// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #[allow(non_uppercase_pattern_statics)]; use back::abi; use lib::llvm::{SequentiallyConsistent, Acquire, Release, Xchg}; use lib::llvm::{ValueRef, Pointer, Array, Struct}; use lib; use middle::trans::base::*; use middle::trans::build::*; use middle::trans::common::*; use middle::trans::datum::*; use middle::trans::type_of::*; use middle::trans::type_of; use middle::trans::machine; use middle::trans::glue; use middle::ty; use syntax::ast; use syntax::ast_map; use util::ppaux::ty_to_str; use middle::trans::machine::llsize_of; use middle::trans::type_::Type; pub fn trans_intrinsic(ccx: @CrateContext, decl: ValueRef, item: &ast::foreign_item, path: ast_map::path, substs: @param_substs, _attributes: &[ast::Attribute], ref_id: Option) { debug!("trans_intrinsic(item.ident={})", ccx.sess.str_of(item.ident)); fn simple_llvm_intrinsic(bcx: @Block, name: &'static str, num_args: uint) { assert!(num_args <= 4); let mut args = [0 as ValueRef, ..4]; let first_real_arg = bcx.fcx.arg_pos(0u); for i in range(0u, num_args) { args[i] = get_param(bcx.fcx.llfn, first_real_arg + i); } let llfn = bcx.ccx().intrinsics.get_copy(&name); let llcall = Call(bcx, llfn, args.slice(0, num_args), []); Ret(bcx, llcall); } fn with_overflow_instrinsic(bcx: @Block, name: &'static str, t: ty::t) { let first_real_arg = bcx.fcx.arg_pos(0u); let a = get_param(bcx.fcx.llfn, first_real_arg); let b = get_param(bcx.fcx.llfn, first_real_arg + 1); let llfn = bcx.ccx().intrinsics.get_copy(&name); // convert `i1` to a `bool`, and write to the out parameter let val = Call(bcx, llfn, [a, b], []); let result = ExtractValue(bcx, val, 0); let overflow = ZExt(bcx, ExtractValue(bcx, val, 1), Type::bool()); let ret = C_undef(type_of::type_of(bcx.ccx(), t)); let ret = InsertValue(bcx, ret, result, 0); let ret = InsertValue(bcx, ret, overflow, 1); if type_is_immediate(bcx.ccx(), t) { Ret(bcx, ret); } else { let retptr = get_param(bcx.fcx.llfn, bcx.fcx.out_arg_pos()); Store(bcx, ret, retptr); RetVoid(bcx); } } fn copy_intrinsic(bcx: @Block, allow_overlap: bool, tp_ty: ty::t) { let ccx = bcx.ccx(); let lltp_ty = type_of::type_of(ccx, tp_ty); let align = C_i32(machine::llalign_of_min(ccx, lltp_ty) as i32); let size = machine::llsize_of(ccx, lltp_ty); let int_size = machine::llbitsize_of_real(ccx, ccx.int_type); let name = if allow_overlap { if int_size == 32 { "llvm.memmove.p0i8.p0i8.i32" } else { "llvm.memmove.p0i8.p0i8.i64" } } else { if int_size == 32 { "llvm.memcpy.p0i8.p0i8.i32" } else { "llvm.memcpy.p0i8.p0i8.i64" } }; let decl = bcx.fcx.llfn; let first_real_arg = bcx.fcx.arg_pos(0u); let dst_ptr = PointerCast(bcx, get_param(decl, first_real_arg), Type::i8p()); let src_ptr = PointerCast(bcx, get_param(decl, first_real_arg + 1), Type::i8p()); let count = get_param(decl, first_real_arg + 2); let volatile = C_i1(false); let llfn = bcx.ccx().intrinsics.get_copy(&name); Call(bcx, llfn, [dst_ptr, src_ptr, Mul(bcx, size, count), align, volatile], []); RetVoid(bcx); } fn memset_intrinsic(bcx: @Block, tp_ty: ty::t) { let ccx = bcx.ccx(); let lltp_ty = type_of::type_of(ccx, tp_ty); let align = C_i32(machine::llalign_of_min(ccx, lltp_ty) as i32); let size = machine::llsize_of(ccx, lltp_ty); let name = if machine::llbitsize_of_real(ccx, ccx.int_type) == 32 { "llvm.memset.p0i8.i32" } else { "llvm.memset.p0i8.i64" }; let decl = bcx.fcx.llfn; let first_real_arg = bcx.fcx.arg_pos(0u); let dst_ptr = PointerCast(bcx, get_param(decl, first_real_arg), Type::i8p()); let val = get_param(decl, first_real_arg + 1); let count = get_param(decl, first_real_arg + 2); let volatile = C_i1(false); let llfn = bcx.ccx().intrinsics.get_copy(&name); Call(bcx, llfn, [dst_ptr, val, Mul(bcx, size, count), align, volatile], []); RetVoid(bcx); } fn count_zeros_intrinsic(bcx: @Block, name: &'static str) { let x = get_param(bcx.fcx.llfn, bcx.fcx.arg_pos(0u)); let y = C_i1(false); let llfn = bcx.ccx().intrinsics.get_copy(&name); let llcall = Call(bcx, llfn, [x, y], []); Ret(bcx, llcall); } let output_type = ty::ty_fn_ret(ty::node_id_to_type(ccx.tcx, item.id)); let fcx = new_fn_ctxt_w_id(ccx, path, decl, item.id, output_type, true, Some(substs), None, Some(item.span)); set_always_inline(fcx.llfn); let mut bcx = fcx.entry_bcx.get().unwrap(); let first_real_arg = fcx.arg_pos(0u); let nm = ccx.sess.str_of(item.ident); let name = nm.as_slice(); // This requires that atomic intrinsics follow a specific naming pattern: // "atomic_[_], and no ordering means SeqCst if name.starts_with("atomic_") { let split : ~[&str] = name.split('_').collect(); assert!(split.len() >= 2, "Atomic intrinsic not correct format"); let order = if split.len() == 2 { lib::llvm::SequentiallyConsistent } else { match split[2] { "relaxed" => lib::llvm::Monotonic, "acq" => lib::llvm::Acquire, "rel" => lib::llvm::Release, "acqrel" => lib::llvm::AcquireRelease, _ => ccx.sess.fatal("Unknown ordering in atomic intrinsic") } }; match split[1] { "cxchg" => { let old = AtomicCmpXchg(bcx, get_param(decl, first_real_arg), get_param(decl, first_real_arg + 1u), get_param(decl, first_real_arg + 2u), order); Ret(bcx, old); } "load" => { let old = AtomicLoad(bcx, get_param(decl, first_real_arg), order); Ret(bcx, old); } "store" => { AtomicStore(bcx, get_param(decl, first_real_arg + 1u), get_param(decl, first_real_arg), order); RetVoid(bcx); } "fence" => { AtomicFence(bcx, order); RetVoid(bcx); } op => { // These are all AtomicRMW ops let atom_op = match op { "xchg" => lib::llvm::Xchg, "xadd" => lib::llvm::Add, "xsub" => lib::llvm::Sub, "and" => lib::llvm::And, "nand" => lib::llvm::Nand, "or" => lib::llvm::Or, "xor" => lib::llvm::Xor, "max" => lib::llvm::Max, "min" => lib::llvm::Min, "umax" => lib::llvm::UMax, "umin" => lib::llvm::UMin, _ => ccx.sess.fatal("Unknown atomic operation") }; let old = AtomicRMW(bcx, atom_op, get_param(decl, first_real_arg), get_param(decl, first_real_arg + 1u), order); Ret(bcx, old); } } fcx.cleanup(); return; } match name { "abort" => { let llfn = bcx.ccx().intrinsics.get_copy(&("llvm.trap")); Call(bcx, llfn, [], []); Unreachable(bcx); } "breakpoint" => { let llfn = bcx.ccx().intrinsics.get_copy(&("llvm.debugtrap")); Call(bcx, llfn, [], []); RetVoid(bcx); } "size_of" => { let tp_ty = substs.tys[0]; let lltp_ty = type_of::type_of(ccx, tp_ty); Ret(bcx, C_uint(ccx, machine::llsize_of_real(ccx, lltp_ty))); } "move_val" => { // Create a datum reflecting the value being moved. // Use `appropriate_mode` so that the datum is by ref // if the value is non-immediate. Note that, with // intrinsics, there are no argument cleanups to // concern ourselves with. let tp_ty = substs.tys[0]; let mode = appropriate_mode(ccx, tp_ty); let src = Datum {val: get_param(decl, first_real_arg + 1u), ty: tp_ty, mode: mode}; bcx = src.move_to(bcx, DROP_EXISTING, get_param(decl, first_real_arg)); RetVoid(bcx); } "move_val_init" => { // See comments for `"move_val"`. let tp_ty = substs.tys[0]; let mode = appropriate_mode(ccx, tp_ty); let src = Datum {val: get_param(decl, first_real_arg + 1u), ty: tp_ty, mode: mode}; bcx = src.move_to(bcx, INIT, get_param(decl, first_real_arg)); RetVoid(bcx); } "min_align_of" => { let tp_ty = substs.tys[0]; let lltp_ty = type_of::type_of(ccx, tp_ty); Ret(bcx, C_uint(ccx, machine::llalign_of_min(ccx, lltp_ty))); } "pref_align_of"=> { let tp_ty = substs.tys[0]; let lltp_ty = type_of::type_of(ccx, tp_ty); Ret(bcx, C_uint(ccx, machine::llalign_of_pref(ccx, lltp_ty))); } "get_tydesc" => { let tp_ty = substs.tys[0]; let static_ti = get_tydesc(ccx, tp_ty); glue::lazily_emit_all_tydesc_glue(ccx, static_ti); // FIXME (#3730): ideally this shouldn't need a cast, // but there's a circularity between translating rust types to llvm // types and having a tydesc type available. So I can't directly access // the llvm type of intrinsic::TyDesc struct. let userland_tydesc_ty = type_of::type_of(ccx, output_type); let td = PointerCast(bcx, static_ti.tydesc, userland_tydesc_ty); Ret(bcx, td); } "type_id" => { let hash = ty::hash_crate_independent(ccx.tcx, substs.tys[0], ccx.link_meta.crate_hash); // NB: This needs to be kept in lockstep with the TypeId struct in // libstd/unstable/intrinsics.rs let val = C_named_struct(type_of::type_of(ccx, output_type), [C_u64(hash)]); match bcx.fcx.llretptr.get() { Some(ptr) => { Store(bcx, val, ptr); RetVoid(bcx); }, None => Ret(bcx, val) } } "init" => { let tp_ty = substs.tys[0]; let lltp_ty = type_of::type_of(ccx, tp_ty); match bcx.fcx.llretptr.get() { Some(ptr) => { Store(bcx, C_null(lltp_ty), ptr); RetVoid(bcx); } None if ty::type_is_nil(tp_ty) => RetVoid(bcx), None => Ret(bcx, C_null(lltp_ty)), } } "uninit" => { // Do nothing, this is effectively a no-op let retty = substs.tys[0]; if type_is_immediate(ccx, retty) && !ty::type_is_nil(retty) { unsafe { Ret(bcx, lib::llvm::llvm::LLVMGetUndef(type_of(ccx, retty).to_ref())); } } else { RetVoid(bcx) } } "forget" => { RetVoid(bcx); } "transmute" => { let (in_type, out_type) = (substs.tys[0], substs.tys[1]); let llintype = type_of::type_of(ccx, in_type); let llouttype = type_of::type_of(ccx, out_type); let in_type_size = machine::llbitsize_of_real(ccx, llintype); let out_type_size = machine::llbitsize_of_real(ccx, llouttype); if in_type_size != out_type_size { let sp = match ccx.tcx.items.get_copy(&ref_id.unwrap()) { ast_map::node_expr(e) => e.span, _ => fail!("transmute has non-expr arg"), }; let pluralize = |n| if 1u == n { "" } else { "s" }; ccx.sess.span_fatal(sp, format!("transmute called on types with \ different sizes: {} ({} bit{}) to \ {} ({} bit{})", ty_to_str(ccx.tcx, in_type), in_type_size, pluralize(in_type_size), ty_to_str(ccx.tcx, out_type), out_type_size, pluralize(out_type_size))); } if !ty::type_is_voidish(ccx.tcx, out_type) { let llsrcval = get_param(decl, first_real_arg); if type_is_immediate(ccx, in_type) { match fcx.llretptr.get() { Some(llretptr) => { Store(bcx, llsrcval, PointerCast(bcx, llretptr, llintype.ptr_to())); RetVoid(bcx); } None => match (llintype.kind(), llouttype.kind()) { (Pointer, other) | (other, Pointer) if other != Pointer => { let tmp = Alloca(bcx, llouttype, ""); Store(bcx, llsrcval, PointerCast(bcx, tmp, llintype.ptr_to())); Ret(bcx, Load(bcx, tmp)); } (Array, _) | (_, Array) | (Struct, _) | (_, Struct) => { let tmp = Alloca(bcx, llouttype, ""); Store(bcx, llsrcval, PointerCast(bcx, tmp, llintype.ptr_to())); Ret(bcx, Load(bcx, tmp)); } _ => { let llbitcast = BitCast(bcx, llsrcval, llouttype); Ret(bcx, llbitcast) } } } } else if type_is_immediate(ccx, out_type) { let llsrcptr = PointerCast(bcx, llsrcval, llouttype.ptr_to()); let ll_load = Load(bcx, llsrcptr); Ret(bcx, ll_load); } else { // NB: Do not use a Load and Store here. This causes massive // code bloat when `transmute` is used on large structural // types. let lldestptr = fcx.llretptr.get().unwrap(); let lldestptr = PointerCast(bcx, lldestptr, Type::i8p()); let llsrcptr = PointerCast(bcx, llsrcval, Type::i8p()); let llsize = llsize_of(ccx, llintype); call_memcpy(bcx, lldestptr, llsrcptr, llsize, 1); RetVoid(bcx); }; } else { RetVoid(bcx); } } "needs_drop" => { let tp_ty = substs.tys[0]; Ret(bcx, C_bool(ty::type_needs_drop(ccx.tcx, tp_ty))); } "owns_managed" => { let tp_ty = substs.tys[0]; Ret(bcx, C_bool(ty::type_contents(ccx.tcx, tp_ty).owns_managed())); } "visit_tydesc" => { let td = get_param(decl, first_real_arg); let visitor = get_param(decl, first_real_arg + 1u); let td = PointerCast(bcx, td, ccx.tydesc_type.ptr_to()); glue::call_tydesc_glue_full(bcx, visitor, td, abi::tydesc_field_visit_glue, None); RetVoid(bcx); } "morestack_addr" => { // XXX This is a hack to grab the address of this particular // native function. There should be a general in-language // way to do this let llfty = type_of_rust_fn(bcx.ccx(), [], ty::mk_nil()); let morestack_addr = decl_cdecl_fn( bcx.ccx().llmod, "__morestack", llfty); let morestack_addr = PointerCast(bcx, morestack_addr, Type::nil().ptr_to()); Ret(bcx, morestack_addr); } "offset" => { let ptr = get_param(decl, first_real_arg); let offset = get_param(decl, first_real_arg + 1); let lladdr = InBoundsGEP(bcx, ptr, [offset]); Ret(bcx, lladdr); } "copy_nonoverlapping_memory" => copy_intrinsic(bcx, false, substs.tys[0]), "copy_memory" => copy_intrinsic(bcx, true, substs.tys[0]), "set_memory" => memset_intrinsic(bcx, substs.tys[0]), "sqrtf32" => simple_llvm_intrinsic(bcx, "llvm.sqrt.f32", 1), "sqrtf64" => simple_llvm_intrinsic(bcx, "llvm.sqrt.f64", 1), "powif32" => simple_llvm_intrinsic(bcx, "llvm.powi.f32", 2), "powif64" => simple_llvm_intrinsic(bcx, "llvm.powi.f64", 2), "sinf32" => simple_llvm_intrinsic(bcx, "llvm.sin.f32", 1), "sinf64" => simple_llvm_intrinsic(bcx, "llvm.sin.f64", 1), "cosf32" => simple_llvm_intrinsic(bcx, "llvm.cos.f32", 1), "cosf64" => simple_llvm_intrinsic(bcx, "llvm.cos.f64", 1), "powf32" => simple_llvm_intrinsic(bcx, "llvm.pow.f32", 2), "powf64" => simple_llvm_intrinsic(bcx, "llvm.pow.f64", 2), "expf32" => simple_llvm_intrinsic(bcx, "llvm.exp.f32", 1), "expf64" => simple_llvm_intrinsic(bcx, "llvm.exp.f64", 1), "exp2f32" => simple_llvm_intrinsic(bcx, "llvm.exp2.f32", 1), "exp2f64" => simple_llvm_intrinsic(bcx, "llvm.exp2.f64", 1), "logf32" => simple_llvm_intrinsic(bcx, "llvm.log.f32", 1), "logf64" => simple_llvm_intrinsic(bcx, "llvm.log.f64", 1), "log10f32" => simple_llvm_intrinsic(bcx, "llvm.log10.f32", 1), "log10f64" => simple_llvm_intrinsic(bcx, "llvm.log10.f64", 1), "log2f32" => simple_llvm_intrinsic(bcx, "llvm.log2.f32", 1), "log2f64" => simple_llvm_intrinsic(bcx, "llvm.log2.f64", 1), "fmaf32" => simple_llvm_intrinsic(bcx, "llvm.fma.f32", 3), "fmaf64" => simple_llvm_intrinsic(bcx, "llvm.fma.f64", 3), "fabsf32" => simple_llvm_intrinsic(bcx, "llvm.fabs.f32", 1), "fabsf64" => simple_llvm_intrinsic(bcx, "llvm.fabs.f64", 1), "copysignf32" => simple_llvm_intrinsic(bcx, "llvm.copysign.f32", 2), "copysignf64" => simple_llvm_intrinsic(bcx, "llvm.copysign.f64", 2), "floorf32" => simple_llvm_intrinsic(bcx, "llvm.floor.f32", 1), "floorf64" => simple_llvm_intrinsic(bcx, "llvm.floor.f64", 1), "ceilf32" => simple_llvm_intrinsic(bcx, "llvm.ceil.f32", 1), "ceilf64" => simple_llvm_intrinsic(bcx, "llvm.ceil.f64", 1), "truncf32" => simple_llvm_intrinsic(bcx, "llvm.trunc.f32", 1), "truncf64" => simple_llvm_intrinsic(bcx, "llvm.trunc.f64", 1), "rintf32" => simple_llvm_intrinsic(bcx, "llvm.rint.f32", 1), "rintf64" => simple_llvm_intrinsic(bcx, "llvm.rint.f64", 1), "nearbyintf32" => simple_llvm_intrinsic(bcx, "llvm.nearbyint.f32", 1), "nearbyintf64" => simple_llvm_intrinsic(bcx, "llvm.nearbyint.f64", 1), "roundf32" => simple_llvm_intrinsic(bcx, "llvm.round.f32", 1), "roundf64" => simple_llvm_intrinsic(bcx, "llvm.round.f64", 1), "ctpop8" => simple_llvm_intrinsic(bcx, "llvm.ctpop.i8", 1), "ctpop16" => simple_llvm_intrinsic(bcx, "llvm.ctpop.i16", 1), "ctpop32" => simple_llvm_intrinsic(bcx, "llvm.ctpop.i32", 1), "ctpop64" => simple_llvm_intrinsic(bcx, "llvm.ctpop.i64", 1), "ctlz8" => count_zeros_intrinsic(bcx, "llvm.ctlz.i8"), "ctlz16" => count_zeros_intrinsic(bcx, "llvm.ctlz.i16"), "ctlz32" => count_zeros_intrinsic(bcx, "llvm.ctlz.i32"), "ctlz64" => count_zeros_intrinsic(bcx, "llvm.ctlz.i64"), "cttz8" => count_zeros_intrinsic(bcx, "llvm.cttz.i8"), "cttz16" => count_zeros_intrinsic(bcx, "llvm.cttz.i16"), "cttz32" => count_zeros_intrinsic(bcx, "llvm.cttz.i32"), "cttz64" => count_zeros_intrinsic(bcx, "llvm.cttz.i64"), "bswap16" => simple_llvm_intrinsic(bcx, "llvm.bswap.i16", 1), "bswap32" => simple_llvm_intrinsic(bcx, "llvm.bswap.i32", 1), "bswap64" => simple_llvm_intrinsic(bcx, "llvm.bswap.i64", 1), "i8_add_with_overflow" => with_overflow_instrinsic(bcx, "llvm.sadd.with.overflow.i8", output_type), "i16_add_with_overflow" => with_overflow_instrinsic(bcx, "llvm.sadd.with.overflow.i16", output_type), "i32_add_with_overflow" => with_overflow_instrinsic(bcx, "llvm.sadd.with.overflow.i32", output_type), "i64_add_with_overflow" => with_overflow_instrinsic(bcx, "llvm.sadd.with.overflow.i64", output_type), "u8_add_with_overflow" => with_overflow_instrinsic(bcx, "llvm.uadd.with.overflow.i8", output_type), "u16_add_with_overflow" => with_overflow_instrinsic(bcx, "llvm.uadd.with.overflow.i16", output_type), "u32_add_with_overflow" => with_overflow_instrinsic(bcx, "llvm.uadd.with.overflow.i32", output_type), "u64_add_with_overflow" => with_overflow_instrinsic(bcx, "llvm.uadd.with.overflow.i64", output_type), "i8_sub_with_overflow" => with_overflow_instrinsic(bcx, "llvm.ssub.with.overflow.i8", output_type), "i16_sub_with_overflow" => with_overflow_instrinsic(bcx, "llvm.ssub.with.overflow.i16", output_type), "i32_sub_with_overflow" => with_overflow_instrinsic(bcx, "llvm.ssub.with.overflow.i32", output_type), "i64_sub_with_overflow" => with_overflow_instrinsic(bcx, "llvm.ssub.with.overflow.i64", output_type), "u8_sub_with_overflow" => with_overflow_instrinsic(bcx, "llvm.usub.with.overflow.i8", output_type), "u16_sub_with_overflow" => with_overflow_instrinsic(bcx, "llvm.usub.with.overflow.i16", output_type), "u32_sub_with_overflow" => with_overflow_instrinsic(bcx, "llvm.usub.with.overflow.i32", output_type), "u64_sub_with_overflow" => with_overflow_instrinsic(bcx, "llvm.usub.with.overflow.i64", output_type), "i8_mul_with_overflow" => with_overflow_instrinsic(bcx, "llvm.smul.with.overflow.i8", output_type), "i16_mul_with_overflow" => with_overflow_instrinsic(bcx, "llvm.smul.with.overflow.i16", output_type), "i32_mul_with_overflow" => with_overflow_instrinsic(bcx, "llvm.smul.with.overflow.i32", output_type), "i64_mul_with_overflow" => with_overflow_instrinsic(bcx, "llvm.smul.with.overflow.i64", output_type), "u8_mul_with_overflow" => with_overflow_instrinsic(bcx, "llvm.umul.with.overflow.i8", output_type), "u16_mul_with_overflow" => with_overflow_instrinsic(bcx, "llvm.umul.with.overflow.i16", output_type), "u32_mul_with_overflow" => with_overflow_instrinsic(bcx, "llvm.umul.with.overflow.i32", output_type), "u64_mul_with_overflow" => with_overflow_instrinsic(bcx, "llvm.umul.with.overflow.i64", output_type), _ => { // Could we make this an enum rather than a string? does it get // checked earlier? ccx.sess.span_bug(item.span, "unknown intrinsic"); } } fcx.cleanup(); }