// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Unsafe pointer utility functions use cast; use clone::Clone; #[cfg(not(test))] use cmp::Equiv; use iter::{range, Iterator}; use option::{Option, Some, None}; use unstable::intrinsics; use util::swap; #[cfg(not(test))] use cmp::{Eq, Ord}; /// Calculate the offset from a pointer #[inline] pub unsafe fn offset(ptr: *T, count: int) -> *T { intrinsics::offset(ptr, count) } /// Calculate the offset from a mut pointer. The count *must* be in bounds or /// otherwise the loads of this address are undefined. #[inline] pub unsafe fn mut_offset(ptr: *mut T, count: int) -> *mut T { intrinsics::offset(ptr as *T, count) as *mut T } /// Return the offset of the first null pointer in `buf`. #[inline] pub unsafe fn buf_len(buf: **T) -> uint { position(buf, |i| *i == null()) } impl Clone for *T { #[inline] fn clone(&self) -> *T { *self } } /// Return the first offset `i` such that `f(buf[i]) == true`. #[inline] pub unsafe fn position(buf: *T, f: &fn(&T) -> bool) -> uint { let mut i = 0; loop { if f(&(*offset(buf, i as int))) { return i; } else { i += 1; } } } /// Create an unsafe null pointer #[inline] pub fn null() -> *T { 0 as *T } /// Create an unsafe mutable null pointer #[inline] pub fn mut_null() -> *mut T { 0 as *mut T } /// Returns true if the pointer is equal to the null pointer. #[inline] pub fn is_null>(ptr: P) -> bool { ptr.is_null() } /// Returns true if the pointer is not equal to the null pointer. #[inline] pub fn is_not_null>(ptr: P) -> bool { ptr.is_not_null() } /** * Copies data from one location to another. * * Copies `count` elements (not bytes) from `src` to `dst`. The source * and destination may overlap. */ #[inline] #[cfg(target_word_size = "32")] pub unsafe fn copy_memory>(dst: *mut T, src: P, count: uint) { intrinsics::memmove32(dst, cast::transmute_immut_unsafe(src), count as u32); } /** * Copies data from one location to another. * * Copies `count` elements (not bytes) from `src` to `dst`. The source * and destination may overlap. */ #[inline] #[cfg(target_word_size = "64")] pub unsafe fn copy_memory>(dst: *mut T, src: P, count: uint) { intrinsics::memmove64(dst, cast::transmute_immut_unsafe(src), count as u64); } /** * Copies data from one location to another. * * Copies `count` elements (not bytes) from `src` to `dst`. The source * and destination may *not* overlap. */ #[inline] #[cfg(target_word_size = "32")] pub unsafe fn copy_nonoverlapping_memory>(dst: *mut T, src: P, count: uint) { intrinsics::memcpy32(dst, cast::transmute_immut_unsafe(src), count as u32); } /** * Copies data from one location to another. * * Copies `count` elements (not bytes) from `src` to `dst`. The source * and destination may *not* overlap. */ #[inline] #[cfg(target_word_size = "64")] pub unsafe fn copy_nonoverlapping_memory>(dst: *mut T, src: P, count: uint) { intrinsics::memcpy64(dst, cast::transmute_immut_unsafe(src), count as u64); } /** * Invokes memset on the specified pointer, setting `count * size_of::()` * bytes of memory starting at `dst` to `c`. */ #[inline] #[cfg(target_word_size = "32")] pub unsafe fn set_memory(dst: *mut T, c: u8, count: uint) { intrinsics::memset32(dst, c, count as u32); } /** * Invokes memset on the specified pointer, setting `count * size_of::()` * bytes of memory starting at `dst` to `c`. */ #[inline] #[cfg(target_word_size = "64")] pub unsafe fn set_memory(dst: *mut T, c: u8, count: uint) { intrinsics::memset64(dst, c, count as u64); } /** * Zeroes out `count * size_of::` bytes of memory at `dst` */ #[inline] pub unsafe fn zero_memory(dst: *mut T, count: uint) { set_memory(dst, 0, count); } /** * Swap the values at two mutable locations of the same type, without * deinitialising or copying either one. */ #[inline] pub unsafe fn swap_ptr(x: *mut T, y: *mut T) { // Give ourselves some scratch space to work with let mut tmp: T = intrinsics::uninit(); let t: *mut T = &mut tmp; // Perform the swap copy_nonoverlapping_memory(t, x, 1); copy_memory(x, y, 1); // `x` and `y` may overlap copy_nonoverlapping_memory(y, t, 1); // y and t now point to the same thing, but we need to completely forget `tmp` // because it's no longer relevant. cast::forget(tmp); } /** * Replace the value at a mutable location with a new one, returning the old * value, without deinitialising or copying either one. */ #[inline] pub unsafe fn replace_ptr(dest: *mut T, mut src: T) -> T { swap(cast::transmute(dest), &mut src); // cannot overlap src } /** * Reads the value from `*src` and returns it. Does not copy `*src`. */ #[inline(always)] pub unsafe fn read_ptr(src: *mut T) -> T { let mut tmp: T = intrinsics::uninit(); copy_nonoverlapping_memory(&mut tmp, src, 1); tmp } /** * Reads the value from `*src` and nulls it out. * This currently prevents destructors from executing. */ #[inline(always)] pub unsafe fn read_and_zero_ptr(dest: *mut T) -> T { // Copy the data out from `dest`: let tmp = read_ptr(dest); // Now zero out `dest`: zero_memory(dest, 1); tmp } /// Transform a region pointer - &T - to an unsafe pointer - *T. #[inline] pub fn to_unsafe_ptr(thing: &T) -> *T { thing as *T } /// Transform a mutable region pointer - &mut T - to a mutable unsafe pointer - *mut T. #[inline] pub fn to_mut_unsafe_ptr(thing: &mut T) -> *mut T { thing as *mut T } /** Given a **T (pointer to an array of pointers), iterate through each *T, up to the provided `len`, passing to the provided callback function SAFETY NOTE: Pointer-arithmetic. Dragons be here. */ pub unsafe fn array_each_with_len(arr: **T, len: uint, cb: &fn(*T)) { debug2!("array_each_with_len: before iterate"); if (arr as uint == 0) { fail2!("ptr::array_each_with_len failure: arr input is null pointer"); } //let start_ptr = *arr; for e in range(0, len) { let n = offset(arr, e as int); cb(*n); } debug2!("array_each_with_len: after iterate"); } /** Given a null-pointer-terminated **T (pointer to an array of pointers), iterate through each *T, passing to the provided callback function SAFETY NOTE: This will only work with a null-terminated pointer array. Barely less-dodgy Pointer Arithmetic. Dragons be here. */ pub unsafe fn array_each(arr: **T, cb: &fn(*T)) { if (arr as uint == 0) { fail2!("ptr::array_each_with_len failure: arr input is null pointer"); } let len = buf_len(arr); debug2!("array_each inferred len: {}", len); array_each_with_len(arr, len, cb); } #[allow(missing_doc)] pub trait RawPtr { fn null() -> Self; fn is_null(&self) -> bool; fn is_not_null(&self) -> bool; fn to_uint(&self) -> uint; unsafe fn to_option(&self) -> Option<&T>; unsafe fn offset(self, count: int) -> Self; } /// Extension methods for immutable pointers impl RawPtr for *T { /// Returns the null pointer. #[inline] fn null() -> *T { null() } /// Returns true if the pointer is equal to the null pointer. #[inline] fn is_null(&self) -> bool { *self == RawPtr::null() } /// Returns true if the pointer is not equal to the null pointer. #[inline] fn is_not_null(&self) -> bool { *self != RawPtr::null() } /// Returns the address of this pointer. #[inline] fn to_uint(&self) -> uint { *self as uint } /// /// Returns `None` if the pointer is null, or else returns the value wrapped /// in `Some`. /// /// # Safety Notes /// /// While this method is useful for null-safety, it is important to note /// that this is still an unsafe operation because the returned value could /// be pointing to invalid memory. /// #[inline] unsafe fn to_option(&self) -> Option<&T> { if self.is_null() { None } else { Some(cast::transmute(*self)) } } /// Calculates the offset from a pointer. The offset *must* be in-bounds of /// the object, or one-byte-past-the-end. #[inline] unsafe fn offset(self, count: int) -> *T { offset(self, count) } } /// Extension methods for mutable pointers impl RawPtr for *mut T { /// Returns the null pointer. #[inline] fn null() -> *mut T { mut_null() } /// Returns true if the pointer is equal to the null pointer. #[inline] fn is_null(&self) -> bool { *self == RawPtr::null() } /// Returns true if the pointer is not equal to the null pointer. #[inline] fn is_not_null(&self) -> bool { *self != RawPtr::null() } /// Returns the address of this pointer. #[inline] fn to_uint(&self) -> uint { *self as uint } /// /// Returns `None` if the pointer is null, or else returns the value wrapped /// in `Some`. /// /// # Safety Notes /// /// While this method is useful for null-safety, it is important to note /// that this is still an unsafe operation because the returned value could /// be pointing to invalid memory. /// #[inline] unsafe fn to_option(&self) -> Option<&T> { if self.is_null() { None } else { Some(cast::transmute(*self)) } } /// Calculates the offset from a pointer. The offset *must* be in-bounds of /// the object, or one-byte-past-the-end. An arithmetic overflow is also /// undefined behaviour. /// /// This method should be preferred over `offset` when the guarantee can be /// satisfied, to enable better optimization. #[inline] unsafe fn offset(self, count: int) -> *mut T { mut_offset(self, count) } } // Equality for pointers #[cfg(not(test))] impl Eq for *T { #[inline] fn eq(&self, other: &*T) -> bool { *self == *other } #[inline] fn ne(&self, other: &*T) -> bool { !self.eq(other) } } #[cfg(not(test))] impl Eq for *mut T { #[inline] fn eq(&self, other: &*mut T) -> bool { *self == *other } #[inline] fn ne(&self, other: &*mut T) -> bool { !self.eq(other) } } // Equivalence for pointers #[cfg(not(test))] impl Equiv<*mut T> for *T { fn equiv(&self, other: &*mut T) -> bool { self.to_uint() == other.to_uint() } } #[cfg(not(test))] impl Equiv<*T> for *mut T { fn equiv(&self, other: &*T) -> bool { self.to_uint() == other.to_uint() } } // Equality for extern "C" fn pointers #[cfg(not(test))] mod externfnpointers { use cast; use cmp::Eq; impl<_R> Eq for extern "C" fn() -> _R { #[inline] fn eq(&self, other: &extern "C" fn() -> _R) -> bool { let self_: *() = unsafe { cast::transmute(*self) }; let other_: *() = unsafe { cast::transmute(*other) }; self_ == other_ } #[inline] fn ne(&self, other: &extern "C" fn() -> _R) -> bool { !self.eq(other) } } macro_rules! fnptreq( ($($p:ident),*) => { impl<_R,$($p),*> Eq for extern "C" fn($($p),*) -> _R { #[inline] fn eq(&self, other: &extern "C" fn($($p),*) -> _R) -> bool { let self_: *() = unsafe { cast::transmute(*self) }; let other_: *() = unsafe { cast::transmute(*other) }; self_ == other_ } #[inline] fn ne(&self, other: &extern "C" fn($($p),*) -> _R) -> bool { !self.eq(other) } } } ) fnptreq!(A) fnptreq!(A,B) fnptreq!(A,B,C) fnptreq!(A,B,C,D) fnptreq!(A,B,C,D,E) } // Comparison for pointers #[cfg(not(test))] impl Ord for *T { #[inline] fn lt(&self, other: &*T) -> bool { *self < *other } #[inline] fn le(&self, other: &*T) -> bool { *self <= *other } #[inline] fn ge(&self, other: &*T) -> bool { *self >= *other } #[inline] fn gt(&self, other: &*T) -> bool { *self > *other } } #[cfg(not(test))] impl Ord for *mut T { #[inline] fn lt(&self, other: &*mut T) -> bool { *self < *other } #[inline] fn le(&self, other: &*mut T) -> bool { *self <= *other } #[inline] fn ge(&self, other: &*mut T) -> bool { *self >= *other } #[inline] fn gt(&self, other: &*mut T) -> bool { *self > *other } } #[cfg(test)] pub mod ptr_tests { use super::*; use prelude::*; use c_str::ToCStr; use cast; use libc; use str; use vec; #[test] fn test() { unsafe { struct Pair { fst: int, snd: int }; let mut p = Pair {fst: 10, snd: 20}; let pptr: *mut Pair = &mut p; let iptr: *mut int = cast::transmute(pptr); assert_eq!(*iptr, 10); *iptr = 30; assert_eq!(*iptr, 30); assert_eq!(p.fst, 30); *pptr = Pair {fst: 50, snd: 60}; assert_eq!(*iptr, 50); assert_eq!(p.fst, 50); assert_eq!(p.snd, 60); let v0 = ~[32000u16, 32001u16, 32002u16]; let mut v1 = ~[0u16, 0u16, 0u16]; copy_memory(mut_offset(vec::raw::to_mut_ptr(v1), 1), offset(vec::raw::to_ptr(v0), 1), 1); assert!((v1[0] == 0u16 && v1[1] == 32001u16 && v1[2] == 0u16)); copy_memory(vec::raw::to_mut_ptr(v1), offset(vec::raw::to_ptr(v0), 2), 1); assert!((v1[0] == 32002u16 && v1[1] == 32001u16 && v1[2] == 0u16)); copy_memory(mut_offset(vec::raw::to_mut_ptr(v1), 2), vec::raw::to_ptr(v0), 1u); assert!((v1[0] == 32002u16 && v1[1] == 32001u16 && v1[2] == 32000u16)); } } #[test] fn test_position() { use libc::c_char; do "hello".with_c_str |p| { unsafe { assert!(2u == position(p, |c| *c == 'l' as c_char)); assert!(4u == position(p, |c| *c == 'o' as c_char)); assert!(5u == position(p, |c| *c == 0 as c_char)); } } } #[test] fn test_buf_len() { do "hello".with_c_str |p0| { do "there".with_c_str |p1| { do "thing".with_c_str |p2| { let v = ~[p0, p1, p2, null()]; do v.as_imm_buf |vp, len| { assert_eq!(unsafe { buf_len(vp) }, 3u); assert_eq!(len, 4u); } } } } } #[test] fn test_is_null() { let p: *int = null(); assert!(p.is_null()); assert!(!p.is_not_null()); let q = unsafe { offset(p, 1) }; assert!(!q.is_null()); assert!(q.is_not_null()); let mp: *mut int = mut_null(); assert!(mp.is_null()); assert!(!mp.is_not_null()); let mq = unsafe { mp.offset(1) }; assert!(!mq.is_null()); assert!(mq.is_not_null()); } #[test] fn test_to_option() { unsafe { let p: *int = null(); assert_eq!(p.to_option(), None); let q: *int = &2; assert_eq!(q.to_option().unwrap(), &2); let p: *mut int = mut_null(); assert_eq!(p.to_option(), None); let q: *mut int = &mut 2; assert_eq!(q.to_option().unwrap(), &2); } } #[test] fn test_ptr_addition() { use vec::raw::*; unsafe { let xs = ~[5, ..16]; let mut ptr = to_ptr(xs); let end = ptr.offset(16); while ptr < end { assert_eq!(*ptr, 5); ptr = ptr.offset(1); } let mut xs_mut = xs.clone(); let mut m_ptr = to_mut_ptr(xs_mut); let m_end = m_ptr.offset(16); while m_ptr < m_end { *m_ptr += 5; m_ptr = m_ptr.offset(1); } assert_eq!(xs_mut, ~[10, ..16]); } } #[test] fn test_ptr_subtraction() { use vec::raw::*; unsafe { let xs = ~[0,1,2,3,4,5,6,7,8,9]; let mut idx = 9i8; let ptr = to_ptr(xs); while idx >= 0i8 { assert_eq!(*(ptr.offset(idx as int)), idx as int); idx = idx - 1i8; } let mut xs_mut = xs.clone(); let m_start = to_mut_ptr(xs_mut); let mut m_ptr = m_start.offset(9); while m_ptr >= m_start { *m_ptr += *m_ptr; m_ptr = m_ptr.offset(-1); } assert_eq!(xs_mut, ~[0,2,4,6,8,10,12,14,16,18]); } } #[test] fn test_ptr_array_each_with_len() { unsafe { let one = "oneOne".to_c_str(); let two = "twoTwo".to_c_str(); let three = "threeThree".to_c_str(); let arr = ~[ one.with_ref(|buf| buf), two.with_ref(|buf| buf), three.with_ref(|buf| buf), ]; let expected_arr = [ one, two, three ]; do arr.as_imm_buf |arr_ptr, arr_len| { let mut ctr = 0; let mut iteration_count = 0; do array_each_with_len(arr_ptr, arr_len) |e| { let actual = str::raw::from_c_str(e); let expected = do expected_arr[ctr].with_ref |buf| { str::raw::from_c_str(buf) }; debug2!( "test_ptr_array_each_with_len e: {}, a: {}", expected, actual); assert_eq!(actual, expected); ctr += 1; iteration_count += 1; } assert_eq!(iteration_count, 3u); } } } #[test] fn test_ptr_array_each() { unsafe { let one = "oneOne".to_c_str(); let two = "twoTwo".to_c_str(); let three = "threeThree".to_c_str(); let arr = ~[ one.with_ref(|buf| buf), two.with_ref(|buf| buf), three.with_ref(|buf| buf), // fake a null terminator null(), ]; let expected_arr = [ one, two, three ]; do arr.as_imm_buf |arr_ptr, _| { let mut ctr = 0; let mut iteration_count = 0; do array_each(arr_ptr) |e| { let actual = str::raw::from_c_str(e); let expected = do expected_arr[ctr].with_ref |buf| { str::raw::from_c_str(buf) }; debug2!( "test_ptr_array_each e: {}, a: {}", expected, actual); assert_eq!(actual, expected); ctr += 1; iteration_count += 1; } assert_eq!(iteration_count, 3); } } } #[test] #[should_fail] fn test_ptr_array_each_with_len_null_ptr() { unsafe { array_each_with_len(0 as **libc::c_char, 1, |e| { str::raw::from_c_str(e); }); } } #[test] #[should_fail] fn test_ptr_array_each_null_ptr() { unsafe { array_each(0 as **libc::c_char, |e| { str::raw::from_c_str(e); }); } } #[test] fn test_set_memory() { let mut xs = [0u8, ..20]; let ptr = vec::raw::to_mut_ptr(xs); unsafe { set_memory(ptr, 5u8, xs.len()); } assert_eq!(xs, [5u8, ..20]); } }