//! Generate files suitable for use with [Graphviz](https://www.graphviz.org/) //! //! The `render` function generates output (e.g., an `output.dot` file) for //! use with [Graphviz](https://www.graphviz.org/) by walking a labeled //! graph. (Graphviz can then automatically lay out the nodes and edges //! of the graph, and also optionally render the graph as an image or //! other [output formats]( //! https://www.graphviz.org/content/output-formats), such as SVG.) //! //! Rather than impose some particular graph data structure on clients, //! this library exposes two traits that clients can implement on their //! own structs before handing them over to the rendering function. //! //! Note: This library does not yet provide access to the full //! expressiveness of the [DOT language]( //! https://www.graphviz.org/doc/info/lang.html). For example, there are //! many [attributes](https://www.graphviz.org/content/attrs) related to //! providing layout hints (e.g., left-to-right versus top-down, which //! algorithm to use, etc). The current intention of this library is to //! emit a human-readable .dot file with very regular structure suitable //! for easy post-processing. //! //! # Examples //! //! The first example uses a very simple graph representation: a list of //! pairs of ints, representing the edges (the node set is implicit). //! Each node label is derived directly from the int representing the node, //! while the edge labels are all empty strings. //! //! This example also illustrates how to use `Cow<[T]>` to return //! an owned vector or a borrowed slice as appropriate: we construct the //! node vector from scratch, but borrow the edge list (rather than //! constructing a copy of all the edges from scratch). //! //! The output from this example renders five nodes, with the first four //! forming a diamond-shaped acyclic graph and then pointing to the fifth //! which is cyclic. //! //! ```rust //! #![feature(rustc_private)] //! //! use std::io::Write; //! use rustc_graphviz as dot; //! //! type Nd = isize; //! type Ed = (isize,isize); //! struct Edges(Vec); //! //! pub fn render_to(output: &mut W) { //! let edges = Edges(vec![(0,1), (0,2), (1,3), (2,3), (3,4), (4,4)]); //! dot::render(&edges, output).unwrap() //! } //! //! impl<'a> dot::Labeller<'a> for Edges { //! type Node = Nd; //! type Edge = Ed; //! fn graph_id(&'a self) -> dot::Id<'a> { dot::Id::new("example1").unwrap() } //! //! fn node_id(&'a self, n: &Nd) -> dot::Id<'a> { //! dot::Id::new(format!("N{}", *n)).unwrap() //! } //! } //! //! impl<'a> dot::GraphWalk<'a> for Edges { //! type Node = Nd; //! type Edge = Ed; //! fn nodes(&self) -> dot::Nodes<'a,Nd> { //! // (assumes that |N| \approxeq |E|) //! let &Edges(ref v) = self; //! let mut nodes = Vec::with_capacity(v.len()); //! for &(s,t) in v { //! nodes.push(s); nodes.push(t); //! } //! nodes.sort(); //! nodes.dedup(); //! nodes.into() //! } //! //! fn edges(&'a self) -> dot::Edges<'a,Ed> { //! let &Edges(ref edges) = self; //! (&edges[..]).into() //! } //! //! fn source(&self, e: &Ed) -> Nd { let &(s,_) = e; s } //! //! fn target(&self, e: &Ed) -> Nd { let &(_,t) = e; t } //! } //! //! # pub fn main() { render_to(&mut Vec::new()) } //! ``` //! //! ```no_run //! # pub fn render_to(output: &mut W) { unimplemented!() } //! pub fn main() { //! use std::fs::File; //! let mut f = File::create("example1.dot").unwrap(); //! render_to(&mut f) //! } //! ``` //! //! Output from first example (in `example1.dot`): //! //! ```dot //! digraph example1 { //! N0[label="N0"]; //! N1[label="N1"]; //! N2[label="N2"]; //! N3[label="N3"]; //! N4[label="N4"]; //! N0 -> N1[label=""]; //! N0 -> N2[label=""]; //! N1 -> N3[label=""]; //! N2 -> N3[label=""]; //! N3 -> N4[label=""]; //! N4 -> N4[label=""]; //! } //! ``` //! //! The second example illustrates using `node_label` and `edge_label` to //! add labels to the nodes and edges in the rendered graph. The graph //! here carries both `nodes` (the label text to use for rendering a //! particular node), and `edges` (again a list of `(source,target)` //! indices). //! //! This example also illustrates how to use a type (in this case the edge //! type) that shares substructure with the graph: the edge type here is a //! direct reference to the `(source,target)` pair stored in the graph's //! internal vector (rather than passing around a copy of the pair //! itself). Note that this implies that `fn edges(&'a self)` must //! construct a fresh `Vec<&'a (usize,usize)>` from the `Vec<(usize,usize)>` //! edges stored in `self`. //! //! Since both the set of nodes and the set of edges are always //! constructed from scratch via iterators, we use the `collect()` method //! from the `Iterator` trait to collect the nodes and edges into freshly //! constructed growable `Vec` values (rather than using `Cow` as in the //! first example above). //! //! The output from this example renders four nodes that make up the //! Hasse-diagram for the subsets of the set `{x, y}`. Each edge is //! labeled with the ⊆ character (specified using the HTML character //! entity `&sube`). //! //! ```rust //! #![feature(rustc_private)] //! //! use std::io::Write; //! use rustc_graphviz as dot; //! //! type Nd = usize; //! type Ed<'a> = &'a (usize, usize); //! struct Graph { nodes: Vec<&'static str>, edges: Vec<(usize,usize)> } //! //! pub fn render_to(output: &mut W) { //! let nodes = vec!["{x,y}","{x}","{y}","{}"]; //! let edges = vec![(0,1), (0,2), (1,3), (2,3)]; //! let graph = Graph { nodes: nodes, edges: edges }; //! //! dot::render(&graph, output).unwrap() //! } //! //! impl<'a> dot::Labeller<'a> for Graph { //! type Node = Nd; //! type Edge = Ed<'a>; //! fn graph_id(&'a self) -> dot::Id<'a> { dot::Id::new("example2").unwrap() } //! fn node_id(&'a self, n: &Nd) -> dot::Id<'a> { //! dot::Id::new(format!("N{}", n)).unwrap() //! } //! fn node_label<'b>(&'b self, n: &Nd) -> dot::LabelText<'b> { //! dot::LabelText::LabelStr(self.nodes[*n].into()) //! } //! fn edge_label<'b>(&'b self, _: &Ed) -> dot::LabelText<'b> { //! dot::LabelText::LabelStr("⊆".into()) //! } //! } //! //! impl<'a> dot::GraphWalk<'a> for Graph { //! type Node = Nd; //! type Edge = Ed<'a>; //! fn nodes(&self) -> dot::Nodes<'a,Nd> { (0..self.nodes.len()).collect() } //! fn edges(&'a self) -> dot::Edges<'a,Ed<'a>> { self.edges.iter().collect() } //! fn source(&self, e: &Ed) -> Nd { let & &(s,_) = e; s } //! fn target(&self, e: &Ed) -> Nd { let & &(_,t) = e; t } //! } //! //! # pub fn main() { render_to(&mut Vec::new()) } //! ``` //! //! ```no_run //! # pub fn render_to(output: &mut W) { unimplemented!() } //! pub fn main() { //! use std::fs::File; //! let mut f = File::create("example2.dot").unwrap(); //! render_to(&mut f) //! } //! ``` //! //! The third example is similar to the second, except now each node and //! edge now carries a reference to the string label for each node as well //! as that node's index. (This is another illustration of how to share //! structure with the graph itself, and why one might want to do so.) //! //! The output from this example is the same as the second example: the //! Hasse-diagram for the subsets of the set `{x, y}`. //! //! ```rust //! #![feature(rustc_private)] //! //! use std::io::Write; //! use rustc_graphviz as dot; //! //! type Nd<'a> = (usize, &'a str); //! type Ed<'a> = (Nd<'a>, Nd<'a>); //! struct Graph { nodes: Vec<&'static str>, edges: Vec<(usize,usize)> } //! //! pub fn render_to(output: &mut W) { //! let nodes = vec!["{x,y}","{x}","{y}","{}"]; //! let edges = vec![(0,1), (0,2), (1,3), (2,3)]; //! let graph = Graph { nodes: nodes, edges: edges }; //! //! dot::render(&graph, output).unwrap() //! } //! //! impl<'a> dot::Labeller<'a> for Graph { //! type Node = Nd<'a>; //! type Edge = Ed<'a>; //! fn graph_id(&'a self) -> dot::Id<'a> { dot::Id::new("example3").unwrap() } //! fn node_id(&'a self, n: &Nd<'a>) -> dot::Id<'a> { //! dot::Id::new(format!("N{}", n.0)).unwrap() //! } //! fn node_label<'b>(&'b self, n: &Nd<'b>) -> dot::LabelText<'b> { //! let &(i, _) = n; //! dot::LabelText::LabelStr(self.nodes[i].into()) //! } //! fn edge_label<'b>(&'b self, _: &Ed<'b>) -> dot::LabelText<'b> { //! dot::LabelText::LabelStr("⊆".into()) //! } //! } //! //! impl<'a> dot::GraphWalk<'a> for Graph { //! type Node = Nd<'a>; //! type Edge = Ed<'a>; //! fn nodes(&'a self) -> dot::Nodes<'a,Nd<'a>> { //! self.nodes.iter().map(|s| &s[..]).enumerate().collect() //! } //! fn edges(&'a self) -> dot::Edges<'a,Ed<'a>> { //! self.edges.iter() //! .map(|&(i,j)|((i, &self.nodes[i][..]), //! (j, &self.nodes[j][..]))) //! .collect() //! } //! fn source(&self, e: &Ed<'a>) -> Nd<'a> { let &(s,_) = e; s } //! fn target(&self, e: &Ed<'a>) -> Nd<'a> { let &(_,t) = e; t } //! } //! //! # pub fn main() { render_to(&mut Vec::new()) } //! ``` //! //! ```no_run //! # pub fn render_to(output: &mut W) { unimplemented!() } //! pub fn main() { //! use std::fs::File; //! let mut f = File::create("example3.dot").unwrap(); //! render_to(&mut f) //! } //! ``` //! //! # References //! //! * [Graphviz](https://www.graphviz.org/) //! //! * [DOT language](https://www.graphviz.org/doc/info/lang.html) #![doc( html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/", test(attr(allow(unused_variables), deny(warnings))) )] #![feature(nll)] use LabelText::*; use std::borrow::Cow; use std::io; use std::io::prelude::*; /// The text for a graphviz label on a node or edge. pub enum LabelText<'a> { /// This kind of label preserves the text directly as is. /// /// Occurrences of backslashes (`\`) are escaped, and thus appear /// as backslashes in the rendered label. LabelStr(Cow<'a, str>), /// This kind of label uses the graphviz label escString type: /// /// /// Occurrences of backslashes (`\`) are not escaped; instead they /// are interpreted as initiating an escString escape sequence. /// /// Escape sequences of particular interest: in addition to `\n` /// to break a line (centering the line preceding the `\n`), there /// are also the escape sequences `\l` which left-justifies the /// preceding line and `\r` which right-justifies it. EscStr(Cow<'a, str>), /// This uses a graphviz [HTML string label][html]. The string is /// printed exactly as given, but between `<` and `>`. **No /// escaping is performed.** /// /// [html]: https://www.graphviz.org/content/node-shapes#html HtmlStr(Cow<'a, str>), } /// The style for a node or edge. /// See for descriptions. /// Note that some of these are not valid for edges. #[derive(Copy, Clone, PartialEq, Eq, Debug)] pub enum Style { None, Solid, Dashed, Dotted, Bold, Rounded, Diagonals, Filled, Striped, Wedged, } impl Style { pub fn as_slice(self) -> &'static str { match self { Style::None => "", Style::Solid => "solid", Style::Dashed => "dashed", Style::Dotted => "dotted", Style::Bold => "bold", Style::Rounded => "rounded", Style::Diagonals => "diagonals", Style::Filled => "filled", Style::Striped => "striped", Style::Wedged => "wedged", } } } // There is a tension in the design of the labelling API. // // For example, I considered making a `Labeller` trait that // provides labels for `T`, and then making the graph type `G` // implement `Labeller` and `Labeller`. However, this is // not possible without functional dependencies. (One could work // around that, but I did not explore that avenue heavily.) // // Another approach that I actually used for a while was to make a // `Label` trait that is implemented by the client-specific // Node and Edge types (as well as an implementation on Graph itself // for the overall name for the graph). The main disadvantage of this // second approach (compared to having the `G` type parameter // implement a Labelling service) that I have encountered is that it // makes it impossible to use types outside of the current crate // directly as Nodes/Edges; you need to wrap them in newtype'd // structs. See e.g., the `No` and `Ed` structs in the examples. (In // practice clients using a graph in some other crate would need to // provide some sort of adapter shim over the graph anyway to // interface with this library). // // Another approach would be to make a single `Labeller` trait // that provides three methods (graph_label, node_label, edge_label), // and then make `G` implement `Labeller`. At first this did not // appeal to me, since I had thought I would need separate methods on // each data variant for dot-internal identifiers versus user-visible // labels. However, the identifier/label distinction only arises for // nodes; graphs themselves only have identifiers, and edges only have // labels. // // So in the end I decided to use the third approach described above. /// `Id` is a Graphviz `ID`. pub struct Id<'a> { name: Cow<'a, str>, } impl<'a> Id<'a> { /// Creates an `Id` named `name`. /// /// The caller must ensure that the input conforms to an /// identifier format: it must be a non-empty string made up of /// alphanumeric or underscore characters, not beginning with a /// digit (i.e., the regular expression `[a-zA-Z_][a-zA-Z_0-9]*`). /// /// (Note: this format is a strict subset of the `ID` format /// defined by the DOT language. This function may change in the /// future to accept a broader subset, or the entirety, of DOT's /// `ID` format.) /// /// Passing an invalid string (containing spaces, brackets, /// quotes, ...) will return an empty `Err` value. pub fn new>>(name: Name) -> Result, ()> { let name = name.into(); match name.chars().next() { Some(c) if c.is_ascii_alphabetic() || c == '_' => {} _ => return Err(()), } if !name.chars().all(|c| c.is_ascii_alphanumeric() || c == '_') { return Err(()); } Ok(Id { name }) } pub fn as_slice(&'a self) -> &'a str { &*self.name } } /// Each instance of a type that implements `Label` maps to a /// unique identifier with respect to `C`, which is used to identify /// it in the generated .dot file. They can also provide more /// elaborate (and non-unique) label text that is used in the graphviz /// rendered output. /// The graph instance is responsible for providing the DOT compatible /// identifiers for the nodes and (optionally) rendered labels for the nodes and /// edges, as well as an identifier for the graph itself. pub trait Labeller<'a> { type Node; type Edge; /// Must return a DOT compatible identifier naming the graph. fn graph_id(&'a self) -> Id<'a>; /// Maps `n` to a unique identifier with respect to `self`. The /// implementor is responsible for ensuring that the returned name /// is a valid DOT identifier. fn node_id(&'a self, n: &Self::Node) -> Id<'a>; /// Maps `n` to one of the [graphviz `shape` names][1]. If `None` /// is returned, no `shape` attribute is specified. /// /// [1]: https://www.graphviz.org/content/node-shapes fn node_shape(&'a self, _node: &Self::Node) -> Option> { None } /// Maps `n` to a label that will be used in the rendered output. /// The label need not be unique, and may be the empty string; the /// default is just the output from `node_id`. fn node_label(&'a self, n: &Self::Node) -> LabelText<'a> { LabelStr(self.node_id(n).name) } /// Maps `e` to a label that will be used in the rendered output. /// The label need not be unique, and may be the empty string; the /// default is in fact the empty string. fn edge_label(&'a self, _e: &Self::Edge) -> LabelText<'a> { LabelStr("".into()) } /// Maps `n` to a style that will be used in the rendered output. fn node_style(&'a self, _n: &Self::Node) -> Style { Style::None } /// Maps `e` to a style that will be used in the rendered output. fn edge_style(&'a self, _e: &Self::Edge) -> Style { Style::None } } /// Escape tags in such a way that it is suitable for inclusion in a /// Graphviz HTML label. pub fn escape_html(s: &str) -> String { s.replace("&", "&").replace("\"", """).replace("<", "<").replace(">", ">") } impl<'a> LabelText<'a> { pub fn label>>(s: S) -> LabelText<'a> { LabelStr(s.into()) } pub fn html>>(s: S) -> LabelText<'a> { HtmlStr(s.into()) } fn escape_char(c: char, mut f: F) where F: FnMut(char), { match c { // not escaping \\, since Graphviz escString needs to // interpret backslashes; see EscStr above. '\\' => f(c), _ => { for c in c.escape_default() { f(c) } } } } fn escape_str(s: &str) -> String { let mut out = String::with_capacity(s.len()); for c in s.chars() { LabelText::escape_char(c, |c| out.push(c)); } out } /// Renders text as string suitable for a label in a .dot file. /// This includes quotes or suitable delimiters. pub fn to_dot_string(&self) -> String { match *self { LabelStr(ref s) => format!("\"{}\"", s.escape_default()), EscStr(ref s) => format!("\"{}\"", LabelText::escape_str(&s)), HtmlStr(ref s) => format!("<{}>", s), } } /// Decomposes content into string suitable for making EscStr that /// yields same content as self. The result obeys the law /// render(`lt`) == render(`EscStr(lt.pre_escaped_content())`) for /// all `lt: LabelText`. fn pre_escaped_content(self) -> Cow<'a, str> { match self { EscStr(s) => s, LabelStr(s) => { if s.contains('\\') { (&*s).escape_default().to_string().into() } else { s } } HtmlStr(s) => s, } } /// Puts `suffix` on a line below this label, with a blank line separator. pub fn suffix_line(self, suffix: LabelText<'_>) -> LabelText<'static> { let mut prefix = self.pre_escaped_content().into_owned(); let suffix = suffix.pre_escaped_content(); prefix.push_str(r"\n\n"); prefix.push_str(&suffix); EscStr(prefix.into()) } } pub type Nodes<'a, N> = Cow<'a, [N]>; pub type Edges<'a, E> = Cow<'a, [E]>; // (The type parameters in GraphWalk should be associated items, // when/if Rust supports such.) /// GraphWalk is an abstraction over a directed graph = (nodes,edges) /// made up of node handles `N` and edge handles `E`, where each `E` /// can be mapped to its source and target nodes. /// /// The lifetime parameter `'a` is exposed in this trait (rather than /// introduced as a generic parameter on each method declaration) so /// that a client impl can choose `N` and `E` that have substructure /// that is bound by the self lifetime `'a`. /// /// The `nodes` and `edges` method each return instantiations of /// `Cow<[T]>` to leave implementors the freedom to create /// entirely new vectors or to pass back slices into internally owned /// vectors. pub trait GraphWalk<'a> { type Node: Clone; type Edge: Clone; /// Returns all the nodes in this graph. fn nodes(&'a self) -> Nodes<'a, Self::Node>; /// Returns all of the edges in this graph. fn edges(&'a self) -> Edges<'a, Self::Edge>; /// The source node for `edge`. fn source(&'a self, edge: &Self::Edge) -> Self::Node; /// The target node for `edge`. fn target(&'a self, edge: &Self::Edge) -> Self::Node; } #[derive(Clone, PartialEq, Eq, Debug)] pub enum RenderOption { NoEdgeLabels, NoNodeLabels, NoEdgeStyles, NoNodeStyles, Fontname(String), DarkTheme, } /// Renders directed graph `g` into the writer `w` in DOT syntax. /// (Simple wrapper around `render_opts` that passes a default set of options.) pub fn render<'a, N, E, G, W>(g: &'a G, w: &mut W) -> io::Result<()> where N: Clone + 'a, E: Clone + 'a, G: Labeller<'a, Node = N, Edge = E> + GraphWalk<'a, Node = N, Edge = E>, W: Write, { render_opts(g, w, &[]) } /// Renders directed graph `g` into the writer `w` in DOT syntax. /// (Main entry point for the library.) pub fn render_opts<'a, N, E, G, W>(g: &'a G, w: &mut W, options: &[RenderOption]) -> io::Result<()> where N: Clone + 'a, E: Clone + 'a, G: Labeller<'a, Node = N, Edge = E> + GraphWalk<'a, Node = N, Edge = E>, W: Write, { writeln!(w, "digraph {} {{", g.graph_id().as_slice())?; // Global graph properties let mut graph_attrs = Vec::new(); let mut content_attrs = Vec::new(); let font; if let Some(fontname) = options.iter().find_map(|option| { if let RenderOption::Fontname(fontname) = option { Some(fontname) } else { None } }) { font = format!(r#"fontname="{}""#, fontname); graph_attrs.push(&font[..]); content_attrs.push(&font[..]); } if options.contains(&RenderOption::DarkTheme) { graph_attrs.push(r#"bgcolor="black""#); graph_attrs.push(r#"fontcolor="white""#); content_attrs.push(r#"color="white""#); content_attrs.push(r#"fontcolor="white""#); } if !(graph_attrs.is_empty() && content_attrs.is_empty()) { writeln!(w, r#" graph[{}];"#, graph_attrs.join(" "))?; let content_attrs_str = content_attrs.join(" "); writeln!(w, r#" node[{}];"#, content_attrs_str)?; writeln!(w, r#" edge[{}];"#, content_attrs_str)?; } let mut text = Vec::new(); for n in g.nodes().iter() { write!(w, " ")?; let id = g.node_id(n); let escaped = &g.node_label(n).to_dot_string(); write!(text, "{}", id.as_slice()).unwrap(); if !options.contains(&RenderOption::NoNodeLabels) { write!(text, "[label={}]", escaped).unwrap(); } let style = g.node_style(n); if !options.contains(&RenderOption::NoNodeStyles) && style != Style::None { write!(text, "[style=\"{}\"]", style.as_slice()).unwrap(); } if let Some(s) = g.node_shape(n) { write!(text, "[shape={}]", &s.to_dot_string()).unwrap(); } writeln!(text, ";").unwrap(); w.write_all(&text)?; text.clear(); } for e in g.edges().iter() { let escaped_label = &g.edge_label(e).to_dot_string(); write!(w, " ")?; let source = g.source(e); let target = g.target(e); let source_id = g.node_id(&source); let target_id = g.node_id(&target); write!(text, "{} -> {}", source_id.as_slice(), target_id.as_slice()).unwrap(); if !options.contains(&RenderOption::NoEdgeLabels) { write!(text, "[label={}]", escaped_label).unwrap(); } let style = g.edge_style(e); if !options.contains(&RenderOption::NoEdgeStyles) && style != Style::None { write!(text, "[style=\"{}\"]", style.as_slice()).unwrap(); } writeln!(text, ";").unwrap(); w.write_all(&text)?; text.clear(); } writeln!(w, "}}") } #[cfg(test)] mod tests;