// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use ast::*; use ast; use ast_util; use codemap; use codemap::Span; use opt_vec; use parse::token; use print::pprust; use visit::Visitor; use visit; use std::cell::Cell; use std::cmp; use std::u32; use std::vec::Vec; pub fn path_name_i(idents: &[Ident]) -> ~str { // FIXME: Bad copies (#2543 -- same for everything else that says "bad") idents.map(|i| { token::get_ident(*i).get().to_str() }).connect("::") } // totally scary function: ignores all but the last element, should have // a different name pub fn path_to_ident(path: &Path) -> Ident { path.segments.last().unwrap().identifier } pub fn local_def(id: NodeId) -> DefId { ast::DefId { krate: LOCAL_CRATE, node: id } } pub fn is_local(did: ast::DefId) -> bool { did.krate == LOCAL_CRATE } pub fn stmt_id(s: &Stmt) -> NodeId { match s.node { StmtDecl(_, id) => id, StmtExpr(_, id) => id, StmtSemi(_, id) => id, StmtMac(..) => fail!("attempted to analyze unexpanded stmt") } } pub fn variant_def_ids(d: Def) -> Option<(DefId, DefId)> { match d { DefVariant(enum_id, var_id, _) => { Some((enum_id, var_id)) } _ => None } } pub fn def_id_of_def(d: Def) -> DefId { match d { DefFn(id, _) | DefStaticMethod(id, _, _) | DefMod(id) | DefForeignMod(id) | DefStatic(id, _) | DefVariant(_, id, _) | DefTy(id) | DefTyParam(id, _) | DefUse(id) | DefStruct(id) | DefTrait(id) | DefMethod(id, _) => { id } DefArg(id, _) | DefLocal(id, _) | DefSelfTy(id) | DefUpvar(id, _, _, _) | DefBinding(id, _) | DefRegion(id) | DefTyParamBinder(id) | DefLabel(id) => { local_def(id) } DefPrimTy(_) => fail!() } } pub fn binop_to_str(op: BinOp) -> &'static str { match op { BiAdd => "+", BiSub => "-", BiMul => "*", BiDiv => "/", BiRem => "%", BiAnd => "&&", BiOr => "||", BiBitXor => "^", BiBitAnd => "&", BiBitOr => "|", BiShl => "<<", BiShr => ">>", BiEq => "==", BiLt => "<", BiLe => "<=", BiNe => "!=", BiGe => ">=", BiGt => ">" } } pub fn lazy_binop(b: BinOp) -> bool { match b { BiAnd => true, BiOr => true, _ => false } } pub fn is_shift_binop(b: BinOp) -> bool { match b { BiShl => true, BiShr => true, _ => false } } pub fn unop_to_str(op: UnOp) -> &'static str { match op { UnBox => "@", UnUniq => "~", UnDeref => "*", UnNot => "!", UnNeg => "-", } } pub fn is_path(e: @Expr) -> bool { return match e.node { ExprPath(_) => true, _ => false }; } pub fn int_ty_to_str(t: IntTy) -> ~str { match t { TyI => ~"", TyI8 => ~"i8", TyI16 => ~"i16", TyI32 => ~"i32", TyI64 => ~"i64" } } pub fn int_ty_max(t: IntTy) -> u64 { match t { TyI8 => 0x80u64, TyI16 => 0x8000u64, TyI | TyI32 => 0x80000000u64, // actually ni about TyI TyI64 => 0x8000000000000000u64 } } pub fn uint_ty_to_str(t: UintTy) -> ~str { match t { TyU => ~"u", TyU8 => ~"u8", TyU16 => ~"u16", TyU32 => ~"u32", TyU64 => ~"u64" } } pub fn uint_ty_max(t: UintTy) -> u64 { match t { TyU8 => 0xffu64, TyU16 => 0xffffu64, TyU | TyU32 => 0xffffffffu64, // actually ni about TyU TyU64 => 0xffffffffffffffffu64 } } pub fn float_ty_to_str(t: FloatTy) -> ~str { match t { TyF32 => ~"f32", TyF64 => ~"f64" } } pub fn is_call_expr(e: @Expr) -> bool { match e.node { ExprCall(..) => true, _ => false } } pub fn block_from_expr(e: @Expr) -> P { P(Block { view_items: Vec::new(), stmts: Vec::new(), expr: Some(e), id: e.id, rules: DefaultBlock, span: e.span }) } pub fn ident_to_path(s: Span, identifier: Ident) -> Path { ast::Path { span: s, global: false, segments: vec!( ast::PathSegment { identifier: identifier, lifetimes: Vec::new(), types: opt_vec::Empty, } ), } } pub fn ident_to_pat(id: NodeId, s: Span, i: Ident) -> @Pat { @ast::Pat { id: id, node: PatIdent(BindByValue(MutImmutable), ident_to_path(s, i), None), span: s } } pub fn name_to_dummy_lifetime(name: Name) -> Lifetime { Lifetime { id: DUMMY_NODE_ID, span: codemap::DUMMY_SP, name: name } } pub fn is_unguarded(a: &Arm) -> bool { match a.guard { None => true, _ => false } } pub fn unguarded_pat(a: &Arm) -> Option > { if is_unguarded(a) { Some(/* FIXME (#2543) */ a.pats.clone()) } else { None } } /// Generate a "pretty" name for an `impl` from its type and trait. /// This is designed so that symbols of `impl`'d methods give some /// hint of where they came from, (previously they would all just be /// listed as `__extensions__::method_name::hash`, with no indication /// of the type). pub fn impl_pretty_name(trait_ref: &Option, ty: &Ty) -> Ident { let mut pretty = pprust::ty_to_str(ty); match *trait_ref { Some(ref trait_ref) => { pretty.push_char('.'); pretty.push_str(pprust::path_to_str(&trait_ref.path)); } None => {} } token::gensym_ident(pretty) } pub fn public_methods(ms: Vec<@Method> ) -> Vec<@Method> { ms.move_iter().filter(|m| { match m.vis { Public => true, _ => false } }).collect() } // extract a TypeMethod from a TraitMethod. if the TraitMethod is // a default, pull out the useful fields to make a TypeMethod pub fn trait_method_to_ty_method(method: &TraitMethod) -> TypeMethod { match *method { Required(ref m) => (*m).clone(), Provided(ref m) => { TypeMethod { ident: m.ident, attrs: m.attrs.clone(), purity: m.purity, decl: m.decl, generics: m.generics.clone(), explicit_self: m.explicit_self, id: m.id, span: m.span, } } } } pub fn split_trait_methods(trait_methods: &[TraitMethod]) -> (Vec , Vec<@Method> ) { let mut reqd = Vec::new(); let mut provd = Vec::new(); for trt_method in trait_methods.iter() { match *trt_method { Required(ref tm) => reqd.push((*tm).clone()), Provided(m) => provd.push(m) } }; (reqd, provd) } pub fn struct_field_visibility(field: ast::StructField) -> Visibility { match field.node.kind { ast::NamedField(_, visibility) => visibility, ast::UnnamedField => ast::Public } } /// Maps a binary operator to its precedence pub fn operator_prec(op: ast::BinOp) -> uint { match op { // 'as' sits here with 12 BiMul | BiDiv | BiRem => 11u, BiAdd | BiSub => 10u, BiShl | BiShr => 9u, BiBitAnd => 8u, BiBitXor => 7u, BiBitOr => 6u, BiLt | BiLe | BiGe | BiGt => 4u, BiEq | BiNe => 3u, BiAnd => 2u, BiOr => 1u } } /// Precedence of the `as` operator, which is a binary operator /// not appearing in the prior table. pub static as_prec: uint = 12u; pub fn empty_generics() -> Generics { Generics {lifetimes: Vec::new(), ty_params: opt_vec::Empty} } // ______________________________________________________________________ // Enumerating the IDs which appear in an AST #[deriving(Encodable, Decodable)] pub struct IdRange { min: NodeId, max: NodeId, } impl IdRange { pub fn max() -> IdRange { IdRange { min: u32::MAX, max: u32::MIN, } } pub fn empty(&self) -> bool { self.min >= self.max } pub fn add(&mut self, id: NodeId) { self.min = cmp::min(self.min, id); self.max = cmp::max(self.max, id + 1); } } pub trait IdVisitingOperation { fn visit_id(&self, node_id: NodeId); } pub struct IdVisitor<'a, O> { operation: &'a O, pass_through_items: bool, visited_outermost: bool, } impl<'a, O: IdVisitingOperation> IdVisitor<'a, O> { fn visit_generics_helper(&self, generics: &Generics) { for type_parameter in generics.ty_params.iter() { self.operation.visit_id(type_parameter.id) } for lifetime in generics.lifetimes.iter() { self.operation.visit_id(lifetime.id) } } } impl<'a, O: IdVisitingOperation> Visitor<()> for IdVisitor<'a, O> { fn visit_mod(&mut self, module: &Mod, _: Span, node_id: NodeId, env: ()) { self.operation.visit_id(node_id); visit::walk_mod(self, module, env) } fn visit_view_item(&mut self, view_item: &ViewItem, env: ()) { match view_item.node { ViewItemExternCrate(_, _, node_id) => { self.operation.visit_id(node_id) } ViewItemUse(ref view_paths) => { for view_path in view_paths.iter() { match view_path.node { ViewPathSimple(_, _, node_id) | ViewPathGlob(_, node_id) => { self.operation.visit_id(node_id) } ViewPathList(_, ref paths, node_id) => { self.operation.visit_id(node_id); for path in paths.iter() { self.operation.visit_id(path.node.id) } } } } } } visit::walk_view_item(self, view_item, env) } fn visit_foreign_item(&mut self, foreign_item: &ForeignItem, env: ()) { self.operation.visit_id(foreign_item.id); visit::walk_foreign_item(self, foreign_item, env) } fn visit_item(&mut self, item: &Item, env: ()) { if !self.pass_through_items { if self.visited_outermost { return } else { self.visited_outermost = true } } self.operation.visit_id(item.id); match item.node { ItemEnum(ref enum_definition, _) => { for variant in enum_definition.variants.iter() { self.operation.visit_id(variant.node.id) } } _ => {} } visit::walk_item(self, item, env); self.visited_outermost = false } fn visit_local(&mut self, local: &Local, env: ()) { self.operation.visit_id(local.id); visit::walk_local(self, local, env) } fn visit_block(&mut self, block: &Block, env: ()) { self.operation.visit_id(block.id); visit::walk_block(self, block, env) } fn visit_stmt(&mut self, statement: &Stmt, env: ()) { self.operation.visit_id(ast_util::stmt_id(statement)); visit::walk_stmt(self, statement, env) } fn visit_pat(&mut self, pattern: &Pat, env: ()) { self.operation.visit_id(pattern.id); visit::walk_pat(self, pattern, env) } fn visit_expr(&mut self, expression: &Expr, env: ()) { self.operation.visit_id(expression.id); visit::walk_expr(self, expression, env) } fn visit_ty(&mut self, typ: &Ty, env: ()) { self.operation.visit_id(typ.id); match typ.node { TyPath(_, _, id) => self.operation.visit_id(id), _ => {} } visit::walk_ty(self, typ, env) } fn visit_generics(&mut self, generics: &Generics, env: ()) { self.visit_generics_helper(generics); visit::walk_generics(self, generics, env) } fn visit_fn(&mut self, function_kind: &visit::FnKind, function_declaration: &FnDecl, block: &Block, span: Span, node_id: NodeId, env: ()) { if !self.pass_through_items { match *function_kind { visit::FkMethod(..) if self.visited_outermost => return, visit::FkMethod(..) => self.visited_outermost = true, _ => {} } } self.operation.visit_id(node_id); match *function_kind { visit::FkItemFn(_, generics, _, _) | visit::FkMethod(_, generics, _) => { self.visit_generics_helper(generics) } visit::FkFnBlock => {} } for argument in function_declaration.inputs.iter() { self.operation.visit_id(argument.id) } visit::walk_fn(self, function_kind, function_declaration, block, span, node_id, env); if !self.pass_through_items { match *function_kind { visit::FkMethod(..) => self.visited_outermost = false, _ => {} } } } fn visit_struct_field(&mut self, struct_field: &StructField, env: ()) { self.operation.visit_id(struct_field.node.id); visit::walk_struct_field(self, struct_field, env) } fn visit_struct_def(&mut self, struct_def: &StructDef, ident: ast::Ident, generics: &ast::Generics, id: NodeId, _: ()) { self.operation.visit_id(id); struct_def.ctor_id.map(|ctor_id| self.operation.visit_id(ctor_id)); visit::walk_struct_def(self, struct_def, ident, generics, id, ()); } fn visit_trait_method(&mut self, tm: &ast::TraitMethod, _: ()) { match *tm { ast::Required(ref m) => self.operation.visit_id(m.id), ast::Provided(ref m) => self.operation.visit_id(m.id), } visit::walk_trait_method(self, tm, ()); } } pub fn visit_ids_for_inlined_item(item: &InlinedItem, operation: &O) { let mut id_visitor = IdVisitor { operation: operation, pass_through_items: true, visited_outermost: false, }; visit::walk_inlined_item(&mut id_visitor, item, ()); } struct IdRangeComputingVisitor { result: Cell, } impl IdVisitingOperation for IdRangeComputingVisitor { fn visit_id(&self, id: NodeId) { let mut id_range = self.result.get(); id_range.add(id); self.result.set(id_range) } } pub fn compute_id_range_for_inlined_item(item: &InlinedItem) -> IdRange { let visitor = IdRangeComputingVisitor { result: Cell::new(IdRange::max()) }; visit_ids_for_inlined_item(item, &visitor); visitor.result.get() } pub fn is_item_impl(item: @ast::Item) -> bool { match item.node { ItemImpl(..) => true, _ => false } } pub fn walk_pat(pat: &Pat, it: |&Pat| -> bool) -> bool { if !it(pat) { return false; } match pat.node { PatIdent(_, _, Some(p)) => walk_pat(p, it), PatStruct(_, ref fields, _) => { fields.iter().advance(|f| walk_pat(f.pat, |p| it(p))) } PatEnum(_, Some(ref s)) | PatTup(ref s) => { s.iter().advance(|&p| walk_pat(p, |p| it(p))) } PatUniq(s) | PatRegion(s) => { walk_pat(s, it) } PatVec(ref before, ref slice, ref after) => { before.iter().advance(|&p| walk_pat(p, |p| it(p))) && slice.iter().advance(|&p| walk_pat(p, |p| it(p))) && after.iter().advance(|&p| walk_pat(p, |p| it(p))) } PatWild | PatWildMulti | PatLit(_) | PatRange(_, _) | PatIdent(_, _, _) | PatEnum(_, _) => { true } } } pub trait EachViewItem { fn each_view_item(&self, f: |&ast::ViewItem| -> bool) -> bool; } struct EachViewItemData<'a> { callback: 'a |&ast::ViewItem| -> bool, } impl<'a> Visitor<()> for EachViewItemData<'a> { fn visit_view_item(&mut self, view_item: &ast::ViewItem, _: ()) { let _ = (self.callback)(view_item); } } impl EachViewItem for ast::Crate { fn each_view_item(&self, f: |&ast::ViewItem| -> bool) -> bool { let mut visit = EachViewItemData { callback: f, }; visit::walk_crate(&mut visit, self, ()); true } } pub fn view_path_id(p: &ViewPath) -> NodeId { match p.node { ViewPathSimple(_, _, id) | ViewPathGlob(_, id) | ViewPathList(_, _, id) => id } } /// Returns true if the given struct def is tuple-like; i.e. that its fields /// are unnamed. pub fn struct_def_is_tuple_like(struct_def: &ast::StructDef) -> bool { struct_def.ctor_id.is_some() } /// Returns true if the given pattern consists solely of an identifier /// and false otherwise. pub fn pat_is_ident(pat: @ast::Pat) -> bool { match pat.node { ast::PatIdent(..) => true, _ => false, } } // are two paths equal when compared unhygienically? // since I'm using this to replace ==, it seems appropriate // to compare the span, global, etc. fields as well. pub fn path_name_eq(a : &ast::Path, b : &ast::Path) -> bool { (a.span == b.span) && (a.global == b.global) && (segments_name_eq(a.segments.as_slice(), b.segments.as_slice())) } // are two arrays of segments equal when compared unhygienically? pub fn segments_name_eq(a : &[ast::PathSegment], b : &[ast::PathSegment]) -> bool { if a.len() != b.len() { false } else { for (idx,seg) in a.iter().enumerate() { if (seg.identifier.name != b[idx].identifier.name) // FIXME #7743: ident -> name problems in lifetime comparison? || (seg.lifetimes != b[idx].lifetimes) // can types contain idents? || (seg.types != b[idx].types) { return false; } } true } } // Returns true if this literal is a string and false otherwise. pub fn lit_is_str(lit: @Lit) -> bool { match lit.node { LitStr(..) => true, _ => false, } } pub fn get_inner_tys(ty: P) -> Vec> { match ty.node { ast::TyRptr(_, mut_ty) | ast::TyPtr(mut_ty) => { vec!(mut_ty.ty) } ast::TyBox(ty) | ast::TyVec(ty) | ast::TyUniq(ty) | ast::TyFixedLengthVec(ty, _) => vec!(ty), ast::TyTup(ref tys) => tys.clone(), _ => Vec::new() } } #[cfg(test)] mod test { use ast::*; use super::*; use opt_vec; use std::vec::Vec; fn ident_to_segment(id : &Ident) -> PathSegment { PathSegment {identifier:id.clone(), lifetimes: Vec::new(), types: opt_vec::Empty} } #[test] fn idents_name_eq_test() { assert!(segments_name_eq([Ident{name:3,ctxt:4}, Ident{name:78,ctxt:82}].map(ident_to_segment), [Ident{name:3,ctxt:104}, Ident{name:78,ctxt:182}].map(ident_to_segment))); assert!(!segments_name_eq([Ident{name:3,ctxt:4}, Ident{name:78,ctxt:82}].map(ident_to_segment), [Ident{name:3,ctxt:104}, Ident{name:77,ctxt:182}].map(ident_to_segment))); } }