// Copyright 2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A different sort of visitor for walking fn bodies. Unlike the //! normal visitor, which just walks the entire body in one shot, the //! `ExprUseVisitor` determines how expressions are being used. pub use self::MutateMode::*; pub use self::LoanCause::*; pub use self::ConsumeMode::*; pub use self::MoveReason::*; pub use self::MatchMode::*; use self::TrackMatchMode::*; use self::OverloadedCallType::*; use middle::{def, pat_util}; use middle::def_id::{DefId}; use middle::infer; use middle::mem_categorization as mc; use middle::ty; use middle::ty::adjustment; use rustc_front::hir; use syntax::ast; use syntax::ptr::P; use syntax::codemap::Span; /////////////////////////////////////////////////////////////////////////// // The Delegate trait /// This trait defines the callbacks you can expect to receive when /// employing the ExprUseVisitor. pub trait Delegate<'tcx> { // The value found at `cmt` is either copied or moved, depending // on mode. fn consume(&mut self, consume_id: ast::NodeId, consume_span: Span, cmt: mc::cmt<'tcx>, mode: ConsumeMode); // The value found at `cmt` has been determined to match the // pattern binding `matched_pat`, and its subparts are being // copied or moved depending on `mode`. Note that `matched_pat` // is called on all variant/structs in the pattern (i.e., the // interior nodes of the pattern's tree structure) while // consume_pat is called on the binding identifiers in the pattern // (which are leaves of the pattern's tree structure). // // Note that variants/structs and identifiers are disjoint; thus // `matched_pat` and `consume_pat` are never both called on the // same input pattern structure (though of `consume_pat` can be // called on a subpart of an input passed to `matched_pat). fn matched_pat(&mut self, matched_pat: &hir::Pat, cmt: mc::cmt<'tcx>, mode: MatchMode); // The value found at `cmt` is either copied or moved via the // pattern binding `consume_pat`, depending on mode. fn consume_pat(&mut self, consume_pat: &hir::Pat, cmt: mc::cmt<'tcx>, mode: ConsumeMode); // The value found at `borrow` is being borrowed at the point // `borrow_id` for the region `loan_region` with kind `bk`. fn borrow(&mut self, borrow_id: ast::NodeId, borrow_span: Span, cmt: mc::cmt<'tcx>, loan_region: ty::Region, bk: ty::BorrowKind, loan_cause: LoanCause); // The local variable `id` is declared but not initialized. fn decl_without_init(&mut self, id: ast::NodeId, span: Span); // The path at `cmt` is being assigned to. fn mutate(&mut self, assignment_id: ast::NodeId, assignment_span: Span, assignee_cmt: mc::cmt<'tcx>, mode: MutateMode); } #[derive(Copy, Clone, PartialEq, Debug)] pub enum LoanCause { ClosureCapture(Span), AddrOf, AutoRef, AutoUnsafe, RefBinding, OverloadedOperator, ClosureInvocation, ForLoop, MatchDiscriminant } #[derive(Copy, Clone, PartialEq, Debug)] pub enum ConsumeMode { Copy, // reference to x where x has a type that copies Move(MoveReason), // reference to x where x has a type that moves } #[derive(Copy, Clone, PartialEq, Debug)] pub enum MoveReason { DirectRefMove, PatBindingMove, CaptureMove, } #[derive(Copy, Clone, PartialEq, Debug)] pub enum MatchMode { NonBindingMatch, BorrowingMatch, CopyingMatch, MovingMatch, } #[derive(Copy, Clone, PartialEq, Debug)] enum TrackMatchMode { Unknown, Definite(MatchMode), Conflicting, } impl TrackMatchMode { // Builds up the whole match mode for a pattern from its constituent // parts. The lattice looks like this: // // Conflicting // / \ // / \ // Borrowing Moving // \ / // \ / // Copying // | // NonBinding // | // Unknown // // examples: // // * `(_, some_int)` pattern is Copying, since // NonBinding + Copying => Copying // // * `(some_int, some_box)` pattern is Moving, since // Copying + Moving => Moving // // * `(ref x, some_box)` pattern is Conflicting, since // Borrowing + Moving => Conflicting // // Note that the `Unknown` and `Conflicting` states are // represented separately from the other more interesting // `Definite` states, which simplifies logic here somewhat. fn lub(&mut self, mode: MatchMode) { *self = match (*self, mode) { // Note that clause order below is very significant. (Unknown, new) => Definite(new), (Definite(old), new) if old == new => Definite(old), (Definite(old), NonBindingMatch) => Definite(old), (Definite(NonBindingMatch), new) => Definite(new), (Definite(old), CopyingMatch) => Definite(old), (Definite(CopyingMatch), new) => Definite(new), (Definite(_), _) => Conflicting, (Conflicting, _) => *self, }; } fn match_mode(&self) -> MatchMode { match *self { Unknown => NonBindingMatch, Definite(mode) => mode, Conflicting => { // Conservatively return MovingMatch to let the // compiler continue to make progress. MovingMatch } } } } #[derive(Copy, Clone, PartialEq, Debug)] pub enum MutateMode { Init, JustWrite, // x = y WriteAndRead, // x += y } #[derive(Copy, Clone)] enum OverloadedCallType { FnOverloadedCall, FnMutOverloadedCall, FnOnceOverloadedCall, } impl OverloadedCallType { fn from_trait_id(tcx: &ty::ctxt, trait_id: DefId) -> OverloadedCallType { for &(maybe_function_trait, overloaded_call_type) in &[ (tcx.lang_items.fn_once_trait(), FnOnceOverloadedCall), (tcx.lang_items.fn_mut_trait(), FnMutOverloadedCall), (tcx.lang_items.fn_trait(), FnOverloadedCall) ] { match maybe_function_trait { Some(function_trait) if function_trait == trait_id => { return overloaded_call_type } _ => continue, } } tcx.sess.bug("overloaded call didn't map to known function trait") } fn from_method_id(tcx: &ty::ctxt, method_id: DefId) -> OverloadedCallType { let method = tcx.impl_or_trait_item(method_id); OverloadedCallType::from_trait_id(tcx, method.container().id()) } } /////////////////////////////////////////////////////////////////////////// // The ExprUseVisitor type // // This is the code that actually walks the tree. Like // mem_categorization, it requires a TYPER, which is a type that // supplies types from the tree. After type checking is complete, you // can just use the tcx as the typer. // // FIXME(stage0): the :'t here is probably only important for stage0 pub struct ExprUseVisitor<'d, 't, 'a: 't, 'tcx:'a+'d> { typer: &'t infer::InferCtxt<'a, 'tcx>, mc: mc::MemCategorizationContext<'t, 'a, 'tcx>, delegate: &'d mut Delegate<'tcx>, } // If the TYPER results in an error, it's because the type check // failed (or will fail, when the error is uncovered and reported // during writeback). In this case, we just ignore this part of the // code. // // Note that this macro appears similar to try!(), but, unlike try!(), // it does not propagate the error. macro_rules! return_if_err { ($inp: expr) => ( match $inp { Ok(v) => v, Err(()) => { debug!("mc reported err"); return } } ) } /// Whether the elements of an overloaded operation are passed by value or by reference enum PassArgs { ByValue, ByRef, } impl<'d,'t,'a,'tcx> ExprUseVisitor<'d,'t,'a,'tcx> { pub fn new(delegate: &'d mut (Delegate<'tcx>), typer: &'t infer::InferCtxt<'a, 'tcx>) -> ExprUseVisitor<'d,'t,'a,'tcx> where 'tcx:'a+'d { let mc: mc::MemCategorizationContext<'t, 'a, 'tcx> = mc::MemCategorizationContext::new(typer); ExprUseVisitor { typer: typer, mc: mc, delegate: delegate } } pub fn walk_fn(&mut self, decl: &hir::FnDecl, body: &hir::Block) { self.walk_arg_patterns(decl, body); self.walk_block(body); } fn walk_arg_patterns(&mut self, decl: &hir::FnDecl, body: &hir::Block) { for arg in &decl.inputs { let arg_ty = return_if_err!(self.typer.node_ty(arg.pat.id)); let fn_body_scope = self.tcx().region_maps.node_extent(body.id); let arg_cmt = self.mc.cat_rvalue( arg.id, arg.pat.span, ty::ReScope(fn_body_scope), // Args live only as long as the fn body. arg_ty); self.walk_irrefutable_pat(arg_cmt, &*arg.pat); } } fn tcx(&self) -> &'t ty::ctxt<'tcx> { self.typer.tcx } fn delegate_consume(&mut self, consume_id: ast::NodeId, consume_span: Span, cmt: mc::cmt<'tcx>) { debug!("delegate_consume(consume_id={}, cmt={:?})", consume_id, cmt); let mode = copy_or_move(self.typer, &cmt, DirectRefMove); self.delegate.consume(consume_id, consume_span, cmt, mode); } fn consume_exprs(&mut self, exprs: &Vec>) { for expr in exprs { self.consume_expr(&**expr); } } pub fn consume_expr(&mut self, expr: &hir::Expr) { debug!("consume_expr(expr={:?})", expr); let cmt = return_if_err!(self.mc.cat_expr(expr)); self.delegate_consume(expr.id, expr.span, cmt); self.walk_expr(expr); } fn mutate_expr(&mut self, assignment_expr: &hir::Expr, expr: &hir::Expr, mode: MutateMode) { let cmt = return_if_err!(self.mc.cat_expr(expr)); self.delegate.mutate(assignment_expr.id, assignment_expr.span, cmt, mode); self.walk_expr(expr); } fn borrow_expr(&mut self, expr: &hir::Expr, r: ty::Region, bk: ty::BorrowKind, cause: LoanCause) { debug!("borrow_expr(expr={:?}, r={:?}, bk={:?})", expr, r, bk); let cmt = return_if_err!(self.mc.cat_expr(expr)); self.delegate.borrow(expr.id, expr.span, cmt, r, bk, cause); self.walk_expr(expr) } fn select_from_expr(&mut self, expr: &hir::Expr) { self.walk_expr(expr) } pub fn walk_expr(&mut self, expr: &hir::Expr) { debug!("walk_expr(expr={:?})", expr); self.walk_adjustment(expr); match expr.node { hir::ExprPath(..) => { } hir::ExprUnary(hir::UnDeref, ref base) => { // *base if !self.walk_overloaded_operator(expr, &**base, Vec::new(), PassArgs::ByRef) { self.select_from_expr(&**base); } } hir::ExprField(ref base, _) => { // base.f self.select_from_expr(&**base); } hir::ExprTupField(ref base, _) => { // base. self.select_from_expr(&**base); } hir::ExprIndex(ref lhs, ref rhs) => { // lhs[rhs] if !self.walk_overloaded_operator(expr, &**lhs, vec![&**rhs], PassArgs::ByValue) { self.select_from_expr(&**lhs); self.consume_expr(&**rhs); } } hir::ExprRange(ref start, ref end) => { start.as_ref().map(|e| self.consume_expr(&**e)); end.as_ref().map(|e| self.consume_expr(&**e)); } hir::ExprCall(ref callee, ref args) => { // callee(args) self.walk_callee(expr, &**callee); self.consume_exprs(args); } hir::ExprMethodCall(_, _, ref args) => { // callee.m(args) self.consume_exprs(args); } hir::ExprStruct(_, ref fields, ref opt_with) => { self.walk_struct_expr(expr, fields, opt_with); } hir::ExprTup(ref exprs) => { self.consume_exprs(exprs); } hir::ExprIf(ref cond_expr, ref then_blk, ref opt_else_expr) => { self.consume_expr(&**cond_expr); self.walk_block(&**then_blk); if let Some(ref else_expr) = *opt_else_expr { self.consume_expr(&**else_expr); } } hir::ExprMatch(ref discr, ref arms, _) => { let discr_cmt = return_if_err!(self.mc.cat_expr(&**discr)); self.borrow_expr(&**discr, ty::ReEmpty, ty::ImmBorrow, MatchDiscriminant); // treatment of the discriminant is handled while walking the arms. for arm in arms { let mode = self.arm_move_mode(discr_cmt.clone(), arm); let mode = mode.match_mode(); self.walk_arm(discr_cmt.clone(), arm, mode); } } hir::ExprVec(ref exprs) => { self.consume_exprs(exprs); } hir::ExprAddrOf(m, ref base) => { // &base // make sure that the thing we are pointing out stays valid // for the lifetime `scope_r` of the resulting ptr: let expr_ty = return_if_err!(self.typer.node_ty(expr.id)); if let ty::TyRef(&r, _) = expr_ty.sty { let bk = ty::BorrowKind::from_mutbl(m); self.borrow_expr(&**base, r, bk, AddrOf); } } hir::ExprInlineAsm(ref ia) => { for &(_, ref input) in &ia.inputs { self.consume_expr(&**input); } for &(_, ref output, is_rw) in &ia.outputs { self.mutate_expr(expr, &**output, if is_rw { WriteAndRead } else { JustWrite }); } } hir::ExprBreak(..) | hir::ExprAgain(..) | hir::ExprLit(..) => {} hir::ExprLoop(ref blk, _) => { self.walk_block(&**blk); } hir::ExprWhile(ref cond_expr, ref blk, _) => { self.consume_expr(&**cond_expr); self.walk_block(&**blk); } hir::ExprUnary(op, ref lhs) => { let pass_args = if ::rustc_front::util::is_by_value_unop(op) { PassArgs::ByValue } else { PassArgs::ByRef }; if !self.walk_overloaded_operator(expr, &**lhs, Vec::new(), pass_args) { self.consume_expr(&**lhs); } } hir::ExprBinary(op, ref lhs, ref rhs) => { let pass_args = if ::rustc_front::util::is_by_value_binop(op.node) { PassArgs::ByValue } else { PassArgs::ByRef }; if !self.walk_overloaded_operator(expr, &**lhs, vec![&**rhs], pass_args) { self.consume_expr(&**lhs); self.consume_expr(&**rhs); } } hir::ExprBlock(ref blk) => { self.walk_block(&**blk); } hir::ExprRet(ref opt_expr) => { if let Some(ref expr) = *opt_expr { self.consume_expr(&**expr); } } hir::ExprAssign(ref lhs, ref rhs) => { self.mutate_expr(expr, &**lhs, JustWrite); self.consume_expr(&**rhs); } hir::ExprCast(ref base, _) => { self.consume_expr(&**base); } hir::ExprAssignOp(op, ref lhs, ref rhs) => { // NB All our assignment operations take the RHS by value assert!(::rustc_front::util::is_by_value_binop(op.node)); if !self.walk_overloaded_operator(expr, lhs, vec![rhs], PassArgs::ByValue) { self.mutate_expr(expr, &**lhs, WriteAndRead); self.consume_expr(&**rhs); } } hir::ExprRepeat(ref base, ref count) => { self.consume_expr(&**base); self.consume_expr(&**count); } hir::ExprClosure(..) => { self.walk_captures(expr) } hir::ExprBox(ref base) => { self.consume_expr(&**base); } } } fn walk_callee(&mut self, call: &hir::Expr, callee: &hir::Expr) { let callee_ty = return_if_err!(self.typer.expr_ty_adjusted(callee)); debug!("walk_callee: callee={:?} callee_ty={:?}", callee, callee_ty); let call_scope = self.tcx().region_maps.node_extent(call.id); match callee_ty.sty { ty::TyBareFn(..) => { self.consume_expr(callee); } ty::TyError => { } _ => { let overloaded_call_type = match self.typer.node_method_id(ty::MethodCall::expr(call.id)) { Some(method_id) => { OverloadedCallType::from_method_id(self.tcx(), method_id) } None => { self.tcx().sess.span_bug( callee.span, &format!("unexpected callee type {}", callee_ty)) } }; match overloaded_call_type { FnMutOverloadedCall => { self.borrow_expr(callee, ty::ReScope(call_scope), ty::MutBorrow, ClosureInvocation); } FnOverloadedCall => { self.borrow_expr(callee, ty::ReScope(call_scope), ty::ImmBorrow, ClosureInvocation); } FnOnceOverloadedCall => self.consume_expr(callee), } } } } fn walk_stmt(&mut self, stmt: &hir::Stmt) { match stmt.node { hir::StmtDecl(ref decl, _) => { match decl.node { hir::DeclLocal(ref local) => { self.walk_local(&**local); } hir::DeclItem(_) => { // we don't visit nested items in this visitor, // only the fn body we were given. } } } hir::StmtExpr(ref expr, _) | hir::StmtSemi(ref expr, _) => { self.consume_expr(&**expr); } } } fn walk_local(&mut self, local: &hir::Local) { match local.init { None => { let delegate = &mut self.delegate; pat_util::pat_bindings(&self.typer.tcx.def_map, &*local.pat, |_, id, span, _| { delegate.decl_without_init(id, span); }) } Some(ref expr) => { // Variable declarations with // initializers are considered // "assigns", which is handled by // `walk_pat`: self.walk_expr(&**expr); let init_cmt = return_if_err!(self.mc.cat_expr(&**expr)); self.walk_irrefutable_pat(init_cmt, &*local.pat); } } } /// Indicates that the value of `blk` will be consumed, meaning either copied or moved /// depending on its type. fn walk_block(&mut self, blk: &hir::Block) { debug!("walk_block(blk.id={})", blk.id); for stmt in &blk.stmts { self.walk_stmt(&**stmt); } if let Some(ref tail_expr) = blk.expr { self.consume_expr(&**tail_expr); } } fn walk_struct_expr(&mut self, _expr: &hir::Expr, fields: &Vec, opt_with: &Option>) { // Consume the expressions supplying values for each field. for field in fields { self.consume_expr(&*field.expr); } let with_expr = match *opt_with { Some(ref w) => &**w, None => { return; } }; let with_cmt = return_if_err!(self.mc.cat_expr(&*with_expr)); // Select just those fields of the `with` // expression that will actually be used if let ty::TyStruct(def, substs) = with_cmt.ty.sty { // Consume those fields of the with expression that are needed. for with_field in &def.struct_variant().fields { if !contains_field_named(with_field, fields) { let cmt_field = self.mc.cat_field( &*with_expr, with_cmt.clone(), with_field.name, with_field.ty(self.tcx(), substs) ); self.delegate_consume(with_expr.id, with_expr.span, cmt_field); } } } else { // the base expression should always evaluate to a // struct; however, when EUV is run during typeck, it // may not. This will generate an error earlier in typeck, // so we can just ignore it. if !self.tcx().sess.has_errors() { self.tcx().sess.span_bug( with_expr.span, "with expression doesn't evaluate to a struct"); } }; // walk the with expression so that complex expressions // are properly handled. self.walk_expr(with_expr); fn contains_field_named(field: ty::FieldDef, fields: &Vec) -> bool { fields.iter().any( |f| f.name.node == field.name) } } // Invoke the appropriate delegate calls for anything that gets // consumed or borrowed as part of the automatic adjustment // process. fn walk_adjustment(&mut self, expr: &hir::Expr) { let typer = self.typer; //NOTE(@jroesch): mixed RefCell borrow causes crash let adj = typer.adjustments().get(&expr.id).map(|x| x.clone()); if let Some(adjustment) = adj { match adjustment { adjustment::AdjustReifyFnPointer | adjustment::AdjustUnsafeFnPointer => { // Creating a closure/fn-pointer or unsizing consumes // the input and stores it into the resulting rvalue. debug!("walk_adjustment(AdjustReifyFnPointer|AdjustUnsafeFnPointer)"); let cmt_unadjusted = return_if_err!(self.mc.cat_expr_unadjusted(expr)); self.delegate_consume(expr.id, expr.span, cmt_unadjusted); } adjustment::AdjustDerefRef(ref adj) => { self.walk_autoderefref(expr, adj); } } } } /// Autoderefs for overloaded Deref calls in fact reference their receiver. That is, if we have /// `(*x)` where `x` is of type `Rc`, then this in fact is equivalent to `x.deref()`. Since /// `deref()` is declared with `&self`, this is an autoref of `x`. fn walk_autoderefs(&mut self, expr: &hir::Expr, autoderefs: usize) { debug!("walk_autoderefs expr={:?} autoderefs={}", expr, autoderefs); for i in 0..autoderefs { let deref_id = ty::MethodCall::autoderef(expr.id, i as u32); match self.typer.node_method_ty(deref_id) { None => {} Some(method_ty) => { let cmt = return_if_err!(self.mc.cat_expr_autoderefd(expr, i)); // the method call infrastructure should have // replaced all late-bound regions with variables: let self_ty = method_ty.fn_sig().input(0); let self_ty = self.tcx().no_late_bound_regions(&self_ty).unwrap(); let (m, r) = match self_ty.sty { ty::TyRef(r, ref m) => (m.mutbl, r), _ => self.tcx().sess.span_bug(expr.span, &format!("bad overloaded deref type {:?}", method_ty)) }; let bk = ty::BorrowKind::from_mutbl(m); self.delegate.borrow(expr.id, expr.span, cmt, *r, bk, AutoRef); } } } } fn walk_autoderefref(&mut self, expr: &hir::Expr, adj: &adjustment::AutoDerefRef<'tcx>) { debug!("walk_autoderefref expr={:?} adj={:?}", expr, adj); self.walk_autoderefs(expr, adj.autoderefs); let cmt_derefd = return_if_err!(self.mc.cat_expr_autoderefd(expr, adj.autoderefs)); let cmt_refd = self.walk_autoref(expr, cmt_derefd, adj.autoref); if adj.unsize.is_some() { // Unsizing consumes the thin pointer and produces a fat one. self.delegate_consume(expr.id, expr.span, cmt_refd); } } /// Walks the autoref `opt_autoref` applied to the autoderef'd /// `expr`. `cmt_derefd` is the mem-categorized form of `expr` /// after all relevant autoderefs have occurred. Because AutoRefs /// can be recursive, this function is recursive: it first walks /// deeply all the way down the autoref chain, and then processes /// the autorefs on the way out. At each point, it returns the /// `cmt` for the rvalue that will be produced by introduced an /// autoref. fn walk_autoref(&mut self, expr: &hir::Expr, cmt_base: mc::cmt<'tcx>, opt_autoref: Option>) -> mc::cmt<'tcx> { debug!("walk_autoref(expr.id={} cmt_derefd={:?} opt_autoref={:?})", expr.id, cmt_base, opt_autoref); let cmt_base_ty = cmt_base.ty; let autoref = match opt_autoref { Some(ref autoref) => autoref, None => { // No AutoRef. return cmt_base; } }; match *autoref { adjustment::AutoPtr(r, m) => { self.delegate.borrow(expr.id, expr.span, cmt_base, *r, ty::BorrowKind::from_mutbl(m), AutoRef); } adjustment::AutoUnsafe(m) => { debug!("walk_autoref: expr.id={} cmt_base={:?}", expr.id, cmt_base); // Converting from a &T to *T (or &mut T to *mut T) is // treated as borrowing it for the enclosing temporary // scope. let r = ty::ReScope(self.tcx().region_maps.node_extent(expr.id)); self.delegate.borrow(expr.id, expr.span, cmt_base, r, ty::BorrowKind::from_mutbl(m), AutoUnsafe); } } // Construct the categorization for the result of the autoref. // This is always an rvalue, since we are producing a new // (temporary) indirection. let adj_ty = cmt_base_ty.adjust_for_autoref(self.tcx(), opt_autoref); self.mc.cat_rvalue_node(expr.id, expr.span, adj_ty) } // When this returns true, it means that the expression *is* a // method-call (i.e. via the operator-overload). This true result // also implies that walk_overloaded_operator already took care of // recursively processing the input arguments, and thus the caller // should not do so. fn walk_overloaded_operator(&mut self, expr: &hir::Expr, receiver: &hir::Expr, rhs: Vec<&hir::Expr>, pass_args: PassArgs) -> bool { if !self.typer.is_method_call(expr.id) { return false; } match pass_args { PassArgs::ByValue => { self.consume_expr(receiver); for &arg in &rhs { self.consume_expr(arg); } return true; }, PassArgs::ByRef => {}, } self.walk_expr(receiver); // Arguments (but not receivers) to overloaded operator // methods are implicitly autoref'd which sadly does not use // adjustments, so we must hardcode the borrow here. let r = ty::ReScope(self.tcx().region_maps.node_extent(expr.id)); let bk = ty::ImmBorrow; for &arg in &rhs { self.borrow_expr(arg, r, bk, OverloadedOperator); } return true; } fn arm_move_mode(&mut self, discr_cmt: mc::cmt<'tcx>, arm: &hir::Arm) -> TrackMatchMode { let mut mode = Unknown; for pat in &arm.pats { self.determine_pat_move_mode(discr_cmt.clone(), &**pat, &mut mode); } mode } fn walk_arm(&mut self, discr_cmt: mc::cmt<'tcx>, arm: &hir::Arm, mode: MatchMode) { for pat in &arm.pats { self.walk_pat(discr_cmt.clone(), &**pat, mode); } if let Some(ref guard) = arm.guard { self.consume_expr(&**guard); } self.consume_expr(&*arm.body); } /// Walks a pat that occurs in isolation (i.e. top-level of fn /// arg or let binding. *Not* a match arm or nested pat.) fn walk_irrefutable_pat(&mut self, cmt_discr: mc::cmt<'tcx>, pat: &hir::Pat) { let mut mode = Unknown; self.determine_pat_move_mode(cmt_discr.clone(), pat, &mut mode); let mode = mode.match_mode(); self.walk_pat(cmt_discr, pat, mode); } /// Identifies any bindings within `pat` and accumulates within /// `mode` whether the overall pattern/match structure is a move, /// copy, or borrow. fn determine_pat_move_mode(&mut self, cmt_discr: mc::cmt<'tcx>, pat: &hir::Pat, mode: &mut TrackMatchMode) { debug!("determine_pat_move_mode cmt_discr={:?} pat={:?}", cmt_discr, pat); return_if_err!(self.mc.cat_pattern(cmt_discr, pat, |_mc, cmt_pat, pat| { let tcx = self.tcx(); let def_map = &self.tcx().def_map; if pat_util::pat_is_binding(&def_map.borrow(), pat) { match pat.node { hir::PatIdent(hir::BindByRef(_), _, _) => mode.lub(BorrowingMatch), hir::PatIdent(hir::BindByValue(_), _, _) => { match copy_or_move(self.typer, &cmt_pat, PatBindingMove) { Copy => mode.lub(CopyingMatch), Move(_) => mode.lub(MovingMatch), } } _ => { tcx.sess.span_bug( pat.span, "binding pattern not an identifier"); } } } })); } /// The core driver for walking a pattern; `match_mode` must be /// established up front, e.g. via `determine_pat_move_mode` (see /// also `walk_irrefutable_pat` for patterns that stand alone). fn walk_pat(&mut self, cmt_discr: mc::cmt<'tcx>, pat: &hir::Pat, match_mode: MatchMode) { debug!("walk_pat cmt_discr={:?} pat={:?}", cmt_discr, pat); let mc = &self.mc; let typer = self.typer; let def_map = &self.tcx().def_map; let delegate = &mut self.delegate; return_if_err!(mc.cat_pattern(cmt_discr.clone(), pat, |mc, cmt_pat, pat| { if pat_util::pat_is_binding(&def_map.borrow(), pat) { let tcx = typer.tcx; debug!("binding cmt_pat={:?} pat={:?} match_mode={:?}", cmt_pat, pat, match_mode); // pat_ty: the type of the binding being produced. let pat_ty = return_if_err!(typer.node_ty(pat.id)); // Each match binding is effectively an assignment to the // binding being produced. let def = def_map.borrow().get(&pat.id).unwrap().full_def(); match mc.cat_def(pat.id, pat.span, pat_ty, def) { Ok(binding_cmt) => { delegate.mutate(pat.id, pat.span, binding_cmt, Init); } Err(_) => { } } // It is also a borrow or copy/move of the value being matched. match pat.node { hir::PatIdent(hir::BindByRef(m), _, _) => { if let ty::TyRef(&r, _) = pat_ty.sty { let bk = ty::BorrowKind::from_mutbl(m); delegate.borrow(pat.id, pat.span, cmt_pat, r, bk, RefBinding); } } hir::PatIdent(hir::BindByValue(_), _, _) => { let mode = copy_or_move(typer, &cmt_pat, PatBindingMove); debug!("walk_pat binding consuming pat"); delegate.consume_pat(pat, cmt_pat, mode); } _ => { tcx.sess.span_bug( pat.span, "binding pattern not an identifier"); } } } else { match pat.node { hir::PatVec(_, Some(ref slice_pat), _) => { // The `slice_pat` here creates a slice into // the original vector. This is effectively a // borrow of the elements of the vector being // matched. let (slice_cmt, slice_mutbl, slice_r) = return_if_err!(mc.cat_slice_pattern(cmt_pat, &**slice_pat)); // Note: We declare here that the borrow // occurs upon entering the `[...]` // pattern. This implies that something like // `[a; b]` where `a` is a move is illegal, // because the borrow is already in effect. // In fact such a move would be safe-ish, but // it effectively *requires* that we use the // nulling out semantics to indicate when a // value has been moved, which we are trying // to move away from. Otherwise, how can we // indicate that the first element in the // vector has been moved? Eventually, we // could perhaps modify this rule to permit // `[..a, b]` where `b` is a move, because in // that case we can adjust the length of the // original vec accordingly, but we'd have to // make trans do the right thing, and it would // only work for `Box<[T]>`s. It seems simpler // to just require that people call // `vec.pop()` or `vec.unshift()`. let slice_bk = ty::BorrowKind::from_mutbl(slice_mutbl); delegate.borrow(pat.id, pat.span, slice_cmt, slice_r, slice_bk, RefBinding); } _ => { } } } })); // Do a second pass over the pattern, calling `matched_pat` on // the interior nodes (enum variants and structs), as opposed // to the above loop's visit of than the bindings that form // the leaves of the pattern tree structure. return_if_err!(mc.cat_pattern(cmt_discr, pat, |mc, cmt_pat, pat| { let def_map = def_map.borrow(); let tcx = typer.tcx; match pat.node { hir::PatEnum(_, _) | hir::PatQPath(..) | hir::PatIdent(_, _, None) | hir::PatStruct(..) => { match def_map.get(&pat.id).map(|d| d.full_def()) { None => { // no definition found: pat is not a // struct or enum pattern. } Some(def::DefVariant(enum_did, variant_did, _is_struct)) => { let downcast_cmt = if tcx.lookup_adt_def(enum_did).is_univariant() { cmt_pat } else { let cmt_pat_ty = cmt_pat.ty; mc.cat_downcast(pat, cmt_pat, cmt_pat_ty, variant_did) }; debug!("variant downcast_cmt={:?} pat={:?}", downcast_cmt, pat); delegate.matched_pat(pat, downcast_cmt, match_mode); } Some(def::DefStruct(..)) | Some(def::DefTy(_, false)) => { // A struct (in either the value or type // namespace; we encounter the former on // e.g. patterns for unit structs). debug!("struct cmt_pat={:?} pat={:?}", cmt_pat, pat); delegate.matched_pat(pat, cmt_pat, match_mode); } Some(def::DefConst(..)) | Some(def::DefAssociatedConst(..)) | Some(def::DefLocal(..)) => { // This is a leaf (i.e. identifier binding // or constant value to match); thus no // `matched_pat` call. } Some(def @ def::DefTy(_, true)) => { // An enum's type -- should never be in a // pattern. if !tcx.sess.has_errors() { let msg = format!("Pattern has unexpected type: {:?} and type {:?}", def, cmt_pat.ty); tcx.sess.span_bug(pat.span, &msg) } } Some(def) => { // Remaining cases are e.g. DefFn, to // which identifiers within patterns // should not resolve. However, we do // encouter this when using the // expr-use-visitor during typeck. So just // ignore it, an error should have been // reported. if !tcx.sess.has_errors() { let msg = format!("Pattern has unexpected def: {:?} and type {:?}", def, cmt_pat.ty); tcx.sess.span_bug(pat.span, &msg[..]) } } } } hir::PatIdent(_, _, Some(_)) => { // Do nothing; this is a binding (not an enum // variant or struct), and the cat_pattern call // will visit the substructure recursively. } hir::PatWild | hir::PatTup(..) | hir::PatBox(..) | hir::PatRegion(..) | hir::PatLit(..) | hir::PatRange(..) | hir::PatVec(..) => { // Similarly, each of these cases does not // correspond to an enum variant or struct, so we // do not do any `matched_pat` calls for these // cases either. } } })); } fn walk_captures(&mut self, closure_expr: &hir::Expr) { debug!("walk_captures({:?})", closure_expr); self.tcx().with_freevars(closure_expr.id, |freevars| { for freevar in freevars { let id_var = freevar.def.var_id(); let upvar_id = ty::UpvarId { var_id: id_var, closure_expr_id: closure_expr.id }; let upvar_capture = self.typer.upvar_capture(upvar_id).unwrap(); let cmt_var = return_if_err!(self.cat_captured_var(closure_expr.id, closure_expr.span, freevar.def)); match upvar_capture { ty::UpvarCapture::ByValue => { let mode = copy_or_move(self.typer, &cmt_var, CaptureMove); self.delegate.consume(closure_expr.id, freevar.span, cmt_var, mode); } ty::UpvarCapture::ByRef(upvar_borrow) => { self.delegate.borrow(closure_expr.id, closure_expr.span, cmt_var, upvar_borrow.region, upvar_borrow.kind, ClosureCapture(freevar.span)); } } } }); } fn cat_captured_var(&mut self, closure_id: ast::NodeId, closure_span: Span, upvar_def: def::Def) -> mc::McResult> { // Create the cmt for the variable being borrowed, from the // caller's perspective let var_id = upvar_def.var_id(); let var_ty = try!(self.typer.node_ty(var_id)); self.mc.cat_def(closure_id, closure_span, var_ty, upvar_def) } } fn copy_or_move<'a, 'tcx>(typer: &infer::InferCtxt<'a, 'tcx>, cmt: &mc::cmt<'tcx>, move_reason: MoveReason) -> ConsumeMode { if typer.type_moves_by_default(cmt.ty, cmt.span) { Move(move_reason) } else { Copy } }