// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. /*! This file actually contains two passes related to regions. The first pass builds up the `scope_map`, which describes the parent links in the region hierarchy. The second pass infers which types must be region parameterized. Most of the documentation on regions can be found in `middle/typeck/infer/region_inference.rs` */ use driver::session::Session; use middle::ty::{FreeRegion}; use middle::ty; use std::cell::RefCell; use std::hashmap::{HashMap, HashSet}; use syntax::codemap::Span; use syntax::{ast, visit}; use syntax::visit::{Visitor, FnKind}; use syntax::ast::{Block, Item, FnDecl, NodeId, Arm, Pat, Stmt, Expr, Local}; use syntax::ast_util::{stmt_id}; /** The region maps encode information about region relationships. - `scope_map` maps from: - an expression to the expression or block encoding the maximum (static) lifetime of a value produced by that expression. This is generally the innermost call, statement, match, or block. - a variable or binding id to the block in which that variable is declared. - `free_region_map` maps from: - a free region `a` to a list of free regions `bs` such that `a <= b for all b in bs` - the free region map is populated during type check as we check each function. See the function `relate_free_regions` for more information. - `temporary_scopes` includes scopes where cleanups for temporaries occur. These are statements and loop/fn bodies. */ pub struct RegionMaps { priv scope_map: RefCell>, priv var_map: RefCell>, priv free_region_map: RefCell>, priv rvalue_scopes: RefCell>, priv terminating_scopes: RefCell>, } #[deriving(Clone)] pub struct Context { var_parent: Option, // Innermost enclosing expression parent: Option, } struct RegionResolutionVisitor<'a> { sess: Session, // Generated maps: region_maps: &'a RegionMaps, } impl RegionMaps { pub fn relate_free_regions(&self, sub: FreeRegion, sup: FreeRegion) { let mut free_region_map = self.free_region_map.borrow_mut(); match free_region_map.get().find_mut(&sub) { Some(sups) => { if !sups.iter().any(|x| x == &sup) { sups.push(sup); } return; } None => {} } debug!("relate_free_regions(sub={:?}, sup={:?})", sub, sup); free_region_map.get().insert(sub, ~[sup]); } pub fn record_encl_scope(&self, sub: ast::NodeId, sup: ast::NodeId) { debug!("record_encl_scope(sub={}, sup={})", sub, sup); assert!(sub != sup); let mut scope_map = self.scope_map.borrow_mut(); scope_map.get().insert(sub, sup); } pub fn record_var_scope(&self, var: ast::NodeId, lifetime: ast::NodeId) { debug!("record_var_scope(sub={}, sup={})", var, lifetime); assert!(var != lifetime); let mut var_map = self.var_map.borrow_mut(); var_map.get().insert(var, lifetime); } pub fn record_rvalue_scope(&self, var: ast::NodeId, lifetime: ast::NodeId) { debug!("record_rvalue_scope(sub={}, sup={})", var, lifetime); assert!(var != lifetime); let mut rvalue_scopes = self.rvalue_scopes.borrow_mut(); rvalue_scopes.get().insert(var, lifetime); } pub fn mark_as_terminating_scope(&self, scope_id: ast::NodeId) { /*! * Records that a scope is a TERMINATING SCOPE. Whenever we * create automatic temporaries -- e.g. by an * expression like `a().f` -- they will be freed within * the innermost terminating scope. */ debug!("record_terminating_scope(scope_id={})", scope_id); let mut terminating_scopes = self.terminating_scopes.borrow_mut(); terminating_scopes.get().insert(scope_id); } pub fn opt_encl_scope(&self, id: ast::NodeId) -> Option { //! Returns the narrowest scope that encloses `id`, if any. let scope_map = self.scope_map.borrow(); scope_map.get().find(&id).map(|x| *x) } pub fn encl_scope(&self, id: ast::NodeId) -> ast::NodeId { //! Returns the narrowest scope that encloses `id`, if any. let scope_map = self.scope_map.borrow(); match scope_map.get().find(&id) { Some(&r) => r, None => { fail!("No enclosing scope for id {}", id); } } } pub fn var_scope(&self, var_id: ast::NodeId) -> ast::NodeId { /*! * Returns the lifetime of the local variable `var_id` */ let var_map = self.var_map.borrow(); match var_map.get().find(&var_id) { Some(&r) => r, None => { fail!("No enclosing scope for id {}", var_id); } } } pub fn temporary_scope(&self, expr_id: ast::NodeId) -> Option { //! Returns the scope when temp created by expr_id will be cleaned up // check for a designated rvalue scope let rvalue_scopes = self.rvalue_scopes.borrow(); match rvalue_scopes.get().find(&expr_id) { Some(&s) => { debug!("temporary_scope({}) = {} [custom]", expr_id, s); return Some(s); } None => { } } // else, locate the innermost terminating scope let mut id = self.encl_scope(expr_id); let terminating_scopes = self.terminating_scopes.borrow(); while !terminating_scopes.get().contains(&id) { match self.opt_encl_scope(id) { Some(p) => { id = p; } None => { debug!("temporary_scope({}) = None", expr_id); return None; } } } debug!("temporary_scope({}) = {} [enclosing]", expr_id, id); return Some(id); } pub fn encl_region(&self, id: ast::NodeId) -> ty::Region { //! Returns the narrowest scope region that encloses `id`, if any. ty::ReScope(self.encl_scope(id)) } pub fn var_region(&self, id: ast::NodeId) -> ty::Region { //! Returns the lifetime of the variable `id`. ty::ReScope(self.var_scope(id)) } pub fn scopes_intersect(&self, scope1: ast::NodeId, scope2: ast::NodeId) -> bool { self.is_subscope_of(scope1, scope2) || self.is_subscope_of(scope2, scope1) } pub fn is_subscope_of(&self, subscope: ast::NodeId, superscope: ast::NodeId) -> bool { /*! * Returns true if `subscope` is equal to or is lexically * nested inside `superscope` and false otherwise. */ let mut s = subscope; while superscope != s { let scope_map = self.scope_map.borrow(); match scope_map.get().find(&s) { None => { debug!("is_subscope_of({}, {}, s={})=false", subscope, superscope, s); return false; } Some(&scope) => s = scope } } debug!("is_subscope_of({}, {})=true", subscope, superscope); return true; } pub fn sub_free_region(&self, sub: FreeRegion, sup: FreeRegion) -> bool { /*! * Determines whether two free regions have a subregion relationship * by walking the graph encoded in `free_region_map`. Note that * it is possible that `sub != sup` and `sub <= sup` and `sup <= sub` * (that is, the user can give two different names to the same lifetime). */ if sub == sup { return true; } // Do a little breadth-first-search here. The `queue` list // doubles as a way to detect if we've seen a particular FR // before. Note that we expect this graph to be an *extremely // shallow* tree. let mut queue = ~[sub]; let mut i = 0; while i < queue.len() { let free_region_map = self.free_region_map.borrow(); match free_region_map.get().find(&queue[i]) { Some(parents) => { for parent in parents.iter() { if *parent == sup { return true; } if !queue.iter().any(|x| x == parent) { queue.push(*parent); } } } None => {} } i += 1; } return false; } pub fn is_subregion_of(&self, sub_region: ty::Region, super_region: ty::Region) -> bool { /*! * Determines whether one region is a subregion of another. This is * intended to run *after inference* and sadly the logic is somewhat * duplicated with the code in infer.rs. */ debug!("is_subregion_of(sub_region={:?}, super_region={:?})", sub_region, super_region); sub_region == super_region || { match (sub_region, super_region) { (_, ty::ReStatic) => { true } (ty::ReScope(sub_scope), ty::ReScope(super_scope)) => { self.is_subscope_of(sub_scope, super_scope) } (ty::ReScope(sub_scope), ty::ReFree(ref fr)) => { self.is_subscope_of(sub_scope, fr.scope_id) } (ty::ReFree(sub_fr), ty::ReFree(super_fr)) => { self.sub_free_region(sub_fr, super_fr) } _ => { false } } } } pub fn nearest_common_ancestor(&self, scope_a: ast::NodeId, scope_b: ast::NodeId) -> Option { /*! * Finds the nearest common ancestor (if any) of two scopes. That * is, finds the smallest scope which is greater than or equal to * both `scope_a` and `scope_b`. */ if scope_a == scope_b { return Some(scope_a); } let a_ancestors = ancestors_of(self, scope_a); let b_ancestors = ancestors_of(self, scope_b); let mut a_index = a_ancestors.len() - 1u; let mut b_index = b_ancestors.len() - 1u; // Here, ~[ab]_ancestors is a vector going from narrow to broad. // The end of each vector will be the item where the scope is // defined; if there are any common ancestors, then the tails of // the vector will be the same. So basically we want to walk // backwards from the tail of each vector and find the first point // where they diverge. If one vector is a suffix of the other, // then the corresponding scope is a superscope of the other. if a_ancestors[a_index] != b_ancestors[b_index] { return None; } loop { // Loop invariant: a_ancestors[a_index] == b_ancestors[b_index] // for all indices between a_index and the end of the array if a_index == 0u { return Some(scope_a); } if b_index == 0u { return Some(scope_b); } a_index -= 1u; b_index -= 1u; if a_ancestors[a_index] != b_ancestors[b_index] { return Some(a_ancestors[a_index + 1u]); } } fn ancestors_of(this: &RegionMaps, scope: ast::NodeId) -> ~[ast::NodeId] { // debug!("ancestors_of(scope={})", scope); let mut result = ~[scope]; let mut scope = scope; loop { let scope_map = this.scope_map.borrow(); match scope_map.get().find(&scope) { None => return result, Some(&superscope) => { result.push(superscope); scope = superscope; } } // debug!("ancestors_of_loop(scope={})", scope); } } } } /// Records the current parent (if any) as the parent of `child_id`. fn record_superlifetime(visitor: &mut RegionResolutionVisitor, cx: Context, child_id: ast::NodeId, _sp: Span) { for &parent_id in cx.parent.iter() { visitor.region_maps.record_encl_scope(child_id, parent_id); } } /// Records the lifetime of a local variable as `cx.var_parent` fn record_var_lifetime(visitor: &mut RegionResolutionVisitor, cx: Context, var_id: ast::NodeId, _sp: Span) { match cx.var_parent { Some(parent_id) => { visitor.region_maps.record_var_scope(var_id, parent_id); } None => { // this can happen in extern fn declarations like // // extern fn isalnum(c: c_int) -> c_int } } } fn resolve_block(visitor: &mut RegionResolutionVisitor, blk: &ast::Block, cx: Context) { debug!("resolve_block(blk.id={})", blk.id); // Record the parent of this block. record_superlifetime(visitor, cx, blk.id, blk.span); // We treat the tail expression in the block (if any) somewhat // differently from the statements. The issue has to do with // temporary lifetimes. If the user writes: // // { // ... (&foo()) ... // } // let subcx = Context {var_parent: Some(blk.id), parent: Some(blk.id)}; visit::walk_block(visitor, blk, subcx); } fn resolve_arm(visitor: &mut RegionResolutionVisitor, arm: &ast::Arm, cx: Context) { visitor.region_maps.mark_as_terminating_scope(arm.body.id); match arm.guard { Some(expr) => { visitor.region_maps.mark_as_terminating_scope(expr.id); } None => { } } visit::walk_arm(visitor, arm, cx); } fn resolve_pat(visitor: &mut RegionResolutionVisitor, pat: &ast::Pat, cx: Context) { record_superlifetime(visitor, cx, pat.id, pat.span); // If this is a binding (or maybe a binding, I'm too lazy to check // the def map) then record the lifetime of that binding. match pat.node { ast::PatIdent(..) => { record_var_lifetime(visitor, cx, pat.id, pat.span); } _ => { } } visit::walk_pat(visitor, pat, cx); } fn resolve_stmt(visitor: &mut RegionResolutionVisitor, stmt: &ast::Stmt, cx: Context) { let stmt_id = stmt_id(stmt); debug!("resolve_stmt(stmt.id={})", stmt_id); visitor.region_maps.mark_as_terminating_scope(stmt_id); record_superlifetime(visitor, cx, stmt_id, stmt.span); let subcx = Context {parent: Some(stmt_id), ..cx}; visit::walk_stmt(visitor, stmt, subcx); } fn resolve_expr(visitor: &mut RegionResolutionVisitor, expr: &ast::Expr, cx: Context) { debug!("resolve_expr(expr.id={})", expr.id); record_superlifetime(visitor, cx, expr.id, expr.span); let mut new_cx = cx; new_cx.parent = Some(expr.id); match expr.node { // Conditional or repeating scopes are always terminating // scopes, meaning that temporaries cannot outlive them. // This ensures fixed size stacks. ast::ExprBinary(_, ast::BiAnd, _, r) | ast::ExprBinary(_, ast::BiOr, _, r) => { // For shortcircuiting operators, mark the RHS as a terminating // scope since it only executes conditionally. visitor.region_maps.mark_as_terminating_scope(r.id); } ast::ExprIf(_, then, Some(otherwise)) => { visitor.region_maps.mark_as_terminating_scope(then.id); visitor.region_maps.mark_as_terminating_scope(otherwise.id); } ast::ExprIf(_, then, None) => { visitor.region_maps.mark_as_terminating_scope(then.id); } ast::ExprLoop(body, _) | ast::ExprWhile(_, body) => { visitor.region_maps.mark_as_terminating_scope(body.id); } ast::ExprMatch(..) => { new_cx.var_parent = Some(expr.id); } ast::ExprAssignOp(..) | ast::ExprIndex(..) | ast::ExprUnary(..) | ast::ExprCall(..) | ast::ExprMethodCall(..) => { // FIXME(#6268) Nested method calls // // The lifetimes for a call or method call look as follows: // // call.id // - arg0.id // - ... // - argN.id // - call.callee_id // // The idea is that call.callee_id represents *the time when // the invoked function is actually running* and call.id // represents *the time to prepare the arguments and make the // call*. See the section "Borrows in Calls" borrowck/doc.rs // for an extended explanantion of why this distinction is // important. // // record_superlifetime(new_cx, expr.callee_id); } _ => {} }; visit::walk_expr(visitor, expr, new_cx); } fn resolve_local(visitor: &mut RegionResolutionVisitor, local: &ast::Local, cx: Context) { debug!("resolve_local(local.id={},local.init={})", local.id,local.init.is_some()); let blk_id = match cx.var_parent { Some(id) => id, None => { visitor.sess.span_bug( local.span, "Local without enclosing block"); } }; // For convenience in trans, associate with the local-id the var // scope that will be used for any bindings declared in this // pattern. visitor.region_maps.record_var_scope(local.id, blk_id); // As an exception to the normal rules governing temporary // lifetimes, initializers in a let have a temporary lifetime // of the enclosing block. This means that e.g. a program // like the following is legal: // // let ref x = HashMap::new(); // // Because the hash map will be freed in the enclosing block. // // We express the rules more formally based on 3 grammars (defined // fully in the helpers below that implement them): // // 1. `E&`, which matches expressions like `&` that // own a pointer into the stack. // // 2. `P&`, which matches patterns like `ref x` or `(ref x, ref // y)` that produce ref bindings into the value they are // matched against or something (at least partially) owned by // the value they are matched against. (By partially owned, // I mean that creating a binding into a ref-counted or managed value // would still count.) // // 3. `ET`, which matches both rvalues like `foo()` as well as lvalues // based on rvalues like `foo().x[2].y`. // // A subexpression `` that appears in a let initializer // `let pat [: ty] = expr` has an extended temporary lifetime if // any of the following conditions are met: // // A. `pat` matches `P&` and `expr` matches `ET` // (covers cases where `pat` creates ref bindings into an rvalue // produced by `expr`) // B. `ty` is a borrowed pointer and `expr` matches `ET` // (covers cases where coercion creates a borrow) // C. `expr` matches `E&` // (covers cases `expr` borrows an rvalue that is then assigned // to memory (at least partially) owned by the binding) // // Here are some examples hopefully giving an intution where each // rule comes into play and why: // // Rule A. `let (ref x, ref y) = (foo().x, 44)`. The rvalue `(22, 44)` // would have an extended lifetime, but not `foo()`. // // Rule B. `let x: &[...] = [foo().x]`. The rvalue `[foo().x]` // would have an extended lifetime, but not `foo()`. // // Rule C. `let x = &foo().x`. The rvalue ``foo()` would have extended // lifetime. // // In some cases, multiple rules may apply (though not to the same // rvalue). For example: // // let ref x = [&a(), &b()]; // // Here, the expression `[...]` has an extended lifetime due to rule // A, but the inner rvalues `a()` and `b()` have an extended lifetime // due to rule C. // // FIXME(#6308) -- Note that `[]` patterns work more smoothly post-DST. match local.init { Some(expr) => { record_rvalue_scope_if_borrow_expr(visitor, expr, blk_id); if is_binding_pat(local.pat) || is_borrowed_ty(local.ty) { record_rvalue_scope(visitor, expr, blk_id); } } None => { } } visit::walk_local(visitor, local, cx); fn is_binding_pat(pat: &ast::Pat) -> bool { /*! * True if `pat` match the `P&` nonterminal: * * P& = ref X * | StructName { ..., P&, ... } * | VariantName(..., P&, ...) * | [ ..., P&, ... ] * | ( ..., P&, ... ) * | ~P& * | box P& */ match pat.node { ast::PatIdent(ast::BindByRef(_), _, _) => true, ast::PatStruct(_, ref field_pats, _) => { field_pats.iter().any(|fp| is_binding_pat(fp.pat)) } ast::PatVec(ref pats1, ref pats2, ref pats3) => { pats1.iter().any(|&p| is_binding_pat(p)) || pats2.iter().any(|&p| is_binding_pat(p)) || pats3.iter().any(|&p| is_binding_pat(p)) } ast::PatEnum(_, Some(ref subpats)) | ast::PatTup(ref subpats) => { subpats.iter().any(|&p| is_binding_pat(p)) } ast::PatUniq(subpat) => { is_binding_pat(subpat) } _ => false, } } fn is_borrowed_ty(ty: &ast::Ty) -> bool { /*! * True if `ty` is a borrowed pointer type * like `&int` or `&[...]`. */ match ty.node { ast::TyRptr(..) => true, _ => false } } fn record_rvalue_scope_if_borrow_expr(visitor: &mut RegionResolutionVisitor, expr: &ast::Expr, blk_id: ast::NodeId) { /*! * If `expr` matches the `E&` grammar, then records an extended * rvalue scope as appropriate: * * E& = & ET * | StructName { ..., f: E&, ... } * | [ ..., E&, ... ] * | ( ..., E&, ... ) * | {...; E&} * | ~E& * | E& as ... * | ( E& ) */ match expr.node { ast::ExprAddrOf(_, subexpr) => { record_rvalue_scope_if_borrow_expr(visitor, subexpr, blk_id); record_rvalue_scope(visitor, subexpr, blk_id); } ast::ExprStruct(_, ref fields, _) => { for field in fields.iter() { record_rvalue_scope_if_borrow_expr( visitor, field.expr, blk_id); } } ast::ExprVstore(subexpr, _) => { visitor.region_maps.record_rvalue_scope(subexpr.id, blk_id); record_rvalue_scope_if_borrow_expr(visitor, subexpr, blk_id); } ast::ExprVec(ref subexprs, _) | ast::ExprTup(ref subexprs) => { for &subexpr in subexprs.iter() { record_rvalue_scope_if_borrow_expr( visitor, subexpr, blk_id); } } ast::ExprUnary(_, ast::UnUniq, subexpr) => { record_rvalue_scope_if_borrow_expr(visitor, subexpr, blk_id); } ast::ExprCast(subexpr, _) | ast::ExprParen(subexpr) => { record_rvalue_scope_if_borrow_expr(visitor, subexpr, blk_id) } ast::ExprBlock(ref block) => { match block.expr { Some(subexpr) => { record_rvalue_scope_if_borrow_expr( visitor, subexpr, blk_id); } None => { } } } _ => { } } } fn record_rvalue_scope<'a>(visitor: &mut RegionResolutionVisitor, expr: &'a ast::Expr, blk_id: ast::NodeId) { /*! * Applied to an expression `expr` if `expr` -- or something * owned or partially owned by `expr` -- is going to be * indirectly referenced by a variable in a let statement. In * that case, the "temporary lifetime" or `expr` is extended * to be the block enclosing the `let` statement. * * More formally, if `expr` matches the grammar `ET`, record * the rvalue scope of the matching `` as `blk_id`: * * ET = *ET * | ET[...] * | ET.f * | (ET) * | * * Note: ET is intended to match "rvalues or * lvalues based on rvalues". */ let mut expr = expr; loop { // Note: give all the expressions matching `ET` with the // extended temporary lifetime, not just the innermost rvalue, // because in trans if we must compile e.g. `*rvalue()` // into a temporary, we request the temporary scope of the // outer expression. visitor.region_maps.record_rvalue_scope(expr.id, blk_id); match expr.node { ast::ExprAddrOf(_, ref subexpr) | ast::ExprUnary(_, ast::UnDeref, ref subexpr) | ast::ExprField(ref subexpr, _, _) | ast::ExprIndex(_, ref subexpr, _) | ast::ExprParen(ref subexpr) => { let subexpr: &'a @Expr = subexpr; // FIXME(#11586) expr = &**subexpr; } _ => { return; } } } } } fn resolve_item(visitor: &mut RegionResolutionVisitor, item: &ast::Item, cx: Context) { // Items create a new outer block scope as far as we're concerned. let new_cx = Context {var_parent: None, parent: None, ..cx}; visit::walk_item(visitor, item, new_cx); } fn resolve_fn(visitor: &mut RegionResolutionVisitor, fk: &FnKind, decl: &ast::FnDecl, body: &ast::Block, sp: Span, id: ast::NodeId, cx: Context) { debug!("region::resolve_fn(id={}, \ span={:?}, \ body.id={}, \ cx.parent={})", id, visitor.sess.codemap.span_to_str(sp), body.id, cx.parent); visitor.region_maps.mark_as_terminating_scope(body.id); // The arguments and `self` are parented to the body of the fn. let decl_cx = Context {parent: Some(body.id), var_parent: Some(body.id)}; visit::walk_fn_decl(visitor, decl, decl_cx); // The body of the fn itself is either a root scope (top-level fn) // or it continues with the inherited scope (closures). let body_cx = match *fk { visit::FkItemFn(..) | visit::FkMethod(..) => { Context {parent: None, var_parent: None, ..cx} } visit::FkFnBlock(..) => cx }; visitor.visit_block(body, body_cx); } impl<'a> Visitor for RegionResolutionVisitor<'a> { fn visit_block(&mut self, b: &Block, cx: Context) { resolve_block(self, b, cx); } fn visit_item(&mut self, i: &Item, cx: Context) { resolve_item(self, i, cx); } fn visit_fn(&mut self, fk: &FnKind, fd: &FnDecl, b: &Block, s: Span, n: NodeId, cx: Context) { resolve_fn(self, fk, fd, b, s, n, cx); } fn visit_arm(&mut self, a: &Arm, cx: Context) { resolve_arm(self, a, cx); } fn visit_pat(&mut self, p: &Pat, cx: Context) { resolve_pat(self, p, cx); } fn visit_stmt(&mut self, s: &Stmt, cx: Context) { resolve_stmt(self, s, cx); } fn visit_expr(&mut self, ex: &Expr, cx: Context) { resolve_expr(self, ex, cx); } fn visit_local(&mut self, l: &Local, cx: Context) { resolve_local(self, l, cx); } } pub fn resolve_crate(sess: Session, crate: &ast::Crate) -> RegionMaps { let maps = RegionMaps { scope_map: RefCell::new(HashMap::new()), var_map: RefCell::new(HashMap::new()), free_region_map: RefCell::new(HashMap::new()), rvalue_scopes: RefCell::new(HashMap::new()), terminating_scopes: RefCell::new(HashSet::new()), }; { let mut visitor = RegionResolutionVisitor { sess: sess, region_maps: &maps }; let cx = Context { parent: None, var_parent: None }; visit::walk_crate(&mut visitor, crate, cx); } return maps; } pub fn resolve_inlined_item(sess: Session, region_maps: &RegionMaps, item: &ast::InlinedItem) { let cx = Context {parent: None, var_parent: None}; let mut visitor = RegionResolutionVisitor { sess: sess, region_maps: region_maps, }; visit::walk_inlined_item(&mut visitor, item, cx); }