// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #[doc(hidden)]; use cast; use libc; use comm::{GenericChan, GenericPort}; use prelude::*; use task; use task::{TaskBuilder, atomically}; #[path = "unstable/at_exit.rs"] pub mod at_exit; #[path = "unstable/global.rs"] pub mod global; #[path = "unstable/finally.rs"] pub mod finally; #[path = "unstable/weak_task.rs"] pub mod weak_task; #[path = "unstable/exchange_alloc.rs"] pub mod exchange_alloc; #[path = "unstable/intrinsics.rs"] pub mod intrinsics; #[path = "unstable/extfmt.rs"] pub mod extfmt; #[path = "unstable/lang.rs"] #[cfg(notest)] pub mod lang; mod rustrt { use unstable::{raw_thread, rust_little_lock}; pub extern { pub unsafe fn rust_create_little_lock() -> rust_little_lock; pub unsafe fn rust_destroy_little_lock(lock: rust_little_lock); pub unsafe fn rust_lock_little_lock(lock: rust_little_lock); pub unsafe fn rust_unlock_little_lock(lock: rust_little_lock); pub unsafe fn rust_raw_thread_start(f: &(&fn())) -> *raw_thread; pub unsafe fn rust_raw_thread_join_delete(thread: *raw_thread); } } #[allow(non_camel_case_types)] // runtime type pub type raw_thread = libc::c_void; /** Start a new thread outside of the current runtime context and wait for it to terminate. The executing thread has no access to a task pointer and will be using a normal large stack. */ pub fn run_in_bare_thread(f: ~fn()) { let (port, chan) = comm::stream(); // FIXME #4525: Unfortunate that this creates an extra scheduler but it's // necessary since rust_raw_thread_join_delete is blocking do task::spawn_sched(task::SingleThreaded) { unsafe { let closure: &fn() = || { f() }; let thread = rustrt::rust_raw_thread_start(&closure); rustrt::rust_raw_thread_join_delete(thread); chan.send(()); } } port.recv(); } #[test] fn test_run_in_bare_thread() { let i = 100; do run_in_bare_thread { fail_unless!(i == 100); } } #[test] fn test_run_in_bare_thread_exchange() { // Does the exchange heap work without the runtime? let i = ~100; do run_in_bare_thread { fail_unless!(i == ~100); } } fn compare_and_swap(address: &mut int, oldval: int, newval: int) -> bool { unsafe { let old = intrinsics::atomic_cxchg(address, oldval, newval); old == oldval } } /**************************************************************************** * Shared state & exclusive ARC ****************************************************************************/ struct ArcData { mut count: libc::intptr_t, // FIXME(#3224) should be able to make this non-option to save memory mut data: Option, } struct ArcDestruct { mut data: *libc::c_void, } #[unsafe_destructor] impl Drop for ArcDestruct{ fn finalize(&self) { unsafe { do task::unkillable { let data: ~ArcData = cast::reinterpret_cast(&self.data); let new_count = intrinsics::atomic_xsub(&mut data.count, 1) - 1; fail_unless!(new_count >= 0); if new_count == 0 { // drop glue takes over. } else { cast::forget(data); } } } } } fn ArcDestruct(data: *libc::c_void) -> ArcDestruct { ArcDestruct { data: data } } /** * COMPLETELY UNSAFE. Used as a primitive for the safe versions in std::arc. * * Data races between tasks can result in crashes and, with sufficient * cleverness, arbitrary type coercion. */ pub type SharedMutableState = ArcDestruct; pub unsafe fn shared_mutable_state(data: T) -> SharedMutableState { let data = ~ArcData { count: 1, data: Some(data) }; unsafe { let ptr = cast::transmute(data); ArcDestruct(ptr) } } #[inline(always)] pub unsafe fn get_shared_mutable_state( rc: *SharedMutableState) -> *mut T { unsafe { let ptr: ~ArcData = cast::reinterpret_cast(&(*rc).data); fail_unless!(ptr.count > 0); let r = cast::transmute(ptr.data.get_ref()); cast::forget(ptr); return r; } } #[inline(always)] pub unsafe fn get_shared_immutable_state( rc: &'a SharedMutableState) -> &'a T { unsafe { let ptr: ~ArcData = cast::reinterpret_cast(&(*rc).data); fail_unless!(ptr.count > 0); // Cast us back into the correct region let r = cast::transmute_region(ptr.data.get_ref()); cast::forget(ptr); return r; } } pub unsafe fn clone_shared_mutable_state(rc: &SharedMutableState) -> SharedMutableState { unsafe { let ptr: ~ArcData = cast::reinterpret_cast(&(*rc).data); let new_count = intrinsics::atomic_xadd(&mut ptr.count, 1) + 1; fail_unless!(new_count >= 2); cast::forget(ptr); } ArcDestruct((*rc).data) } impl Clone for SharedMutableState { fn clone(&self) -> SharedMutableState { unsafe { clone_shared_mutable_state(self) } } } /****************************************************************************/ #[allow(non_camel_case_types)] // runtime type pub type rust_little_lock = *libc::c_void; struct LittleLock { l: rust_little_lock, } impl Drop for LittleLock { fn finalize(&self) { unsafe { rustrt::rust_destroy_little_lock(self.l); } } } fn LittleLock() -> LittleLock { unsafe { LittleLock { l: rustrt::rust_create_little_lock() } } } pub impl LittleLock { #[inline(always)] unsafe fn lock(&self, f: &fn() -> T) -> T { struct Unlock { l: rust_little_lock, drop { unsafe { rustrt::rust_unlock_little_lock(self.l); } } } fn Unlock(l: rust_little_lock) -> Unlock { Unlock { l: l } } do atomically { rustrt::rust_lock_little_lock(self.l); let _r = Unlock(self.l); f() } } } struct ExData { lock: LittleLock, mut failed: bool, mut data: T, } /** * An arc over mutable data that is protected by a lock. For library use only. */ pub struct Exclusive { x: SharedMutableState> } pub fn exclusive(user_data: T) -> Exclusive { let data = ExData { lock: LittleLock(), mut failed: false, mut data: user_data }; Exclusive { x: unsafe { shared_mutable_state(data) } } } impl Clone for Exclusive { // Duplicate an exclusive ARC, as std::arc::clone. fn clone(&self) -> Exclusive { Exclusive { x: unsafe { clone_shared_mutable_state(&self.x) } } } } pub impl Exclusive { // Exactly like std::arc::mutex_arc,access(), but with the little_lock // instead of a proper mutex. Same reason for being unsafe. // // Currently, scheduling operations (i.e., yielding, receiving on a pipe, // accessing the provided condition variable) are prohibited while inside // the exclusive. Supporting that is a work in progress. #[inline(always)] unsafe fn with(&self, f: &fn(x: &mut T) -> U) -> U { unsafe { let rec = get_shared_mutable_state(&self.x); do (*rec).lock.lock { if (*rec).failed { fail!( ~"Poisoned exclusive - another task failed inside!"); } (*rec).failed = true; let result = f(&mut (*rec).data); (*rec).failed = false; result } } } #[inline(always)] unsafe fn with_imm(&self, f: &fn(x: &T) -> U) -> U { do self.with |x| { f(cast::transmute_immut(x)) } } } #[cfg(test)] pub mod tests { use comm; use super::exclusive; use task; use uint; #[test] pub fn exclusive_arc() { let mut futures = ~[]; let num_tasks = 10; let count = 10; let total = exclusive(~0); for uint::range(0, num_tasks) |_i| { let total = total.clone(); let (port, chan) = comm::stream(); futures.push(port); do task::spawn || { for uint::range(0, count) |_i| { do total.with |count| { **count += 1; } } chan.send(()); } }; for futures.each |f| { f.recv() } do total.with |total| { fail_unless!(**total == num_tasks * count) }; } #[test] #[should_fail] #[ignore(cfg(windows))] pub fn exclusive_poison() { // Tests that if one task fails inside of an exclusive, subsequent // accesses will also fail. let x = exclusive(1); let x2 = x.clone(); do task::try || { do x2.with |one| { fail_unless!(*one == 2); } }; do x.with |one| { fail_unless!(*one == 1); } } }