// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. /*! * Implementation of SipHash 2-4 * * See: http://131002.net/siphash/ * * Consider this as a main "general-purpose" hash for all hashtables: it * runs at good speed (competitive with spooky and city) and permits * cryptographically strong _keyed_ hashing. Key your hashtables from a * CPRNG like rand::rng. */ #[allow(missing_doc)]; use container::Container; use iter::Iterator; use option::{Some, None}; use rt::io::Writer; use str::OwnedStr; use to_bytes::IterBytes; use vec::ImmutableVector; use num::ToStrRadix; // Alias `SipState` to `State`. pub use State = hash::SipState; /** * Types that can meaningfully be hashed should implement this. * * Note that this trait is likely to change somewhat as it is * closely related to `to_bytes::IterBytes` and in almost all * cases presently the two are (and must be) used together. * * In general, most types only need to implement `IterBytes`, * and the implementation of `Hash` below will take care of * the rest. This is the recommended approach, since constructing * good keyed hash functions is quite difficult. */ pub trait Hash { /** * Compute a "keyed" hash of the value implementing the trait, * taking `k0` and `k1` as "keying" parameters that randomize or * otherwise perturb the hash function in such a way that a * hash table built using such "keyed hash functions" cannot * be made to perform linearly by an attacker controlling the * hashtable's contents. * * In practical terms, we implement this using the SipHash 2-4 * function and require most types to only implement the * IterBytes trait, that feeds SipHash. */ fn hash_keyed(&self, k0: u64, k1: u64) -> u64; #[inline] fn hash(&self) -> u64 { self.hash_keyed(0,0) } } /// Streaming hash-functions should implement this. pub trait Streaming { fn input(&mut self, &[u8]); // These can be refactored some when we have default methods. fn result_bytes(&mut self) -> ~[u8]; fn result_str(&mut self) -> ~str; fn result_u64(&mut self) -> u64; fn reset(&mut self); } impl Hash for A { #[inline] fn hash_keyed(&self, k0: u64, k1: u64) -> u64 { let mut s = State::new(k0, k1); do self.iter_bytes(true) |bytes| { s.input(bytes); true }; s.result_u64() } } fn hash_keyed_2(a: &A, b: &B, k0: u64, k1: u64) -> u64 { let mut s = State::new(k0, k1); do a.iter_bytes(true) |bytes| { s.input(bytes); true }; do b.iter_bytes(true) |bytes| { s.input(bytes); true }; s.result_u64() } fn hash_keyed_3(a: &A, b: &B, c: &C, k0: u64, k1: u64) -> u64 { let mut s = State::new(k0, k1); do a.iter_bytes(true) |bytes| { s.input(bytes); true }; do b.iter_bytes(true) |bytes| { s.input(bytes); true }; do c.iter_bytes(true) |bytes| { s.input(bytes); true }; s.result_u64() } fn hash_keyed_4( a: &A, b: &B, c: &C, d: &D, k0: u64, k1: u64) -> u64 { let mut s = State::new(k0, k1); do a.iter_bytes(true) |bytes| { s.input(bytes); true }; do b.iter_bytes(true) |bytes| { s.input(bytes); true }; do c.iter_bytes(true) |bytes| { s.input(bytes); true }; do d.iter_bytes(true) |bytes| { s.input(bytes); true }; s.result_u64() } fn hash_keyed_5( a: &A, b: &B, c: &C, d: &D, e: &E, k0: u64, k1: u64) -> u64 { let mut s = State::new(k0, k1); do a.iter_bytes(true) |bytes| { s.input(bytes); true }; do b.iter_bytes(true) |bytes| { s.input(bytes); true }; do c.iter_bytes(true) |bytes| { s.input(bytes); true }; do d.iter_bytes(true) |bytes| { s.input(bytes); true }; do e.iter_bytes(true) |bytes| { s.input(bytes); true }; s.result_u64() } #[inline] pub fn default_state() -> State { State::new(0, 0) } struct SipState { k0: u64, k1: u64, length: uint, // how many bytes we've processed v0: u64, // hash state v1: u64, v2: u64, v3: u64, tail: [u8, ..8], // unprocessed bytes ntail: uint, // how many bytes in tail are valid } impl SipState { #[inline] fn new(key0: u64, key1: u64) -> SipState { let mut state = SipState { k0: key0, k1: key1, length: 0, v0: 0, v1: 0, v2: 0, v3: 0, tail: [ 0, 0, 0, 0, 0, 0, 0, 0 ], ntail: 0, }; state.reset(); state } } // sadly, these macro definitions can't appear later, // because they're needed in the following defs; // this design could be improved. macro_rules! u8to64_le ( ($buf:expr, $i:expr) => ($buf[0+$i] as u64 | $buf[1+$i] as u64 << 8 | $buf[2+$i] as u64 << 16 | $buf[3+$i] as u64 << 24 | $buf[4+$i] as u64 << 32 | $buf[5+$i] as u64 << 40 | $buf[6+$i] as u64 << 48 | $buf[7+$i] as u64 << 56) ) macro_rules! rotl ( ($x:expr, $b:expr) => (($x << $b) | ($x >> (64 - $b))) ) macro_rules! compress ( ($v0:expr, $v1:expr, $v2:expr, $v3:expr) => ({ $v0 += $v1; $v1 = rotl!($v1, 13); $v1 ^= $v0; $v0 = rotl!($v0, 32); $v2 += $v3; $v3 = rotl!($v3, 16); $v3 ^= $v2; $v0 += $v3; $v3 = rotl!($v3, 21); $v3 ^= $v0; $v2 += $v1; $v1 = rotl!($v1, 17); $v1 ^= $v2; $v2 = rotl!($v2, 32); }) ) impl Writer for SipState { // Methods for io::writer #[inline] fn write(&mut self, msg: &[u8]) { let length = msg.len(); self.length += length; let mut needed = 0u; if self.ntail != 0 { needed = 8 - self.ntail; if length < needed { let mut t = 0; while t < length { self.tail[self.ntail+t] = msg[t]; t += 1; } self.ntail += length; return; } let mut t = 0; while t < needed { self.tail[self.ntail+t] = msg[t]; t += 1; } let m = u8to64_le!(self.tail, 0); self.v3 ^= m; compress!(self.v0, self.v1, self.v2, self.v3); compress!(self.v0, self.v1, self.v2, self.v3); self.v0 ^= m; self.ntail = 0; } // Buffered tail is now flushed, process new input. let len = length - needed; let end = len & (!0x7); let left = len & 0x7; let mut i = needed; while i < end { let mi = u8to64_le!(msg, i); self.v3 ^= mi; compress!(self.v0, self.v1, self.v2, self.v3); compress!(self.v0, self.v1, self.v2, self.v3); self.v0 ^= mi; i += 8; } let mut t = 0u; while t < left { self.tail[t] = msg[i+t]; t += 1 } self.ntail = left; } fn flush(&mut self) { // No-op } } impl Streaming for SipState { #[inline] fn input(&mut self, buf: &[u8]) { self.write(buf); } #[inline] fn result_u64(&mut self) -> u64 { let mut v0 = self.v0; let mut v1 = self.v1; let mut v2 = self.v2; let mut v3 = self.v3; let mut b : u64 = (self.length as u64 & 0xff) << 56; if self.ntail > 0 { b |= self.tail[0] as u64 << 0; } if self.ntail > 1 { b |= self.tail[1] as u64 << 8; } if self.ntail > 2 { b |= self.tail[2] as u64 << 16; } if self.ntail > 3 { b |= self.tail[3] as u64 << 24; } if self.ntail > 4 { b |= self.tail[4] as u64 << 32; } if self.ntail > 5 { b |= self.tail[5] as u64 << 40; } if self.ntail > 6 { b |= self.tail[6] as u64 << 48; } v3 ^= b; compress!(v0, v1, v2, v3); compress!(v0, v1, v2, v3); v0 ^= b; v2 ^= 0xff; compress!(v0, v1, v2, v3); compress!(v0, v1, v2, v3); compress!(v0, v1, v2, v3); compress!(v0, v1, v2, v3); return (v0 ^ v1 ^ v2 ^ v3); } fn result_bytes(&mut self) -> ~[u8] { let h = self.result_u64(); ~[(h >> 0) as u8, (h >> 8) as u8, (h >> 16) as u8, (h >> 24) as u8, (h >> 32) as u8, (h >> 40) as u8, (h >> 48) as u8, (h >> 56) as u8, ] } fn result_str(&mut self) -> ~str { let r = self.result_bytes(); let mut s = ~""; for b in r.iter() { s.push_str((*b as uint).to_str_radix(16u)); } s } #[inline] fn reset(&mut self) { self.length = 0; self.v0 = self.k0 ^ 0x736f6d6570736575; self.v1 = self.k1 ^ 0x646f72616e646f6d; self.v2 = self.k0 ^ 0x6c7967656e657261; self.v3 = self.k1 ^ 0x7465646279746573; self.ntail = 0; } } #[cfg(test)] mod tests { use super::*; use prelude::*; // Hash just the bytes of the slice, without length prefix struct Bytes<'self>(&'self [u8]); impl<'self> IterBytes for Bytes<'self> { fn iter_bytes(&self, _lsb0: bool, f: &fn(&[u8]) -> bool) -> bool { f(**self) } } #[test] fn test_siphash() { let vecs : [[u8, ..8], ..64] = [ [ 0x31, 0x0e, 0x0e, 0xdd, 0x47, 0xdb, 0x6f, 0x72, ], [ 0xfd, 0x67, 0xdc, 0x93, 0xc5, 0x39, 0xf8, 0x74, ], [ 0x5a, 0x4f, 0xa9, 0xd9, 0x09, 0x80, 0x6c, 0x0d, ], [ 0x2d, 0x7e, 0xfb, 0xd7, 0x96, 0x66, 0x67, 0x85, ], [ 0xb7, 0x87, 0x71, 0x27, 0xe0, 0x94, 0x27, 0xcf, ], [ 0x8d, 0xa6, 0x99, 0xcd, 0x64, 0x55, 0x76, 0x18, ], [ 0xce, 0xe3, 0xfe, 0x58, 0x6e, 0x46, 0xc9, 0xcb, ], [ 0x37, 0xd1, 0x01, 0x8b, 0xf5, 0x00, 0x02, 0xab, ], [ 0x62, 0x24, 0x93, 0x9a, 0x79, 0xf5, 0xf5, 0x93, ], [ 0xb0, 0xe4, 0xa9, 0x0b, 0xdf, 0x82, 0x00, 0x9e, ], [ 0xf3, 0xb9, 0xdd, 0x94, 0xc5, 0xbb, 0x5d, 0x7a, ], [ 0xa7, 0xad, 0x6b, 0x22, 0x46, 0x2f, 0xb3, 0xf4, ], [ 0xfb, 0xe5, 0x0e, 0x86, 0xbc, 0x8f, 0x1e, 0x75, ], [ 0x90, 0x3d, 0x84, 0xc0, 0x27, 0x56, 0xea, 0x14, ], [ 0xee, 0xf2, 0x7a, 0x8e, 0x90, 0xca, 0x23, 0xf7, ], [ 0xe5, 0x45, 0xbe, 0x49, 0x61, 0xca, 0x29, 0xa1, ], [ 0xdb, 0x9b, 0xc2, 0x57, 0x7f, 0xcc, 0x2a, 0x3f, ], [ 0x94, 0x47, 0xbe, 0x2c, 0xf5, 0xe9, 0x9a, 0x69, ], [ 0x9c, 0xd3, 0x8d, 0x96, 0xf0, 0xb3, 0xc1, 0x4b, ], [ 0xbd, 0x61, 0x79, 0xa7, 0x1d, 0xc9, 0x6d, 0xbb, ], [ 0x98, 0xee, 0xa2, 0x1a, 0xf2, 0x5c, 0xd6, 0xbe, ], [ 0xc7, 0x67, 0x3b, 0x2e, 0xb0, 0xcb, 0xf2, 0xd0, ], [ 0x88, 0x3e, 0xa3, 0xe3, 0x95, 0x67, 0x53, 0x93, ], [ 0xc8, 0xce, 0x5c, 0xcd, 0x8c, 0x03, 0x0c, 0xa8, ], [ 0x94, 0xaf, 0x49, 0xf6, 0xc6, 0x50, 0xad, 0xb8, ], [ 0xea, 0xb8, 0x85, 0x8a, 0xde, 0x92, 0xe1, 0xbc, ], [ 0xf3, 0x15, 0xbb, 0x5b, 0xb8, 0x35, 0xd8, 0x17, ], [ 0xad, 0xcf, 0x6b, 0x07, 0x63, 0x61, 0x2e, 0x2f, ], [ 0xa5, 0xc9, 0x1d, 0xa7, 0xac, 0xaa, 0x4d, 0xde, ], [ 0x71, 0x65, 0x95, 0x87, 0x66, 0x50, 0xa2, 0xa6, ], [ 0x28, 0xef, 0x49, 0x5c, 0x53, 0xa3, 0x87, 0xad, ], [ 0x42, 0xc3, 0x41, 0xd8, 0xfa, 0x92, 0xd8, 0x32, ], [ 0xce, 0x7c, 0xf2, 0x72, 0x2f, 0x51, 0x27, 0x71, ], [ 0xe3, 0x78, 0x59, 0xf9, 0x46, 0x23, 0xf3, 0xa7, ], [ 0x38, 0x12, 0x05, 0xbb, 0x1a, 0xb0, 0xe0, 0x12, ], [ 0xae, 0x97, 0xa1, 0x0f, 0xd4, 0x34, 0xe0, 0x15, ], [ 0xb4, 0xa3, 0x15, 0x08, 0xbe, 0xff, 0x4d, 0x31, ], [ 0x81, 0x39, 0x62, 0x29, 0xf0, 0x90, 0x79, 0x02, ], [ 0x4d, 0x0c, 0xf4, 0x9e, 0xe5, 0xd4, 0xdc, 0xca, ], [ 0x5c, 0x73, 0x33, 0x6a, 0x76, 0xd8, 0xbf, 0x9a, ], [ 0xd0, 0xa7, 0x04, 0x53, 0x6b, 0xa9, 0x3e, 0x0e, ], [ 0x92, 0x59, 0x58, 0xfc, 0xd6, 0x42, 0x0c, 0xad, ], [ 0xa9, 0x15, 0xc2, 0x9b, 0xc8, 0x06, 0x73, 0x18, ], [ 0x95, 0x2b, 0x79, 0xf3, 0xbc, 0x0a, 0xa6, 0xd4, ], [ 0xf2, 0x1d, 0xf2, 0xe4, 0x1d, 0x45, 0x35, 0xf9, ], [ 0x87, 0x57, 0x75, 0x19, 0x04, 0x8f, 0x53, 0xa9, ], [ 0x10, 0xa5, 0x6c, 0xf5, 0xdf, 0xcd, 0x9a, 0xdb, ], [ 0xeb, 0x75, 0x09, 0x5c, 0xcd, 0x98, 0x6c, 0xd0, ], [ 0x51, 0xa9, 0xcb, 0x9e, 0xcb, 0xa3, 0x12, 0xe6, ], [ 0x96, 0xaf, 0xad, 0xfc, 0x2c, 0xe6, 0x66, 0xc7, ], [ 0x72, 0xfe, 0x52, 0x97, 0x5a, 0x43, 0x64, 0xee, ], [ 0x5a, 0x16, 0x45, 0xb2, 0x76, 0xd5, 0x92, 0xa1, ], [ 0xb2, 0x74, 0xcb, 0x8e, 0xbf, 0x87, 0x87, 0x0a, ], [ 0x6f, 0x9b, 0xb4, 0x20, 0x3d, 0xe7, 0xb3, 0x81, ], [ 0xea, 0xec, 0xb2, 0xa3, 0x0b, 0x22, 0xa8, 0x7f, ], [ 0x99, 0x24, 0xa4, 0x3c, 0xc1, 0x31, 0x57, 0x24, ], [ 0xbd, 0x83, 0x8d, 0x3a, 0xaf, 0xbf, 0x8d, 0xb7, ], [ 0x0b, 0x1a, 0x2a, 0x32, 0x65, 0xd5, 0x1a, 0xea, ], [ 0x13, 0x50, 0x79, 0xa3, 0x23, 0x1c, 0xe6, 0x60, ], [ 0x93, 0x2b, 0x28, 0x46, 0xe4, 0xd7, 0x06, 0x66, ], [ 0xe1, 0x91, 0x5f, 0x5c, 0xb1, 0xec, 0xa4, 0x6c, ], [ 0xf3, 0x25, 0x96, 0x5c, 0xa1, 0x6d, 0x62, 0x9f, ], [ 0x57, 0x5f, 0xf2, 0x8e, 0x60, 0x38, 0x1b, 0xe5, ], [ 0x72, 0x45, 0x06, 0xeb, 0x4c, 0x32, 0x8a, 0x95, ] ]; let k0 = 0x_07_06_05_04_03_02_01_00_u64; let k1 = 0x_0f_0e_0d_0c_0b_0a_09_08_u64; let mut buf : ~[u8] = ~[]; let mut t = 0; let mut stream_inc = SipState::new(k0, k1); let mut stream_full = SipState::new(k0, k1); fn to_hex_str(r: &[u8, ..8]) -> ~str { let mut s = ~""; for b in r.iter() { s.push_str((*b as uint).to_str_radix(16u)); } s } while t < 64 { debug2!("siphash test {}", t); let vec = u8to64_le!(vecs[t], 0); let out = Bytes(buf.as_slice()).hash_keyed(k0, k1); debug2!("got {:?}, expected {:?}", out, vec); assert_eq!(vec, out); stream_full.reset(); stream_full.input(buf); let f = stream_full.result_str(); let i = stream_inc.result_str(); let v = to_hex_str(&vecs[t]); debug2!("{}: ({}) => inc={} full={}", t, v, i, f); assert!(f == i && f == v); buf.push(t as u8); stream_inc.input([t as u8]); t += 1; } } #[test] #[cfg(target_arch = "arm")] fn test_hash_uint() { let val = 0xdeadbeef_deadbeef_u64; assert!((val as u64).hash() != (val as uint).hash()); assert_eq!((val as u32).hash(), (val as uint).hash()); } #[test] #[cfg(target_arch = "x86_64")] fn test_hash_uint() { let val = 0xdeadbeef_deadbeef_u64; assert_eq!((val as u64).hash(), (val as uint).hash()); assert!((val as u32).hash() != (val as uint).hash()); } #[test] #[cfg(target_arch = "x86")] fn test_hash_uint() { let val = 0xdeadbeef_deadbeef_u64; assert!((val as u64).hash() != (val as uint).hash()); assert_eq!((val as u32).hash(), (val as uint).hash()); } #[test] fn test_hash_idempotent() { let val64 = 0xdeadbeef_deadbeef_u64; val64.hash() == val64.hash(); let val32 = 0xdeadbeef_u32; val32.hash() == val32.hash(); } #[test] fn test_hash_no_bytes_dropped_64() { let val = 0xdeadbeef_deadbeef_u64; assert!(val.hash() != zero_byte(val, 0).hash()); assert!(val.hash() != zero_byte(val, 1).hash()); assert!(val.hash() != zero_byte(val, 2).hash()); assert!(val.hash() != zero_byte(val, 3).hash()); assert!(val.hash() != zero_byte(val, 4).hash()); assert!(val.hash() != zero_byte(val, 5).hash()); assert!(val.hash() != zero_byte(val, 6).hash()); assert!(val.hash() != zero_byte(val, 7).hash()); fn zero_byte(val: u64, byte: uint) -> u64 { assert!(byte < 8); val & !(0xff << (byte * 8)) } } #[test] fn test_hash_no_bytes_dropped_32() { let val = 0xdeadbeef_u32; assert!(val.hash() != zero_byte(val, 0).hash()); assert!(val.hash() != zero_byte(val, 1).hash()); assert!(val.hash() != zero_byte(val, 2).hash()); assert!(val.hash() != zero_byte(val, 3).hash()); fn zero_byte(val: u32, byte: uint) -> u32 { assert!(byte < 4); val & !(0xff << (byte * 8)) } } #[test] fn test_float_hashes_differ() { assert!(0.0.hash() != 1.0.hash()); assert!(1.0.hash() != (-1.0).hash()); } #[test] fn test_float_hashes_of_zero() { assert_eq!(0.0.hash(), (-0.0).hash()); } #[test] fn test_hash_no_concat_alias() { let s = ("aa", "bb"); let t = ("aabb", ""); let u = ("a", "abb"); let v = (&[1u8], &[0u8, 0], &[0u8]); let w = (&[1u8, 0, 0, 0], &[], &[]); assert!(v != w); assert!(s.hash() != t.hash() && s.hash() != u.hash()); assert!(v.hash() != w.hash()); } }