use std::cmp; use std::iter; use clippy_utils::diagnostics::span_lint_and_sugg; use clippy_utils::source::snippet; use clippy_utils::ty::{for_each_top_level_late_bound_region, is_copy}; use clippy_utils::{is_self, is_self_ty}; use core::ops::ControlFlow; use if_chain::if_chain; use rustc_ast::attr; use rustc_data_structures::fx::FxHashSet; use rustc_errors::Applicability; use rustc_hir as hir; use rustc_hir::intravisit::FnKind; use rustc_hir::{BindingAnnotation, Body, FnDecl, HirId, Impl, ItemKind, MutTy, Mutability, Node, PatKind}; use rustc_lint::{LateContext, LateLintPass}; use rustc_middle::ty::adjustment::{Adjust, PointerCast}; use rustc_middle::ty::layout::LayoutOf; use rustc_middle::ty::{self, RegionKind}; use rustc_session::{declare_tool_lint, impl_lint_pass}; use rustc_span::def_id::LocalDefId; use rustc_span::{sym, Span}; use rustc_target::spec::abi::Abi; use rustc_target::spec::Target; declare_clippy_lint! { /// ### What it does /// Checks for functions taking arguments by reference, where /// the argument type is `Copy` and small enough to be more efficient to always /// pass by value. /// /// ### Why is this bad? /// In many calling conventions instances of structs will /// be passed through registers if they fit into two or less general purpose /// registers. /// /// ### Known problems /// This lint is target register size dependent, it is /// limited to 32-bit to try and reduce portability problems between 32 and /// 64-bit, but if you are compiling for 8 or 16-bit targets then the limit /// will be different. /// /// The configuration option `trivial_copy_size_limit` can be set to override /// this limit for a project. /// /// This lint attempts to allow passing arguments by reference if a reference /// to that argument is returned. This is implemented by comparing the lifetime /// of the argument and return value for equality. However, this can cause /// false positives in cases involving multiple lifetimes that are bounded by /// each other. /// /// Also, it does not take account of other similar cases where getting memory addresses /// matters; namely, returning the pointer to the argument in question, /// and passing the argument, as both references and pointers, /// to a function that needs the memory address. For further details, refer to /// [this issue](https://github.com/rust-lang/rust-clippy/issues/5953) /// that explains a real case in which this false positive /// led to an **undefined behavior** introduced with unsafe code. /// /// ### Example /// /// ```rust /// fn foo(v: &u32) {} /// ``` /// /// Use instead: /// ```rust /// fn foo(v: u32) {} /// ``` #[clippy::version = "pre 1.29.0"] pub TRIVIALLY_COPY_PASS_BY_REF, pedantic, "functions taking small copyable arguments by reference" } declare_clippy_lint! { /// ### What it does /// Checks for functions taking arguments by value, where /// the argument type is `Copy` and large enough to be worth considering /// passing by reference. Does not trigger if the function is being exported, /// because that might induce API breakage, if the parameter is declared as mutable, /// or if the argument is a `self`. /// /// ### Why is this bad? /// Arguments passed by value might result in an unnecessary /// shallow copy, taking up more space in the stack and requiring a call to /// `memcpy`, which can be expensive. /// /// ### Example /// ```rust /// #[derive(Clone, Copy)] /// struct TooLarge([u8; 2048]); /// /// fn foo(v: TooLarge) {} /// ``` /// /// Use instead: /// ```rust /// # #[derive(Clone, Copy)] /// # struct TooLarge([u8; 2048]); /// fn foo(v: &TooLarge) {} /// ``` #[clippy::version = "1.49.0"] pub LARGE_TYPES_PASSED_BY_VALUE, pedantic, "functions taking large arguments by value" } #[derive(Copy, Clone)] pub struct PassByRefOrValue { ref_min_size: u64, value_max_size: u64, avoid_breaking_exported_api: bool, } impl<'tcx> PassByRefOrValue { pub fn new( ref_min_size: Option, value_max_size: u64, avoid_breaking_exported_api: bool, target: &Target, ) -> Self { let ref_min_size = ref_min_size.unwrap_or_else(|| { let bit_width = u64::from(target.pointer_width); // Cap the calculated bit width at 32-bits to reduce // portability problems between 32 and 64-bit targets let bit_width = cmp::min(bit_width, 32); #[expect(clippy::integer_division)] let byte_width = bit_width / 8; // Use a limit of 2 times the register byte width byte_width * 2 }); Self { ref_min_size, value_max_size, avoid_breaking_exported_api, } } fn check_poly_fn(&mut self, cx: &LateContext<'tcx>, def_id: LocalDefId, decl: &FnDecl<'_>, span: Option) { if self.avoid_breaking_exported_api && cx.access_levels.is_exported(def_id) { return; } let fn_sig = cx.tcx.fn_sig(def_id); let fn_body = cx.enclosing_body.map(|id| cx.tcx.hir().body(id)); // Gather all the lifetimes found in the output type which may affect whether // `TRIVIALLY_COPY_PASS_BY_REF` should be linted. let mut output_regions = FxHashSet::default(); for_each_top_level_late_bound_region(fn_sig.skip_binder().output(), |region| -> ControlFlow { output_regions.insert(region); ControlFlow::Continue(()) }); for (index, (input, ty)) in iter::zip( decl.inputs, fn_sig.skip_binder().inputs().iter().map(|&ty| fn_sig.rebind(ty)), ) .enumerate() { // All spans generated from a proc-macro invocation are the same... match span { Some(s) if s == input.span => continue, _ => (), } match *ty.skip_binder().kind() { ty::Ref(lt, ty, Mutability::Not) => { match lt.kind() { RegionKind::ReLateBound(index, region) if index.as_u32() == 0 && output_regions.contains(®ion) => { continue; }, // Early bound regions on functions are either from the containing item, are bounded by another // lifetime, or are used as a bound for a type or lifetime. RegionKind::ReEarlyBound(..) => continue, _ => (), } let ty = cx.tcx.erase_late_bound_regions(fn_sig.rebind(ty)); if is_copy(cx, ty) && let Some(size) = cx.layout_of(ty).ok().map(|l| l.size.bytes()) && size <= self.ref_min_size && let hir::TyKind::Rptr(_, MutTy { ty: decl_ty, .. }) = input.kind { if let Some(typeck) = cx.maybe_typeck_results() { // Don't lint if an unsafe pointer is created. // TODO: Limit the check only to unsafe pointers to the argument (or part of the argument) // which escape the current function. if typeck.node_types().iter().any(|(_, &ty)| ty.is_unsafe_ptr()) || typeck .adjustments() .iter() .flat_map(|(_, a)| a) .any(|a| matches!(a.kind, Adjust::Pointer(PointerCast::UnsafeFnPointer))) { continue; } } let value_type = if fn_body.and_then(|body| body.params.get(index)).map_or(false, is_self) { "self".into() } else { snippet(cx, decl_ty.span, "_").into() }; span_lint_and_sugg( cx, TRIVIALLY_COPY_PASS_BY_REF, input.span, &format!("this argument ({size} byte) is passed by reference, but would be more efficient if passed by value (limit: {} byte)", self.ref_min_size), "consider passing by value instead", value_type, Applicability::Unspecified, ); } }, ty::Adt(_, _) | ty::Array(_, _) | ty::Tuple(_) => { // if function has a body and parameter is annotated with mut, ignore if let Some(param) = fn_body.and_then(|body| body.params.get(index)) { match param.pat.kind { PatKind::Binding(BindingAnnotation::NONE, _, _, _) => {}, _ => continue, } } let ty = cx.tcx.erase_late_bound_regions(ty); if_chain! { if is_copy(cx, ty); if !is_self_ty(input); if let Some(size) = cx.layout_of(ty).ok().map(|l| l.size.bytes()); if size > self.value_max_size; then { span_lint_and_sugg( cx, LARGE_TYPES_PASSED_BY_VALUE, input.span, &format!("this argument ({size} byte) is passed by value, but might be more efficient if passed by reference (limit: {} byte)", self.value_max_size), "consider passing by reference instead", format!("&{}", snippet(cx, input.span, "_")), Applicability::MaybeIncorrect, ); } } }, _ => {}, } } } } impl_lint_pass!(PassByRefOrValue => [TRIVIALLY_COPY_PASS_BY_REF, LARGE_TYPES_PASSED_BY_VALUE]); impl<'tcx> LateLintPass<'tcx> for PassByRefOrValue { fn check_trait_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::TraitItem<'_>) { if item.span.from_expansion() { return; } if let hir::TraitItemKind::Fn(method_sig, _) = &item.kind { self.check_poly_fn(cx, item.def_id.def_id, method_sig.decl, None); } } fn check_fn( &mut self, cx: &LateContext<'tcx>, kind: FnKind<'tcx>, decl: &'tcx FnDecl<'_>, _body: &'tcx Body<'_>, span: Span, hir_id: HirId, ) { if span.from_expansion() { return; } match kind { FnKind::ItemFn(.., header) => { if header.abi != Abi::Rust { return; } let attrs = cx.tcx.hir().attrs(hir_id); for a in attrs { if let Some(meta_items) = a.meta_item_list() { if a.has_name(sym::proc_macro_derive) || (a.has_name(sym::inline) && attr::list_contains_name(&meta_items, sym::always)) { return; } } } }, FnKind::Method(..) => (), FnKind::Closure => return, } // Exclude non-inherent impls if let Some(Node::Item(item)) = cx.tcx.hir().find(cx.tcx.hir().get_parent_node(hir_id)) { if matches!( item.kind, ItemKind::Impl(Impl { of_trait: Some(_), .. }) | ItemKind::Trait(..) ) { return; } } self.check_poly_fn(cx, cx.tcx.hir().local_def_id(hir_id), decl, Some(span)); } }