// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // FIXME(27718): rc_counts stuff is useful internally, but was previously public #![allow(deprecated)] //! Thread-local reference-counted boxes (the `Rc` type). //! //! The `Rc` type provides shared ownership of an immutable value. //! Destruction is deterministic, and will occur as soon as the last owner is //! gone. It is marked as non-sendable because it avoids the overhead of atomic //! reference counting. //! //! The `downgrade` method can be used to create a non-owning `Weak` pointer //! to the box. A `Weak` pointer can be upgraded to an `Rc` pointer, but //! will return `None` if the value has already been dropped. //! //! For example, a tree with parent pointers can be represented by putting the //! nodes behind strong `Rc` pointers, and then storing the parent pointers //! as `Weak` pointers. //! //! # Examples //! //! Consider a scenario where a set of `Gadget`s are owned by a given `Owner`. //! We want to have our `Gadget`s point to their `Owner`. We can't do this with //! unique ownership, because more than one gadget may belong to the same //! `Owner`. `Rc` allows us to share an `Owner` between multiple `Gadget`s, //! and have the `Owner` remain allocated as long as any `Gadget` points at it. //! //! ```rust //! use std::rc::Rc; //! //! struct Owner { //! name: String //! // ...other fields //! } //! //! struct Gadget { //! id: i32, //! owner: Rc //! // ...other fields //! } //! //! fn main() { //! // Create a reference counted Owner. //! let gadget_owner : Rc = Rc::new( //! Owner { name: String::from("Gadget Man") } //! ); //! //! // Create Gadgets belonging to gadget_owner. To increment the reference //! // count we clone the `Rc` object. //! let gadget1 = Gadget { id: 1, owner: gadget_owner.clone() }; //! let gadget2 = Gadget { id: 2, owner: gadget_owner.clone() }; //! //! drop(gadget_owner); //! //! // Despite dropping gadget_owner, we're still able to print out the name //! // of the Owner of the Gadgets. This is because we've only dropped the //! // reference count object, not the Owner it wraps. As long as there are //! // other `Rc` objects pointing at the same Owner, it will remain //! // allocated. Notice that the `Rc` wrapper around Gadget.owner gets //! // automatically dereferenced for us. //! println!("Gadget {} owned by {}", gadget1.id, gadget1.owner.name); //! println!("Gadget {} owned by {}", gadget2.id, gadget2.owner.name); //! //! // At the end of the method, gadget1 and gadget2 get destroyed, and with //! // them the last counted references to our Owner. Gadget Man now gets //! // destroyed as well. //! } //! ``` //! //! If our requirements change, and we also need to be able to traverse from //! Owner → Gadget, we will run into problems: an `Rc` pointer from Owner //! → Gadget introduces a cycle between the objects. This means that their //! reference counts can never reach 0, and the objects will remain allocated: a //! memory leak. In order to get around this, we can use `Weak` pointers. //! These pointers don't contribute to the total count. //! //! Rust actually makes it somewhat difficult to produce this loop in the first //! place: in order to end up with two objects that point at each other, one of //! them needs to be mutable. This is problematic because `Rc` enforces //! memory safety by only giving out shared references to the object it wraps, //! and these don't allow direct mutation. We need to wrap the part of the //! object we wish to mutate in a `RefCell`, which provides *interior //! mutability*: a method to achieve mutability through a shared reference. //! `RefCell` enforces Rust's borrowing rules at runtime. Read the `Cell` //! documentation for more details on interior mutability. //! //! ```rust //! #![feature(rc_weak)] //! //! use std::rc::Rc; //! use std::rc::Weak; //! use std::cell::RefCell; //! //! struct Owner { //! name: String, //! gadgets: RefCell>> //! // ...other fields //! } //! //! struct Gadget { //! id: i32, //! owner: Rc //! // ...other fields //! } //! //! fn main() { //! // Create a reference counted Owner. Note the fact that we've put the //! // Owner's vector of Gadgets inside a RefCell so that we can mutate it //! // through a shared reference. //! let gadget_owner : Rc = Rc::new( //! Owner { //! name: "Gadget Man".to_string(), //! gadgets: RefCell::new(Vec::new()) //! } //! ); //! //! // Create Gadgets belonging to gadget_owner as before. //! let gadget1 = Rc::new(Gadget{id: 1, owner: gadget_owner.clone()}); //! let gadget2 = Rc::new(Gadget{id: 2, owner: gadget_owner.clone()}); //! //! // Add the Gadgets to their Owner. To do this we mutably borrow from //! // the RefCell holding the Owner's Gadgets. //! gadget_owner.gadgets.borrow_mut().push(Rc::downgrade(&gadget1)); //! gadget_owner.gadgets.borrow_mut().push(Rc::downgrade(&gadget2)); //! //! // Iterate over our Gadgets, printing their details out //! for gadget_opt in gadget_owner.gadgets.borrow().iter() { //! //! // gadget_opt is a Weak. Since weak pointers can't guarantee //! // that their object is still allocated, we need to call upgrade() //! // on them to turn them into a strong reference. This returns an //! // Option, which contains a reference to our object if it still //! // exists. //! let gadget = gadget_opt.upgrade().unwrap(); //! println!("Gadget {} owned by {}", gadget.id, gadget.owner.name); //! } //! //! // At the end of the method, gadget_owner, gadget1 and gadget2 get //! // destroyed. There are now no strong (`Rc`) references to the gadgets. //! // Once they get destroyed, the Gadgets get destroyed. This zeroes the //! // reference count on Gadget Man, they get destroyed as well. //! } //! ``` #![stable(feature = "rust1", since = "1.0.0")] #[cfg(not(test))] use boxed::Box; #[cfg(test)] use std::boxed::Box; use core::borrow; use core::cell::Cell; use core::cmp::Ordering; use core::fmt; use core::hash::{Hasher, Hash}; use core::intrinsics::{assume, drop_in_place, abort}; use core::marker::{self, Unsize}; use core::mem::{self, align_of_val, size_of_val, forget}; use core::nonzero::NonZero; use core::ops::{CoerceUnsized, Deref}; use core::ptr; use heap::deallocate; struct RcBox { strong: Cell, weak: Cell, value: T, } /// A reference-counted pointer type over an immutable value. /// /// See the [module level documentation](./index.html) for more details. #[unsafe_no_drop_flag] #[stable(feature = "rust1", since = "1.0.0")] pub struct Rc { // FIXME #12808: strange names to try to avoid interfering with field // accesses of the contained type via Deref _ptr: NonZero<*mut RcBox>, } impl !marker::Send for Rc {} impl !marker::Sync for Rc {} impl, U: ?Sized> CoerceUnsized> for Rc {} impl Rc { /// Constructs a new `Rc`. /// /// # Examples /// /// ``` /// use std::rc::Rc; /// /// let five = Rc::new(5); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn new(value: T) -> Rc { unsafe { Rc { // there is an implicit weak pointer owned by all the strong // pointers, which ensures that the weak destructor never frees // the allocation while the strong destructor is running, even // if the weak pointer is stored inside the strong one. _ptr: NonZero::new(Box::into_raw(box RcBox { strong: Cell::new(1), weak: Cell::new(1), value: value })), } } } /// Unwraps the contained value if the `Rc` has only one strong reference. /// This will succeed even if there are outstanding weak references. /// /// Otherwise, an `Err` is returned with the same `Rc`. /// /// # Examples /// /// ``` /// #![feature(rc_unique)] /// /// use std::rc::Rc; /// /// let x = Rc::new(3); /// assert_eq!(Rc::try_unwrap(x), Ok(3)); /// /// let x = Rc::new(4); /// let _y = x.clone(); /// assert_eq!(Rc::try_unwrap(x), Err(Rc::new(4))); /// ``` #[inline] #[unstable(feature = "rc_unique", reason= "needs FCP", issue = "27718")] pub fn try_unwrap(this: Self) -> Result { if Rc::would_unwrap(&this) { unsafe { let val = ptr::read(&*this); // copy the contained object // Indicate to Weaks that they can't be promoted by decrememting // the strong count, and then remove the implicit "strong weak" // pointer while also handling drop logic by just crafting a // fake Weak. this.dec_strong(); let _weak = Weak { _ptr: this._ptr }; forget(this); Ok(val) } } else { Err(this) } } /// Checks if `Rc::try_unwrap` would return `Ok`. #[unstable(feature = "rc_would_unwrap", reason = "just added for niche usecase", issue = "27718")] pub fn would_unwrap(this: &Self) -> bool { Rc::strong_count(&this) == 1 } } impl Rc { /// Downgrades the `Rc` to a `Weak` reference. /// /// # Examples /// /// ``` /// #![feature(rc_weak)] /// /// use std::rc::Rc; /// /// let five = Rc::new(5); /// /// let weak_five = Rc::downgrade(&five); /// ``` #[unstable(feature = "rc_weak", reason = "needs FCP", issue = "27718")] pub fn downgrade(this: &Self) -> Weak { this.inc_weak(); Weak { _ptr: this._ptr } } /// Get the number of weak references to this value. #[inline] #[unstable(feature = "rc_counts", reason = "not clearly useful", issue = "27718")] pub fn weak_count(this: &Self) -> usize { this.weak() - 1 } /// Get the number of strong references to this value. #[inline] #[unstable(feature = "rc_counts", reason = "not clearly useful", issue = "27718")] pub fn strong_count(this: &Self) -> usize { this.strong() } /// Returns true if there are no other `Rc` or `Weak` values that share /// the same inner value. /// /// # Examples /// /// ``` /// #![feature(rc_counts)] /// /// use std::rc::Rc; /// /// let five = Rc::new(5); /// /// assert!(Rc::is_unique(&five)); /// ``` #[inline] #[unstable(feature = "rc_counts", reason = "uniqueness has unclear meaning", issue = "27718")] pub fn is_unique(this: &Self) -> bool { Rc::weak_count(this) == 0 && Rc::strong_count(this) == 1 } /// Returns a mutable reference to the contained value if the `Rc` has /// one strong reference and no weak references. /// /// Returns `None` if the `Rc` is not unique. /// /// # Examples /// /// ``` /// #![feature(rc_unique)] /// /// use std::rc::Rc; /// /// let mut x = Rc::new(3); /// *Rc::get_mut(&mut x).unwrap() = 4; /// assert_eq!(*x, 4); /// /// let _y = x.clone(); /// assert!(Rc::get_mut(&mut x).is_none()); /// ``` #[inline] #[unstable(feature = "rc_unique", reason = "needs FCP", issue = "27718")] pub fn get_mut(this: &mut Self) -> Option<&mut T> { if Rc::is_unique(this) { let inner = unsafe { &mut **this._ptr }; Some(&mut inner.value) } else { None } } } impl Rc { #[inline] #[unstable(feature = "rc_unique", reason = "renamed to Rc::make_mut", issue = "27718")] #[deprecated(since = "1.4.0", reason = "renamed to Rc::make_mut")] pub fn make_unique(&mut self) -> &mut T { Rc::make_mut(self) } /// Make a mutable reference into the given `Rc` by cloning the inner /// data if the `Rc` doesn't have one strong reference and no weak /// references. /// /// This is also referred to as a copy-on-write. /// /// # Examples /// /// ``` /// #![feature(rc_unique)] /// use std::rc::Rc; /// /// let mut data = Rc::new(5); /// /// *Rc::make_mut(&mut data) += 1; // Won't clone anything /// let mut other_data = data.clone(); // Won't clone inner data /// *Rc::make_mut(&mut data) += 1; // Clones inner data /// *Rc::make_mut(&mut data) += 1; // Won't clone anything /// *Rc::make_mut(&mut other_data) *= 2; // Won't clone anything /// /// // Note: data and other_data now point to different numbers /// assert_eq!(*data, 8); /// assert_eq!(*other_data, 12); /// /// ``` #[inline] #[unstable(feature = "rc_unique", reason = "needs FCP", issue = "27718")] pub fn make_mut(this: &mut Self) -> &mut T { if Rc::strong_count(this) != 1 { // Gotta clone the data, there are other Rcs *this = Rc::new((**this).clone()) } else if Rc::weak_count(this) != 0 { // Can just steal the data, all that's left is Weaks unsafe { let mut swap = Rc::new(ptr::read(&(**this._ptr).value)); mem::swap(this, &mut swap); swap.dec_strong(); // Remove implicit strong-weak ref (no need to craft a fake // Weak here -- we know other Weaks can clean up for us) swap.dec_weak(); forget(swap); } } // This unsafety is ok because we're guaranteed that the pointer // returned is the *only* pointer that will ever be returned to T. Our // reference count is guaranteed to be 1 at this point, and we required // the `Rc` itself to be `mut`, so we're returning the only possible // reference to the inner value. let inner = unsafe { &mut **this._ptr }; &mut inner.value } } #[stable(feature = "rust1", since = "1.0.0")] impl Deref for Rc { type Target = T; #[inline(always)] fn deref(&self) -> &T { &self.inner().value } } #[stable(feature = "rust1", since = "1.0.0")] impl Drop for Rc { /// Drops the `Rc`. /// /// This will decrement the strong reference count. If the strong reference /// count becomes zero and the only other references are `Weak` ones, /// `drop`s the inner value. /// /// # Examples /// /// ``` /// use std::rc::Rc; /// /// { /// let five = Rc::new(5); /// /// // stuff /// /// drop(five); // explicit drop /// } /// { /// let five = Rc::new(5); /// /// // stuff /// /// } // implicit drop /// ``` fn drop(&mut self) { unsafe { let ptr = *self._ptr; if !(*(&ptr as *const _ as *const *const ())).is_null() && ptr as *const () as usize != mem::POST_DROP_USIZE { self.dec_strong(); if self.strong() == 0 { // destroy the contained object drop_in_place(&mut (*ptr).value); // remove the implicit "strong weak" pointer now that we've // destroyed the contents. self.dec_weak(); if self.weak() == 0 { deallocate(ptr as *mut u8, size_of_val(&*ptr), align_of_val(&*ptr)) } } } } } } #[stable(feature = "rust1", since = "1.0.0")] impl Clone for Rc { /// Makes a clone of the `Rc`. /// /// When you clone an `Rc`, it will create another pointer to the data and /// increase the strong reference counter. /// /// # Examples /// /// ``` /// use std::rc::Rc; /// /// let five = Rc::new(5); /// /// five.clone(); /// ``` #[inline] fn clone(&self) -> Rc { self.inc_strong(); Rc { _ptr: self._ptr } } } #[stable(feature = "rust1", since = "1.0.0")] impl Default for Rc { /// Creates a new `Rc`, with the `Default` value for `T`. /// /// # Examples /// /// ``` /// use std::rc::Rc; /// /// let x: Rc = Default::default(); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn default() -> Rc { Rc::new(Default::default()) } } #[stable(feature = "rust1", since = "1.0.0")] impl PartialEq for Rc { /// Equality for two `Rc`s. /// /// Two `Rc`s are equal if their inner value are equal. /// /// # Examples /// /// ``` /// use std::rc::Rc; /// /// let five = Rc::new(5); /// /// five == Rc::new(5); /// ``` #[inline(always)] fn eq(&self, other: &Rc) -> bool { **self == **other } /// Inequality for two `Rc`s. /// /// Two `Rc`s are unequal if their inner value are unequal. /// /// # Examples /// /// ``` /// use std::rc::Rc; /// /// let five = Rc::new(5); /// /// five != Rc::new(5); /// ``` #[inline(always)] fn ne(&self, other: &Rc) -> bool { **self != **other } } #[stable(feature = "rust1", since = "1.0.0")] impl Eq for Rc {} #[stable(feature = "rust1", since = "1.0.0")] impl PartialOrd for Rc { /// Partial comparison for two `Rc`s. /// /// The two are compared by calling `partial_cmp()` on their inner values. /// /// # Examples /// /// ``` /// use std::rc::Rc; /// /// let five = Rc::new(5); /// /// five.partial_cmp(&Rc::new(5)); /// ``` #[inline(always)] fn partial_cmp(&self, other: &Rc) -> Option { (**self).partial_cmp(&**other) } /// Less-than comparison for two `Rc`s. /// /// The two are compared by calling `<` on their inner values. /// /// # Examples /// /// ``` /// use std::rc::Rc; /// /// let five = Rc::new(5); /// /// five < Rc::new(5); /// ``` #[inline(always)] fn lt(&self, other: &Rc) -> bool { **self < **other } /// 'Less-than or equal to' comparison for two `Rc`s. /// /// The two are compared by calling `<=` on their inner values. /// /// # Examples /// /// ``` /// use std::rc::Rc; /// /// let five = Rc::new(5); /// /// five <= Rc::new(5); /// ``` #[inline(always)] fn le(&self, other: &Rc) -> bool { **self <= **other } /// Greater-than comparison for two `Rc`s. /// /// The two are compared by calling `>` on their inner values. /// /// # Examples /// /// ``` /// use std::rc::Rc; /// /// let five = Rc::new(5); /// /// five > Rc::new(5); /// ``` #[inline(always)] fn gt(&self, other: &Rc) -> bool { **self > **other } /// 'Greater-than or equal to' comparison for two `Rc`s. /// /// The two are compared by calling `>=` on their inner values. /// /// # Examples /// /// ``` /// use std::rc::Rc; /// /// let five = Rc::new(5); /// /// five >= Rc::new(5); /// ``` #[inline(always)] fn ge(&self, other: &Rc) -> bool { **self >= **other } } #[stable(feature = "rust1", since = "1.0.0")] impl Ord for Rc { /// Comparison for two `Rc`s. /// /// The two are compared by calling `cmp()` on their inner values. /// /// # Examples /// /// ``` /// use std::rc::Rc; /// /// let five = Rc::new(5); /// /// five.partial_cmp(&Rc::new(5)); /// ``` #[inline] fn cmp(&self, other: &Rc) -> Ordering { (**self).cmp(&**other) } } #[stable(feature = "rust1", since = "1.0.0")] impl Hash for Rc { fn hash(&self, state: &mut H) { (**self).hash(state); } } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Display for Rc { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Display::fmt(&**self, f) } } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Debug for Rc { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Debug::fmt(&**self, f) } } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Pointer for Rc { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Pointer::fmt(&*self._ptr, f) } } /// A weak version of `Rc`. /// /// Weak references do not count when determining if the inner value should be /// dropped. /// /// See the [module level documentation](./index.html) for more. #[unsafe_no_drop_flag] #[unstable(feature = "rc_weak", reason = "needs FCP", issue = "27718")] pub struct Weak { // FIXME #12808: strange names to try to avoid interfering with // field accesses of the contained type via Deref _ptr: NonZero<*mut RcBox>, } impl !marker::Send for Weak {} impl !marker::Sync for Weak {} impl, U: ?Sized> CoerceUnsized> for Weak {} impl Weak { /// Upgrades a weak reference to a strong reference. /// /// Upgrades the `Weak` reference to an `Rc`, if possible. /// /// Returns `None` if there were no strong references and the data was /// destroyed. /// /// # Examples /// /// ``` /// #![feature(rc_weak)] /// /// use std::rc::Rc; /// /// let five = Rc::new(5); /// /// let weak_five = Rc::downgrade(&five); /// /// let strong_five: Option> = weak_five.upgrade(); /// ``` #[unstable(feature = "rc_weak", reason = "needs FCP", issue = "27718")] pub fn upgrade(&self) -> Option> { if self.strong() == 0 { None } else { self.inc_strong(); Some(Rc { _ptr: self._ptr }) } } } #[stable(feature = "rust1", since = "1.0.0")] impl Drop for Weak { /// Drops the `Weak`. /// /// This will decrement the weak reference count. /// /// # Examples /// /// ``` /// #![feature(rc_weak)] /// /// use std::rc::Rc; /// /// { /// let five = Rc::new(5); /// let weak_five = Rc::downgrade(&five); /// /// // stuff /// /// drop(weak_five); // explicit drop /// } /// { /// let five = Rc::new(5); /// let weak_five = Rc::downgrade(&five); /// /// // stuff /// /// } // implicit drop /// ``` fn drop(&mut self) { unsafe { let ptr = *self._ptr; if !(*(&ptr as *const _ as *const *const ())).is_null() && ptr as *const () as usize != mem::POST_DROP_USIZE { self.dec_weak(); // the weak count starts at 1, and will only go to zero if all // the strong pointers have disappeared. if self.weak() == 0 { deallocate(ptr as *mut u8, size_of_val(&*ptr), align_of_val(&*ptr)) } } } } } #[unstable(feature = "rc_weak", reason = "needs FCP", issue = "27718")] impl Clone for Weak { /// Makes a clone of the `Weak`. /// /// This increases the weak reference count. /// /// # Examples /// /// ``` /// #![feature(rc_weak)] /// /// use std::rc::Rc; /// /// let weak_five = Rc::downgrade(&Rc::new(5)); /// /// weak_five.clone(); /// ``` #[inline] fn clone(&self) -> Weak { self.inc_weak(); Weak { _ptr: self._ptr } } } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Debug for Weak { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "(Weak)") } } // NOTE: We checked_add here to deal with mem::forget safety. In particular // if you mem::forget Rcs (or Weaks), the ref-count can overflow, and then // you can free the allocation while outstanding Rcs (or Weaks) exist. // We abort because this is such a degenerate scenario that we don't care about // what happens -- no real program should ever experience this. // // This should have negligible overhead since you don't actually need to // clone these much in Rust thanks to ownership and move-semantics. #[doc(hidden)] trait RcBoxPtr { fn inner(&self) -> &RcBox; #[inline] fn strong(&self) -> usize { self.inner().strong.get() } #[inline] fn inc_strong(&self) { self.inner().strong.set(self.strong().checked_add(1).unwrap_or_else(|| unsafe { abort() })); } #[inline] fn dec_strong(&self) { self.inner().strong.set(self.strong() - 1); } #[inline] fn weak(&self) -> usize { self.inner().weak.get() } #[inline] fn inc_weak(&self) { self.inner().weak.set(self.weak().checked_add(1).unwrap_or_else(|| unsafe { abort() })); } #[inline] fn dec_weak(&self) { self.inner().weak.set(self.weak() - 1); } } impl RcBoxPtr for Rc { #[inline(always)] fn inner(&self) -> &RcBox { unsafe { // Safe to assume this here, as if it weren't true, we'd be breaking // the contract anyway. // This allows the null check to be elided in the destructor if we // manipulated the reference count in the same function. assume(!(*(&self._ptr as *const _ as *const *const ())).is_null()); &(**self._ptr) } } } impl RcBoxPtr for Weak { #[inline(always)] fn inner(&self) -> &RcBox { unsafe { // Safe to assume this here, as if it weren't true, we'd be breaking // the contract anyway. // This allows the null check to be elided in the destructor if we // manipulated the reference count in the same function. assume(!(*(&self._ptr as *const _ as *const *const ())).is_null()); &(**self._ptr) } } } #[cfg(test)] mod tests { use super::{Rc, Weak}; use std::boxed::Box; use std::cell::RefCell; use std::option::Option; use std::option::Option::{Some, None}; use std::result::Result::{Err, Ok}; use std::mem::drop; use std::clone::Clone; #[test] fn test_clone() { let x = Rc::new(RefCell::new(5)); let y = x.clone(); *x.borrow_mut() = 20; assert_eq!(*y.borrow(), 20); } #[test] fn test_simple() { let x = Rc::new(5); assert_eq!(*x, 5); } #[test] fn test_simple_clone() { let x = Rc::new(5); let y = x.clone(); assert_eq!(*x, 5); assert_eq!(*y, 5); } #[test] fn test_destructor() { let x: Rc> = Rc::new(box 5); assert_eq!(**x, 5); } #[test] fn test_live() { let x = Rc::new(5); let y = Rc::downgrade(&x); assert!(y.upgrade().is_some()); } #[test] fn test_dead() { let x = Rc::new(5); let y = Rc::downgrade(&x); drop(x); assert!(y.upgrade().is_none()); } #[test] fn weak_self_cyclic() { struct Cycle { x: RefCell>> } let a = Rc::new(Cycle { x: RefCell::new(None) }); let b = Rc::downgrade(&a.clone()); *a.x.borrow_mut() = Some(b); // hopefully we don't double-free (or leak)... } #[test] fn is_unique() { let x = Rc::new(3); assert!(Rc::is_unique(&x)); let y = x.clone(); assert!(!Rc::is_unique(&x)); drop(y); assert!(Rc::is_unique(&x)); let w = Rc::downgrade(&x); assert!(!Rc::is_unique(&x)); drop(w); assert!(Rc::is_unique(&x)); } #[test] fn test_strong_count() { let a = Rc::new(0u32); assert!(Rc::strong_count(&a) == 1); let w = Rc::downgrade(&a); assert!(Rc::strong_count(&a) == 1); let b = w.upgrade().expect("upgrade of live rc failed"); assert!(Rc::strong_count(&b) == 2); assert!(Rc::strong_count(&a) == 2); drop(w); drop(a); assert!(Rc::strong_count(&b) == 1); let c = b.clone(); assert!(Rc::strong_count(&b) == 2); assert!(Rc::strong_count(&c) == 2); } #[test] fn test_weak_count() { let a = Rc::new(0u32); assert!(Rc::strong_count(&a) == 1); assert!(Rc::weak_count(&a) == 0); let w = Rc::downgrade(&a); assert!(Rc::strong_count(&a) == 1); assert!(Rc::weak_count(&a) == 1); drop(w); assert!(Rc::strong_count(&a) == 1); assert!(Rc::weak_count(&a) == 0); let c = a.clone(); assert!(Rc::strong_count(&a) == 2); assert!(Rc::weak_count(&a) == 0); drop(c); } #[test] fn try_unwrap() { let x = Rc::new(3); assert_eq!(Rc::try_unwrap(x), Ok(3)); let x = Rc::new(4); let _y = x.clone(); assert_eq!(Rc::try_unwrap(x), Err(Rc::new(4))); let x = Rc::new(5); let _w = Rc::downgrade(&x); assert_eq!(Rc::try_unwrap(x), Ok(5)); } #[test] fn get_mut() { let mut x = Rc::new(3); *Rc::get_mut(&mut x).unwrap() = 4; assert_eq!(*x, 4); let y = x.clone(); assert!(Rc::get_mut(&mut x).is_none()); drop(y); assert!(Rc::get_mut(&mut x).is_some()); let _w = Rc::downgrade(&x); assert!(Rc::get_mut(&mut x).is_none()); } #[test] fn test_cowrc_clone_make_unique() { let mut cow0 = Rc::new(75); let mut cow1 = cow0.clone(); let mut cow2 = cow1.clone(); assert!(75 == *Rc::make_mut(&mut cow0)); assert!(75 == *Rc::make_mut(&mut cow1)); assert!(75 == *Rc::make_mut(&mut cow2)); *Rc::make_mut(&mut cow0) += 1; *Rc::make_mut(&mut cow1) += 2; *Rc::make_mut(&mut cow2) += 3; assert!(76 == *cow0); assert!(77 == *cow1); assert!(78 == *cow2); // none should point to the same backing memory assert!(*cow0 != *cow1); assert!(*cow0 != *cow2); assert!(*cow1 != *cow2); } #[test] fn test_cowrc_clone_unique2() { let mut cow0 = Rc::new(75); let cow1 = cow0.clone(); let cow2 = cow1.clone(); assert!(75 == *cow0); assert!(75 == *cow1); assert!(75 == *cow2); *Rc::make_mut(&mut cow0) += 1; assert!(76 == *cow0); assert!(75 == *cow1); assert!(75 == *cow2); // cow1 and cow2 should share the same contents // cow0 should have a unique reference assert!(*cow0 != *cow1); assert!(*cow0 != *cow2); assert!(*cow1 == *cow2); } #[test] fn test_cowrc_clone_weak() { let mut cow0 = Rc::new(75); let cow1_weak = Rc::downgrade(&cow0); assert!(75 == *cow0); assert!(75 == *cow1_weak.upgrade().unwrap()); *Rc::make_mut(&mut cow0) += 1; assert!(76 == *cow0); assert!(cow1_weak.upgrade().is_none()); } #[test] fn test_show() { let foo = Rc::new(75); assert_eq!(format!("{:?}", foo), "75"); } #[test] fn test_unsized() { let foo: Rc<[i32]> = Rc::new([1, 2, 3]); assert_eq!(foo, foo.clone()); } } impl borrow::Borrow for Rc { fn borrow(&self) -> &T { &**self } }