test_byte_iterator() { let s = ~"ศไทย中华Việt Nam"; let v = [ 224, 184, 168, 224, 185, 132, 224, 184, 151, 224, 184, 162, 228, 184, 173, 229, 141, 142, 86, 105, 225, 187, 135, 116, 32, 78, 97, 109 ]; let mut pos = 0; foreach b in s.byte_iter() { assert_eq!(b, v[pos]); pos += 1; } } #[test] fn test_byte_rev_iterator() { let s = ~"ศไทย中华Việt Nam"; let v = [ 224, 184, 168, 224, 185, 132, 224, 184, 151, 224, 184, 162, 228, 184, 173, 229, 141, 142, 86, 105, 225, 187, 135, 116, 32, 78, 97, 109 ]; let mut pos = v.len(); foreach b in s.byte_rev_iter() { pos -= 1; assert_eq!(b, v[pos]); } } #[test] fn test_char_offset_iterator() { use iterator::*; let s = "ศไทย中华Việt Nam"; let p = [0, 3, 6, 9, 12, 15, 18, 19, 20, 23, 24, 25, 26, 27]; let v = ['ศ','ไ','ท','ย','中','华','V','i','ệ','t',' ','N','a','m']; let mut pos = 0; let mut it = s.char_offset_iter(); foreach c in it { assert_eq!(c, (p[pos], v[pos])); pos += 1; } assert_eq!(pos, v.len()); assert_eq!(pos, p.len()); } #[test] fn test_char_offset_rev_iterator() { use iterator::*; let s = "ศไทย中华Việt Nam"; let p = [27, 26, 25, 24, 23, 20, 19, 18, 15, 12, 9, 6, 3, 0]; let v = ['m', 'a', 'N', ' ', 't', 'ệ','i','V','华','中','ย','ท','ไ','ศ']; let mut pos = 0; let mut it = s.char_offset_rev_iter(); foreach c in it { assert_eq!(c, (p[pos], v[pos])); pos += 1; } assert_eq!(pos, v.len()); assert_eq!(pos, p.len()); } #[test] fn test_split_char_iterator() { let data = "\nMäry häd ä little lämb\nLittle lämb\n"; let split: ~[&str] = data.split_iter(' ').collect(); assert_eq!(split, ~["\nMäry", "häd", "ä", "little", "lämb\nLittle", "lämb\n"]); let split: ~[&str] = data.split_iter(|c: char| c == ' ').collect(); assert_eq!(split, ~["\nMäry", "häd", "ä", "little", "lämb\nLittle", "lämb\n"]); // Unicode let split: ~[&str] = data.split_iter('ä').collect(); assert_eq!(split, ~["\nM", "ry h", "d ", " little l", "mb\nLittle l", "mb\n"]); let split: ~[&str] = data.split_iter(|c: char| c == 'ä').collect(); assert_eq!(split, ~["\nM", "ry h", "d ", " little l", "mb\nLittle l", "mb\n"]); } #[test] fn test_splitn_char_iterator() { let data = "\nMäry häd ä little lämb\nLittle lämb\n"; let split: ~[&str] = data.splitn_iter(' ', 3).collect(); assert_eq!(split, ~["\nMäry", "häd", "ä", "little lämb\nLittle lämb\n"]); let split: ~[&str] = data.splitn_iter(|c: char| c == ' ', 3).collect(); assert_eq!(split, ~["\nMäry", "häd", "ä", "little lämb\nLittle lämb\n"]); // Unicode let split: ~[&str] = data.splitn_iter('ä', 3).collect(); assert_eq!(split, ~["\nM", "ry h", "d ", " little lämb\nLittle lämb\n"]); let split: ~[&str] = data.splitn_iter(|c: char| c == 'ä', 3).collect(); assert_eq!(split, ~["\nM", "ry h", "d ", " little lämb\nLittle lämb\n"]); } #[test] fn test_split_char_iterator_no_trailing() { let data = "\nMäry häd ä little lämb\nLittle lämb\n"; let split: ~[&str] = data.split_options_iter('\n', 1000, true).collect(); assert_eq!(split, ~["", "Märy häd ä little lämb", "Little lämb", ""]); let split: ~[&str] = data.split_options_iter('\n', 1000, false).collect(); assert_eq!(split, ~["", "Märy häd ä little lämb", "Little lämb"]); } #[test] fn test_word_iter() { let data = "\n \tMäry häd\tä little lämb\nLittle lämb\n"; let words: ~[&str] = data.word_iter().collect(); assert_eq!(words, ~["Märy", "häd", "ä", "little", "lämb", "Little", "lämb"]) } #[test] fn test_line_iter() { let data = "\nMäry häd ä little lämb\n\nLittle lämb\n"; let lines: ~[&str] = data.line_iter().collect(); assert_eq!(lines, ~["", "Märy häd ä little lämb", "", "Little lämb"]); let data = "\nMäry häd ä little lämb\n\nLittle lämb"; // no trailing \n let lines: ~[&str] = data.line_iter().collect(); assert_eq!(lines, ~["", "Märy häd ä little lämb", "", "Little lämb"]); } #[test] fn test_split_str_iterator() { fn t<'a>(s: &str, sep: &'a str, u: ~[&str]) { let v: ~[&str] = s.split_str_iter(sep).collect(); assert_eq!(v, u); } t("--1233345--", "12345", ~["--1233345--"]); t("abc::hello::there", "::", ~["abc", "hello", "there"]); t("::hello::there", "::", ~["", "hello", "there"]); t("hello::there::", "::", ~["hello", "there", ""]); t("::hello::there::", "::", ~["", "hello", "there", ""]); t("ประเทศไทย中华Việt Nam", "中华", ~["ประเทศไทย", "Việt Nam"]); t("zzXXXzzYYYzz", "zz", ~["", "XXX", "YYY", ""]); t("zzXXXzYYYz", "XXX", ~["zz", "zYYYz"]); t(".XXX.YYY.", ".", ~["", "XXX", "YYY", ""]); t("", ".", ~[""]); t("zz", "zz", ~["",""]); t("ok", "z", ~["ok"]); t("zzz", "zz", ~["","z"]); t("zzzzz", "zz", ~["","","z"]); } #[test] fn test_str_zero() { use num::Zero; fn t() { let s: S = Zero::zero(); assert_eq!(s.as_slice(), ""); assert!(s.is_zero()); } t::<&str>(); t::<@str>(); t::<~str>(); } #[test] fn test_str_container() { fn sum_len(v: &[S]) -> uint { v.iter().transform(|x| x.len()).sum() } let s = ~"01234"; assert_eq!(5, sum_len(["012", "", "34"])); assert_eq!(5, sum_len([@"01", @"2", @"34", @""])); assert_eq!(5, sum_len([~"01", ~"2", ~"34", ~""])); assert_eq!(5, sum_len([s.as_slice()])); } } #[cfg(test)] mod bench { use extra::test::BenchHarness; use str; #[bench] fn is_utf8_100_ascii(bh: &mut BenchHarness) { let s = bytes!("Hello there, the quick brown fox jumped over the lazy dog! \ Lorem ipsum dolor sit amet, consectetur. "); assert_eq!(100, s.len()); do bh.iter { str::is_utf8(s); } } #[bench] fn is_utf8_100_multibyte(bh: &mut BenchHarness) { let s = bytes!("𐌀𐌖𐌋𐌄𐌑𐌉ปรدولة الكويتทศไทย中华𐍅𐌿𐌻𐍆𐌹𐌻𐌰"); assert_eq!(100, s.len()); do bh.iter { str::is_utf8(s); } } #[bench] fn map_chars_100_ascii(bh: &mut BenchHarness) { let s = "HelloHelloHelloHelloHelloHelloHelloHelloHelloHello\ HelloHelloHelloHelloHelloHelloHelloHelloHelloHello"; do bh.iter { s.map_chars(|c| ((c as uint) + 1) as char); } } #[bench] fn map_chars_100_multibytes(bh: &mut BenchHarness) { let s = "𐌀𐌖𐌋𐌄𐌑𐌀𐌖𐌋𐌄𐌑𐌀𐌖𐌋𐌄𐌑𐌀𐌖𐌋𐌄𐌑𐌀𐌖𐌋𐌄𐌑\ 𐌀𐌖𐌋𐌄𐌑𐌀𐌖𐌋𐌄𐌑𐌀𐌖𐌋𐌄𐌑𐌀𐌖𐌋𐌄𐌑𐌀𐌖𐌋𐌄𐌑\ 𐌀𐌖𐌋𐌄𐌑𐌀𐌖𐌋𐌄𐌑𐌀𐌖𐌋𐌄𐌑𐌀𐌖𐌋𐌄𐌑𐌀𐌖𐌋𐌄𐌑\ 𐌀𐌖𐌋𐌄𐌑𐌀𐌖𐌋𐌄𐌑𐌀𐌖𐌋𐌄𐌑𐌀𐌖𐌋𐌄𐌑𐌀𐌖𐌋𐌄𐌑"; do bh.iter { s.map_chars(|c| ((c as uint) + 1) as char); } } }