// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // The Rust abstract syntax tree. use codemap::{Span, Spanned, DUMMY_SP, ExpnId}; use abi::Abi; use ast_util; use owned_slice::OwnedSlice; use parse::token::{InternedString, str_to_ident}; use parse::token; use ptr::P; use std::fmt; use std::num::Zero; use std::fmt::Show; use std::rc::Rc; use serialize::{Encodable, Decodable, Encoder, Decoder}; #[cfg(stage0)] pub use self::TtToken as TTTok; // FIXME #6993: in librustc, uses of "ident" should be replaced // by just "Name". /// An identifier contains a Name (index into the interner /// table) and a SyntaxContext to track renaming and /// macro expansion per Flatt et al., "Macros /// That Work Together" #[deriving(Clone, Hash, PartialOrd, Eq, Ord)] pub struct Ident { pub name: Name, pub ctxt: SyntaxContext } impl Ident { /// Construct an identifier with the given name and an empty context: pub fn new(name: Name) -> Ident { Ident {name: name, ctxt: EMPTY_CTXT}} pub fn as_str<'a>(&'a self) -> &'a str { self.name.as_str() } pub fn encode_with_hygiene(&self) -> String { format!("\x00name_{:u},ctxt_{:u}\x00", self.name.uint(), self.ctxt) } } impl Show for Ident { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}#{}", self.name, self.ctxt) } } impl Show for Name { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let Name(nm) = *self; write!(f, "\"{}\"({})", token::get_name(*self).get(), nm) } } impl PartialEq for Ident { fn eq(&self, other: &Ident) -> bool { if self.ctxt == other.ctxt { self.name == other.name } else { // IF YOU SEE ONE OF THESE FAILS: it means that you're comparing // idents that have different contexts. You can't fix this without // knowing whether the comparison should be hygienic or non-hygienic. // if it should be non-hygienic (most things are), just compare the // 'name' fields of the idents. Or, even better, replace the idents // with Name's. // // On the other hand, if the comparison does need to be hygienic, // one example and its non-hygienic counterpart would be: // syntax::parse::token::mtwt_token_eq // syntax::ext::tt::macro_parser::token_name_eq fail!("not allowed to compare these idents: {}, {}. \ Probably related to issue \\#6993", self, other); } } fn ne(&self, other: &Ident) -> bool { ! self.eq(other) } } /// A SyntaxContext represents a chain of macro-expandings /// and renamings. Each macro expansion corresponds to /// a fresh uint // I'm representing this syntax context as an index into // a table, in order to work around a compiler bug // that's causing unreleased memory to cause core dumps // and also perhaps to save some work in destructor checks. // the special uint '0' will be used to indicate an empty // syntax context. // this uint is a reference to a table stored in thread-local // storage. pub type SyntaxContext = u32; pub const EMPTY_CTXT : SyntaxContext = 0; pub const ILLEGAL_CTXT : SyntaxContext = 1; /// A name is a part of an identifier, representing a string or gensym. It's /// the result of interning. #[deriving(Eq, Ord, PartialEq, PartialOrd, Hash, Encodable, Decodable, Clone)] pub struct Name(pub u32); impl Name { pub fn as_str<'a>(&'a self) -> &'a str { unsafe { // FIXME #12938: can't use copy_lifetime since &str isn't a &T ::std::mem::transmute(token::get_name(*self).get()) } } pub fn uint(&self) -> uint { let Name(nm) = *self; nm as uint } pub fn ident(&self) -> Ident { Ident { name: *self, ctxt: 0 } } } /// A mark represents a unique id associated with a macro expansion pub type Mrk = u32; impl, E> Encodable for Ident { fn encode(&self, s: &mut S) -> Result<(), E> { s.emit_str(token::get_ident(*self).get()) } } impl, E> Decodable for Ident { fn decode(d: &mut D) -> Result { Ok(str_to_ident(try!(d.read_str()).as_slice())) } } /// Function name (not all functions have names) pub type FnIdent = Option; #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct Lifetime { pub id: NodeId, pub span: Span, pub name: Name } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct LifetimeDef { pub lifetime: Lifetime, pub bounds: Vec } /// A "Path" is essentially Rust's notion of a name; for instance: /// std::cmp::PartialEq . It's represented as a sequence of identifiers, /// along with a bunch of supporting information. #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct Path { pub span: Span, /// A `::foo` path, is relative to the crate root rather than current /// module (like paths in an import). pub global: bool, /// The segments in the path: the things separated by `::`. pub segments: Vec , } /// A segment of a path: an identifier, an optional lifetime, and a set of /// types. #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct PathSegment { /// The identifier portion of this path segment. pub identifier: Ident, /// The lifetime parameters for this path segment. pub lifetimes: Vec, /// The type parameters for this path segment, if present. pub types: OwnedSlice>, } pub type CrateNum = u32; pub type NodeId = u32; #[deriving(Clone, Eq, Ord, PartialOrd, PartialEq, Encodable, Decodable, Hash, Show)] pub struct DefId { pub krate: CrateNum, pub node: NodeId, } /// Item definitions in the currently-compiled crate would have the CrateNum /// LOCAL_CRATE in their DefId. pub const LOCAL_CRATE: CrateNum = 0; pub const CRATE_NODE_ID: NodeId = 0; /// When parsing and doing expansions, we initially give all AST nodes this AST /// node value. Then later, in the renumber pass, we renumber them to have /// small, positive ids. pub const DUMMY_NODE_ID: NodeId = -1; /// The AST represents all type param bounds as types. /// typeck::collect::compute_bounds matches these against /// the "special" built-in traits (see middle::lang_items) and /// detects Copy, Send and Sync. #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum TyParamBound { TraitTyParamBound(TraitRef), UnboxedFnTyParamBound(P), RegionTyParamBound(Lifetime) } pub type TyParamBounds = OwnedSlice; #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct UnboxedFnBound { pub path: Path, pub decl: P, pub lifetimes: Vec, pub ref_id: NodeId, } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct TyParam { pub ident: Ident, pub id: NodeId, pub bounds: TyParamBounds, pub unbound: Option, pub default: Option>, pub span: Span } /// Represents lifetimes and type parameters attached to a declaration /// of a function, enum, trait, etc. #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct Generics { pub lifetimes: Vec, pub ty_params: OwnedSlice, pub where_clause: WhereClause, } impl Generics { pub fn is_parameterized(&self) -> bool { self.lifetimes.len() + self.ty_params.len() > 0 } pub fn is_lt_parameterized(&self) -> bool { self.lifetimes.len() > 0 } pub fn is_type_parameterized(&self) -> bool { self.ty_params.len() > 0 } } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct WhereClause { pub id: NodeId, pub predicates: Vec, } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct WherePredicate { pub id: NodeId, pub span: Span, pub ident: Ident, pub bounds: OwnedSlice, } /// The set of MetaItems that define the compilation environment of the crate, /// used to drive conditional compilation pub type CrateConfig = Vec> ; #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct Crate { pub module: Mod, pub attrs: Vec, pub config: CrateConfig, pub span: Span, pub exported_macros: Vec> } pub type MetaItem = Spanned; #[deriving(Clone, Eq, Encodable, Decodable, Hash, Show)] pub enum MetaItem_ { MetaWord(InternedString), MetaList(InternedString, Vec>), MetaNameValue(InternedString, Lit), } // can't be derived because the MetaList requires an unordered comparison impl PartialEq for MetaItem_ { fn eq(&self, other: &MetaItem_) -> bool { match *self { MetaWord(ref ns) => match *other { MetaWord(ref no) => (*ns) == (*no), _ => false }, MetaNameValue(ref ns, ref vs) => match *other { MetaNameValue(ref no, ref vo) => { (*ns) == (*no) && vs.node == vo.node } _ => false }, MetaList(ref ns, ref miss) => match *other { MetaList(ref no, ref miso) => { ns == no && miss.iter().all(|mi| miso.iter().any(|x| x.node == mi.node)) } _ => false } } } } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct Block { pub view_items: Vec, pub stmts: Vec>, pub expr: Option>, pub id: NodeId, pub rules: BlockCheckMode, pub span: Span, } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct Pat { pub id: NodeId, pub node: Pat_, pub span: Span, } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct FieldPat { pub ident: Ident, pub pat: P, pub is_shorthand: bool, } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum BindingMode { BindByRef(Mutability), BindByValue(Mutability), } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum PatWildKind { /// Represents the wildcard pattern `_` PatWildSingle, /// Represents the wildcard pattern `..` PatWildMulti, } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum Pat_ { /// Represents a wildcard pattern (either `_` or `..`) PatWild(PatWildKind), /// A PatIdent may either be a new bound variable, /// or a nullary enum (in which case the third field /// is None). /// In the nullary enum case, the parser can't determine /// which it is. The resolver determines this, and /// records this pattern's NodeId in an auxiliary /// set (of "PatIdents that refer to nullary enums") PatIdent(BindingMode, SpannedIdent, Option>), /// "None" means a * pattern where we don't bind the fields to names. PatEnum(Path, Option>>), PatStruct(Path, Vec>, bool), PatTup(Vec>), PatBox(P), PatRegion(P), // reference pattern PatLit(P), PatRange(P, P), /// [a, b, ..i, y, z] is represented as: /// PatVec(~[a, b], Some(i), ~[y, z]) PatVec(Vec>, Option>, Vec>), PatMac(Mac), } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum Mutability { MutMutable, MutImmutable, } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum BinOp { BiAdd, BiSub, BiMul, BiDiv, BiRem, BiAnd, BiOr, BiBitXor, BiBitAnd, BiBitOr, BiShl, BiShr, BiEq, BiLt, BiLe, BiNe, BiGe, BiGt, } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum UnOp { UnUniq, UnDeref, UnNot, UnNeg } pub type Stmt = Spanned; #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum Stmt_ { /// Could be an item or a local (let) binding: StmtDecl(P, NodeId), /// Expr without trailing semi-colon (must have unit type): StmtExpr(P, NodeId), /// Expr with trailing semi-colon (may have any type): StmtSemi(P, NodeId), /// bool: is there a trailing semi-colon? StmtMac(Mac, bool), } /// Where a local declaration came from: either a true `let ... = /// ...;`, or one desugared from the pattern of a for loop. #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum LocalSource { LocalLet, LocalFor, } // FIXME (pending discussion of #1697, #2178...): local should really be // a refinement on pat. /// Local represents a `let` statement, e.g., `let : = ;` #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct Local { pub ty: P, pub pat: P, pub init: Option>, pub id: NodeId, pub span: Span, pub source: LocalSource, } pub type Decl = Spanned; #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum Decl_ { /// A local (let) binding: DeclLocal(P), /// An item binding: DeclItem(P), } /// represents one arm of a 'match' #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct Arm { pub attrs: Vec, pub pats: Vec>, pub guard: Option>, pub body: P, } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct Field { pub ident: SpannedIdent, pub expr: P, pub span: Span, } pub type SpannedIdent = Spanned; #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum BlockCheckMode { DefaultBlock, UnsafeBlock(UnsafeSource), } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum UnsafeSource { CompilerGenerated, UserProvided, } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct Expr { pub id: NodeId, pub node: Expr_, pub span: Span, } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum Expr_ { /// First expr is the place; second expr is the value. ExprBox(P, P), ExprVec(Vec>), ExprCall(P, Vec>), ExprMethodCall(SpannedIdent, Vec>, Vec>), ExprTup(Vec>), ExprBinary(BinOp, P, P), ExprUnary(UnOp, P), ExprLit(P), ExprCast(P, P), ExprIf(P, P, Option>), ExprIfLet(P, P, P, Option>), // FIXME #6993: change to Option ... or not, if these are hygienic. ExprWhile(P, P, Option), // FIXME #6993: change to Option ... or not, if these are hygienic. ExprWhileLet(P, P, P, Option), // FIXME #6993: change to Option ... or not, if these are hygienic. ExprForLoop(P, P, P, Option), // Conditionless loop (can be exited with break, cont, or ret) // FIXME #6993: change to Option ... or not, if these are hygienic. ExprLoop(P, Option), ExprMatch(P, Vec, MatchSource), ExprFnBlock(CaptureClause, P, P), ExprProc(P, P), ExprUnboxedFn(CaptureClause, UnboxedClosureKind, P, P), ExprBlock(P), ExprAssign(P, P), ExprAssignOp(BinOp, P, P), ExprField(P, SpannedIdent, Vec>), ExprTupField(P, Spanned, Vec>), ExprIndex(P, P), ExprSlice(P, Option>, Option>, Mutability), /// Variable reference, possibly containing `::` and/or /// type parameters, e.g. foo::bar:: ExprPath(Path), ExprAddrOf(Mutability, P), ExprBreak(Option), ExprAgain(Option), ExprRet(Option>), ExprInlineAsm(InlineAsm), ExprMac(Mac), /// A struct literal expression. ExprStruct(Path, Vec, Option> /* base */), /// A vector literal constructed from one repeated element. ExprRepeat(P /* element */, P /* count */), /// No-op: used solely so we can pretty-print faithfully ExprParen(P) } /// A "qualified path": /// /// as SomeTrait>::SomeAssociatedItem /// ^~~~~ ^~~~~~~~~ ^~~~~~~~~~~~~~~~~~ /// for_type trait_name item_name #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct QPath { pub for_type: P, pub trait_name: Path, pub item_name: Ident, } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum MatchSource { MatchNormal, MatchIfLetDesugar, MatchWhileLetDesugar, } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum CaptureClause { CaptureByValue, CaptureByRef, } /// A token that delimits a sequence of token trees #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct Delimiter { pub span: Span, pub token: ::parse::token::Token, } impl Delimiter { /// Convert the delimiter to a `TtToken` pub fn to_tt(&self) -> TokenTree { TtToken(self.span, self.token.clone()) } } /// A Kleene-style [repetition operator](http://en.wikipedia.org/wiki/Kleene_star) /// for token sequences. #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum KleeneOp { ZeroOrMore, OneOrMore, } /// When the main rust parser encounters a syntax-extension invocation, it /// parses the arguments to the invocation as a token-tree. This is a very /// loose structure, such that all sorts of different AST-fragments can /// be passed to syntax extensions using a uniform type. /// /// If the syntax extension is an MBE macro, it will attempt to match its /// LHS "matchers" against the provided token tree, and if it finds a /// match, will transcribe the RHS token tree, splicing in any captured /// `macro_parser::matched_nonterminals` into the `TtNonterminal`s it finds. /// /// The RHS of an MBE macro is the only place a `TtNonterminal` or `TtSequence` /// makes any real sense. You could write them elsewhere but nothing /// else knows what to do with them, so you'll probably get a syntax /// error. #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] #[doc="For macro invocations; parsing is delegated to the macro"] pub enum TokenTree { /// A single token TtToken(Span, ::parse::token::Token), /// A delimited sequence of token trees TtDelimited(Span, Rc<(Delimiter, Vec, Delimiter)>), // These only make sense for right-hand-sides of MBE macros: /// A Kleene-style repetition sequence with an optional separator. // FIXME(eddyb) #6308 Use Rc<[TokenTree]> after DST. TtSequence(Span, Rc>, Option<::parse::token::Token>, KleeneOp), /// A syntactic variable that will be filled in by macro expansion. TtNonterminal(Span, Ident) } impl TokenTree { /// Returns the `Span` corresponding to this token tree. pub fn get_span(&self) -> Span { match *self { TtToken(span, _) => span, TtDelimited(span, _) => span, TtSequence(span, _, _, _) => span, TtNonterminal(span, _) => span, } } } // Matchers are nodes defined-by and recognized-by the main rust parser and // language, but they're only ever found inside syntax-extension invocations; // indeed, the only thing that ever _activates_ the rules in the rust parser // for parsing a matcher is a matcher looking for the 'matchers' nonterminal // itself. Matchers represent a small sub-language for pattern-matching // token-trees, and are thus primarily used by the macro-defining extension // itself. // // MatchTok // -------- // // A matcher that matches a single token, denoted by the token itself. So // long as there's no $ involved. // // // MatchSeq // -------- // // A matcher that matches a sequence of sub-matchers, denoted various // possible ways: // // $(M)* zero or more Ms // $(M)+ one or more Ms // $(M),+ one or more comma-separated Ms // $(A B C);* zero or more semi-separated 'A B C' seqs // // // MatchNonterminal // ----------------- // // A matcher that matches one of a few interesting named rust // nonterminals, such as types, expressions, items, or raw token-trees. A // black-box matcher on expr, for example, binds an expr to a given ident, // and that ident can re-occur as an interpolation in the RHS of a // macro-by-example rule. For example: // // $foo:expr => 1 + $foo // interpolate an expr // $foo:tt => $foo // interpolate a token-tree // $foo:tt => bar! $foo // only other valid interpolation // // is in arg position for another // // macro // // As a final, horrifying aside, note that macro-by-example's input is // also matched by one of these matchers. Holy self-referential! It is matched // by a MatchSeq, specifically this one: // // $( $lhs:matchers => $rhs:tt );+ // // If you understand that, you have closed the loop and understand the whole // macro system. Congratulations. pub type Matcher = Spanned; #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum Matcher_ { /// Match one token MatchTok(::parse::token::Token), /// Match repetitions of a sequence: body, separator, Kleene operator, /// lo, hi position-in-match-array used: MatchSeq(Vec , Option<::parse::token::Token>, KleeneOp, uint, uint), /// Parse a Rust NT: name to bind, name of NT, position in match array: MatchNonterminal(Ident, Ident, uint) } pub type Mac = Spanned; /// Represents a macro invocation. The Path indicates which macro /// is being invoked, and the vector of token-trees contains the source /// of the macro invocation. /// There's only one flavor, now, so this could presumably be simplified. #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum Mac_ { // NB: the additional ident for a macro_rules-style macro is actually // stored in the enclosing item. Oog. MacInvocTT(Path, Vec , SyntaxContext), // new macro-invocation } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum StrStyle { CookedStr, RawStr(uint) } pub type Lit = Spanned; #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum Sign { Minus, Plus } impl Sign { pub fn new(n: T) -> Sign { if n < Zero::zero() { Minus } else { Plus } } } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum LitIntType { SignedIntLit(IntTy, Sign), UnsignedIntLit(UintTy), UnsuffixedIntLit(Sign) } impl LitIntType { pub fn suffix_len(&self) -> uint { match *self { UnsuffixedIntLit(_) => 0, SignedIntLit(s, _) => s.suffix_len(), UnsignedIntLit(u) => u.suffix_len() } } } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum Lit_ { LitStr(InternedString, StrStyle), LitBinary(Rc >), LitByte(u8), LitChar(char), LitInt(u64, LitIntType), LitFloat(InternedString, FloatTy), LitFloatUnsuffixed(InternedString), LitNil, LitBool(bool), } // NB: If you change this, you'll probably want to change the corresponding // type structure in middle/ty.rs as well. #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct MutTy { pub ty: P, pub mutbl: Mutability, } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct TypeField { pub ident: Ident, pub mt: MutTy, pub span: Span, } /// Represents a required method in a trait declaration, /// one without a default implementation #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct TypeMethod { pub ident: Ident, pub attrs: Vec, pub fn_style: FnStyle, pub abi: Abi, pub decl: P, pub generics: Generics, pub explicit_self: ExplicitSelf, pub id: NodeId, pub span: Span, pub vis: Visibility, } /// Represents a method declaration in a trait declaration, possibly including /// a default implementation A trait method is either required (meaning it /// doesn't have an implementation, just a signature) or provided (meaning it /// has a default implementation). #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum TraitItem { RequiredMethod(TypeMethod), ProvidedMethod(P), TypeTraitItem(P), } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum ImplItem { MethodImplItem(P), TypeImplItem(P), } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct AssociatedType { pub id: NodeId, pub span: Span, pub ident: Ident, pub attrs: Vec, } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct Typedef { pub id: NodeId, pub span: Span, pub ident: Ident, pub vis: Visibility, pub attrs: Vec, pub typ: P, } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)] pub enum IntTy { TyI, TyI8, TyI16, TyI32, TyI64, } impl fmt::Show for IntTy { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", ast_util::int_ty_to_string(*self, None)) } } impl IntTy { pub fn suffix_len(&self) -> uint { match *self { TyI => 1, TyI8 => 2, TyI16 | TyI32 | TyI64 => 3, } } } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)] pub enum UintTy { TyU, TyU8, TyU16, TyU32, TyU64, } impl UintTy { pub fn suffix_len(&self) -> uint { match *self { TyU => 1, TyU8 => 2, TyU16 | TyU32 | TyU64 => 3, } } } impl fmt::Show for UintTy { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", ast_util::uint_ty_to_string(*self, None)) } } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)] pub enum FloatTy { TyF32, TyF64, } impl fmt::Show for FloatTy { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", ast_util::float_ty_to_string(*self)) } } impl FloatTy { pub fn suffix_len(&self) -> uint { match *self { TyF32 | TyF64 => 3, // add F128 handling here } } } // NB PartialEq method appears below. #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct Ty { pub id: NodeId, pub node: Ty_, pub span: Span, } /// Not represented directly in the AST, referred to by name through a ty_path. #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum PrimTy { TyInt(IntTy), TyUint(UintTy), TyFloat(FloatTy), TyStr, TyBool, TyChar } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)] pub enum Onceness { Once, Many } impl fmt::Show for Onceness { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match *self { Once => "once".fmt(f), Many => "many".fmt(f), } } } /// Represents the type of a closure #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct ClosureTy { pub lifetimes: Vec, pub fn_style: FnStyle, pub onceness: Onceness, pub decl: P, pub bounds: TyParamBounds, } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct BareFnTy { pub fn_style: FnStyle, pub abi: Abi, pub lifetimes: Vec, pub decl: P } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct UnboxedFnTy { pub kind: UnboxedClosureKind, pub decl: P, } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum Ty_ { TyNil, TyBot, /* bottom type */ TyUniq(P), TyVec(P), TyFixedLengthVec(P, P), TyPtr(MutTy), TyRptr(Option, MutTy), TyClosure(P), TyProc(P), TyBareFn(P), TyUnboxedFn(P), TyTup(Vec> ), TyPath(Path, Option, NodeId), // for #7264; see above /// A "qualified path", e.g. ` as SomeTrait>::SomeType` TyQPath(P), /// No-op; kept solely so that we can pretty-print faithfully TyParen(P), TyTypeof(P), /// TyInfer means the type should be inferred instead of it having been /// specified. This can appear anywhere in a type. TyInfer, } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum AsmDialect { AsmAtt, AsmIntel } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct InlineAsm { pub asm: InternedString, pub asm_str_style: StrStyle, pub outputs: Vec<(InternedString, P, bool)>, pub inputs: Vec<(InternedString, P)>, pub clobbers: InternedString, pub volatile: bool, pub alignstack: bool, pub dialect: AsmDialect, pub expn_id: ExpnId, } /// represents an argument in a function header #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct Arg { pub ty: P, pub pat: P, pub id: NodeId, } impl Arg { pub fn new_self(span: Span, mutability: Mutability, self_ident: Ident) -> Arg { let path = Spanned{span:span,node:self_ident}; Arg { // HACK(eddyb) fake type for the self argument. ty: P(Ty { id: DUMMY_NODE_ID, node: TyInfer, span: DUMMY_SP, }), pat: P(Pat { id: DUMMY_NODE_ID, node: PatIdent(BindByValue(mutability), path, None), span: span }), id: DUMMY_NODE_ID } } } /// represents the header (not the body) of a function declaration #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct FnDecl { pub inputs: Vec, pub output: P, pub cf: RetStyle, pub variadic: bool } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)] pub enum FnStyle { /// Declared with "unsafe fn" UnsafeFn, /// Declared with "fn" NormalFn, } impl fmt::Show for FnStyle { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match *self { NormalFn => "normal".fmt(f), UnsafeFn => "unsafe".fmt(f), } } } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum RetStyle { /// Functions with return type ! that always /// raise an error or exit (i.e. never return to the caller) NoReturn, /// Everything else Return, } /// Represents the kind of 'self' associated with a method #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum ExplicitSelf_ { /// No self SelfStatic, /// `self` SelfValue(Ident), /// `&'lt self`, `&'lt mut self` SelfRegion(Option, Mutability, Ident), /// `self: TYPE` SelfExplicit(P, Ident), } pub type ExplicitSelf = Spanned; #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct Method { pub attrs: Vec, pub id: NodeId, pub span: Span, pub node: Method_, } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum Method_ { /// Represents a method declaration MethDecl(Ident, Generics, Abi, ExplicitSelf, FnStyle, P, P, Visibility), /// Represents a macro in method position MethMac(Mac), } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct Mod { /// A span from the first token past `{` to the last token until `}`. /// For `mod foo;`, the inner span ranges from the first token /// to the last token in the external file. pub inner: Span, pub view_items: Vec, pub items: Vec>, } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct ForeignMod { pub abi: Abi, pub view_items: Vec, pub items: Vec>, } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct VariantArg { pub ty: P, pub id: NodeId, } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum VariantKind { TupleVariantKind(Vec), StructVariantKind(P), } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct EnumDef { pub variants: Vec>, } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct Variant_ { pub name: Ident, pub attrs: Vec, pub kind: VariantKind, pub id: NodeId, pub disr_expr: Option>, pub vis: Visibility, } pub type Variant = Spanned; #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum PathListItem_ { PathListIdent { pub name: Ident, pub id: NodeId }, PathListMod { pub id: NodeId } } impl PathListItem_ { pub fn id(&self) -> NodeId { match *self { PathListIdent { id, .. } | PathListMod { id } => id } } } pub type PathListItem = Spanned; pub type ViewPath = Spanned; #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum ViewPath_ { /// `foo::bar::baz as quux` /// /// or just /// /// `foo::bar::baz` (with `as baz` implicitly on the right) ViewPathSimple(Ident, Path, NodeId), /// `foo::bar::*` ViewPathGlob(Path, NodeId), /// `foo::bar::{a,b,c}` ViewPathList(Path, Vec , NodeId) } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct ViewItem { pub node: ViewItem_, pub attrs: Vec, pub vis: Visibility, pub span: Span, } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum ViewItem_ { /// Ident: name used to refer to this crate in the code /// optional (InternedString,StrStyle): if present, this is a location /// (containing arbitrary characters) from which to fetch the crate sources /// For example, extern crate whatever = "github.com/rust-lang/rust" ViewItemExternCrate(Ident, Option<(InternedString,StrStyle)>, NodeId), ViewItemUse(P), } /// Meta-data associated with an item pub type Attribute = Spanned; /// Distinguishes between Attributes that decorate items and Attributes that /// are contained as statements within items. These two cases need to be /// distinguished for pretty-printing. #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum AttrStyle { AttrOuter, AttrInner, } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct AttrId(pub uint); /// Doc-comments are promoted to attributes that have is_sugared_doc = true #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct Attribute_ { pub id: AttrId, pub style: AttrStyle, pub value: P, pub is_sugared_doc: bool, } /// TraitRef's appear in impls. /// resolve maps each TraitRef's ref_id to its defining trait; that's all /// that the ref_id is for. The impl_id maps to the "self type" of this impl. /// If this impl is an ItemImpl, the impl_id is redundant (it could be the /// same as the impl's node id). #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct TraitRef { pub path: Path, pub ref_id: NodeId, pub lifetimes: Vec, } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum Visibility { Public, Inherited, } impl Visibility { pub fn inherit_from(&self, parent_visibility: Visibility) -> Visibility { match self { &Inherited => parent_visibility, &Public => *self } } } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct StructField_ { pub kind: StructFieldKind, pub id: NodeId, pub ty: P, pub attrs: Vec, } impl StructField_ { pub fn ident(&self) -> Option { match self.kind { NamedField(ref ident, _) => Some(ident.clone()), UnnamedField(_) => None } } } pub type StructField = Spanned; #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum StructFieldKind { NamedField(Ident, Visibility), /// Element of a tuple-like struct UnnamedField(Visibility), } impl StructFieldKind { pub fn is_unnamed(&self) -> bool { match *self { UnnamedField(..) => true, NamedField(..) => false, } } } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct StructDef { /// Fields, not including ctor pub fields: Vec, /// ID of the constructor. This is only used for tuple- or enum-like /// structs. pub ctor_id: Option, } /* FIXME (#3300): Should allow items to be anonymous. Right now we just use dummy names for anon items. */ #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct Item { pub ident: Ident, pub attrs: Vec, pub id: NodeId, pub node: Item_, pub vis: Visibility, pub span: Span, } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum Item_ { ItemStatic(P, Mutability, P), ItemConst(P, P), ItemFn(P, FnStyle, Abi, Generics, P), ItemMod(Mod), ItemForeignMod(ForeignMod), ItemTy(P, Generics), ItemEnum(EnumDef, Generics), ItemStruct(P, Generics), /// Represents a Trait Declaration ItemTrait(Generics, Option, // (optional) default bound not required for Self. // Currently, only Sized makes sense here. TyParamBounds, Vec), ItemImpl(Generics, Option, // (optional) trait this impl implements P, // self Vec), /// A macro invocation (which includes macro definition) ItemMac(Mac), } impl Item_ { pub fn descriptive_variant(&self) -> &str { match *self { ItemStatic(..) => "static item", ItemConst(..) => "constant item", ItemFn(..) => "function", ItemMod(..) => "module", ItemForeignMod(..) => "foreign module", ItemTy(..) => "type alias", ItemEnum(..) => "enum", ItemStruct(..) => "struct", ItemTrait(..) => "trait", ItemMac(..) | ItemImpl(..) => "item" } } } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub struct ForeignItem { pub ident: Ident, pub attrs: Vec, pub node: ForeignItem_, pub id: NodeId, pub span: Span, pub vis: Visibility, } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum ForeignItem_ { ForeignItemFn(P, Generics), ForeignItemStatic(P, /* is_mutbl */ bool), } impl ForeignItem_ { pub fn descriptive_variant(&self) -> &str { match *self { ForeignItemFn(..) => "foreign function", ForeignItemStatic(..) => "foreign static item" } } } #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum UnboxedClosureKind { FnUnboxedClosureKind, FnMutUnboxedClosureKind, FnOnceUnboxedClosureKind, } /// The data we save and restore about an inlined item or method. This is not /// part of the AST that we parse from a file, but it becomes part of the tree /// that we trans. #[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)] pub enum InlinedItem { IIItem(P), IITraitItem(DefId /* impl id */, TraitItem), IIImplItem(DefId /* impl id */, ImplItem), IIForeign(P), } #[cfg(test)] mod test { use serialize::json; use serialize; use codemap::*; use super::*; // are ASTs encodable? #[test] fn check_asts_encodable() { use std::io; let e = Crate { module: Mod { inner: Span { lo: BytePos(11), hi: BytePos(19), expn_id: NO_EXPANSION, }, view_items: Vec::new(), items: Vec::new(), }, attrs: Vec::new(), config: Vec::new(), span: Span { lo: BytePos(10), hi: BytePos(20), expn_id: NO_EXPANSION, }, exported_macros: Vec::new(), }; // doesn't matter which encoder we use.... let _f = &e as &serialize::Encodable; } }