// Copyright 2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use std::collections::BTreeMap; use std::collections::btree_map::Entry::{Occupied, Vacant}; use std::ops::Bound::{self, Excluded, Included, Unbounded}; use std::rc::Rc; use std::iter::FromIterator; use super::DeterministicRng; #[test] fn test_basic_large() { let mut map = BTreeMap::new(); let size = 10000; assert_eq!(map.len(), 0); for i in 0..size { assert_eq!(map.insert(i, 10 * i), None); assert_eq!(map.len(), i + 1); } for i in 0..size { assert_eq!(map.get(&i).unwrap(), &(i * 10)); } for i in size..size * 2 { assert_eq!(map.get(&i), None); } for i in 0..size { assert_eq!(map.insert(i, 100 * i), Some(10 * i)); assert_eq!(map.len(), size); } for i in 0..size { assert_eq!(map.get(&i).unwrap(), &(i * 100)); } for i in 0..size / 2 { assert_eq!(map.remove(&(i * 2)), Some(i * 200)); assert_eq!(map.len(), size - i - 1); } for i in 0..size / 2 { assert_eq!(map.get(&(2 * i)), None); assert_eq!(map.get(&(2 * i + 1)).unwrap(), &(i * 200 + 100)); } for i in 0..size / 2 { assert_eq!(map.remove(&(2 * i)), None); assert_eq!(map.remove(&(2 * i + 1)), Some(i * 200 + 100)); assert_eq!(map.len(), size / 2 - i - 1); } } #[test] fn test_basic_small() { let mut map = BTreeMap::new(); assert_eq!(map.remove(&1), None); assert_eq!(map.get(&1), None); assert_eq!(map.insert(1, 1), None); assert_eq!(map.get(&1), Some(&1)); assert_eq!(map.insert(1, 2), Some(1)); assert_eq!(map.get(&1), Some(&2)); assert_eq!(map.insert(2, 4), None); assert_eq!(map.get(&2), Some(&4)); assert_eq!(map.remove(&1), Some(2)); assert_eq!(map.remove(&2), Some(4)); assert_eq!(map.remove(&1), None); } #[test] fn test_iter() { let size = 10000; // Forwards let mut map: BTreeMap<_, _> = (0..size).map(|i| (i, i)).collect(); fn test(size: usize, mut iter: T) where T: Iterator { for i in 0..size { assert_eq!(iter.size_hint(), (size - i, Some(size - i))); assert_eq!(iter.next().unwrap(), (i, i)); } assert_eq!(iter.size_hint(), (0, Some(0))); assert_eq!(iter.next(), None); } test(size, map.iter().map(|(&k, &v)| (k, v))); test(size, map.iter_mut().map(|(&k, &mut v)| (k, v))); test(size, map.into_iter()); } #[test] fn test_iter_rev() { let size = 10000; // Forwards let mut map: BTreeMap<_, _> = (0..size).map(|i| (i, i)).collect(); fn test(size: usize, mut iter: T) where T: Iterator { for i in 0..size { assert_eq!(iter.size_hint(), (size - i, Some(size - i))); assert_eq!(iter.next().unwrap(), (size - i - 1, size - i - 1)); } assert_eq!(iter.size_hint(), (0, Some(0))); assert_eq!(iter.next(), None); } test(size, map.iter().rev().map(|(&k, &v)| (k, v))); test(size, map.iter_mut().rev().map(|(&k, &mut v)| (k, v))); test(size, map.into_iter().rev()); } #[test] fn test_values_mut() { let mut a = BTreeMap::new(); a.insert(1, String::from("hello")); a.insert(2, String::from("goodbye")); for value in a.values_mut() { value.push_str("!"); } let values: Vec = a.values().cloned().collect(); assert_eq!(values, [String::from("hello!"), String::from("goodbye!")]); } #[test] fn test_iter_mixed() { let size = 10000; // Forwards let mut map: BTreeMap<_, _> = (0..size).map(|i| (i, i)).collect(); fn test(size: usize, mut iter: T) where T: Iterator + DoubleEndedIterator { for i in 0..size / 4 { assert_eq!(iter.size_hint(), (size - i * 2, Some(size - i * 2))); assert_eq!(iter.next().unwrap(), (i, i)); assert_eq!(iter.next_back().unwrap(), (size - i - 1, size - i - 1)); } for i in size / 4..size * 3 / 4 { assert_eq!(iter.size_hint(), (size * 3 / 4 - i, Some(size * 3 / 4 - i))); assert_eq!(iter.next().unwrap(), (i, i)); } assert_eq!(iter.size_hint(), (0, Some(0))); assert_eq!(iter.next(), None); } test(size, map.iter().map(|(&k, &v)| (k, v))); test(size, map.iter_mut().map(|(&k, &mut v)| (k, v))); test(size, map.into_iter()); } #[test] fn test_range_small() { let size = 5; // Forwards let map: BTreeMap<_, _> = (0..size).map(|i| (i, i)).collect(); let mut j = 0; for ((&k, &v), i) in map.range(2..).zip(2..size) { assert_eq!(k, i); assert_eq!(v, i); j += 1; } assert_eq!(j, size - 2); } #[test] fn test_range_inclusive() { let size = 500; let map: BTreeMap<_, _> = (0..=size).map(|i| (i, i)).collect(); fn check<'a, L, R>(lhs: L, rhs: R) where L: IntoIterator, R: IntoIterator, { let lhs: Vec<_> = lhs.into_iter().collect(); let rhs: Vec<_> = rhs.into_iter().collect(); assert_eq!(lhs, rhs); } check(map.range(size + 1..=size + 1), vec![]); check(map.range(size..=size), vec![(&size, &size)]); check(map.range(size..=size + 1), vec![(&size, &size)]); check(map.range(0..=0), vec![(&0, &0)]); check(map.range(0..=size - 1), map.range(..size)); check(map.range(-1..=-1), vec![]); check(map.range(-1..=size), map.range(..)); check(map.range(..=size), map.range(..)); check(map.range(..=200), map.range(..201)); check(map.range(5..=8), vec![(&5, &5), (&6, &6), (&7, &7), (&8, &8)]); check(map.range(-1..=0), vec![(&0, &0)]); check(map.range(-1..=2), vec![(&0, &0), (&1, &1), (&2, &2)]); } #[test] fn test_range_inclusive_max_value() { let max = ::std::usize::MAX; let map: BTreeMap<_, _> = vec![(max, 0)].into_iter().collect(); assert_eq!(map.range(max..=max).collect::>(), &[(&max, &0)]); } #[test] fn test_range_equal_empty_cases() { let map: BTreeMap<_, _> = (0..5).map(|i| (i, i)).collect(); assert_eq!(map.range((Included(2), Excluded(2))).next(), None); assert_eq!(map.range((Excluded(2), Included(2))).next(), None); } #[test] #[should_panic] fn test_range_equal_excluded() { let map: BTreeMap<_, _> = (0..5).map(|i| (i, i)).collect(); map.range((Excluded(2), Excluded(2))); } #[test] #[should_panic] fn test_range_backwards_1() { let map: BTreeMap<_, _> = (0..5).map(|i| (i, i)).collect(); map.range((Included(3), Included(2))); } #[test] #[should_panic] fn test_range_backwards_2() { let map: BTreeMap<_, _> = (0..5).map(|i| (i, i)).collect(); map.range((Included(3), Excluded(2))); } #[test] #[should_panic] fn test_range_backwards_3() { let map: BTreeMap<_, _> = (0..5).map(|i| (i, i)).collect(); map.range((Excluded(3), Included(2))); } #[test] #[should_panic] fn test_range_backwards_4() { let map: BTreeMap<_, _> = (0..5).map(|i| (i, i)).collect(); map.range((Excluded(3), Excluded(2))); } #[test] fn test_range_1000() { let size = 1000; let map: BTreeMap<_, _> = (0..size).map(|i| (i, i)).collect(); fn test(map: &BTreeMap, size: u32, min: Bound<&u32>, max: Bound<&u32>) { let mut kvs = map.range((min, max)).map(|(&k, &v)| (k, v)); let mut pairs = (0..size).map(|i| (i, i)); for (kv, pair) in kvs.by_ref().zip(pairs.by_ref()) { assert_eq!(kv, pair); } assert_eq!(kvs.next(), None); assert_eq!(pairs.next(), None); } test(&map, size, Included(&0), Excluded(&size)); test(&map, size, Unbounded, Excluded(&size)); test(&map, size, Included(&0), Included(&(size - 1))); test(&map, size, Unbounded, Included(&(size - 1))); test(&map, size, Included(&0), Unbounded); test(&map, size, Unbounded, Unbounded); } #[test] fn test_range_borrowed_key() { let mut map = BTreeMap::new(); map.insert("aardvark".to_string(), 1); map.insert("baboon".to_string(), 2); map.insert("coyote".to_string(), 3); map.insert("dingo".to_string(), 4); // NOTE: would like to use simply "b".."d" here... let mut iter = map.range::((Included("b"),Excluded("d"))); assert_eq!(iter.next(), Some((&"baboon".to_string(), &2))); assert_eq!(iter.next(), Some((&"coyote".to_string(), &3))); assert_eq!(iter.next(), None); } #[test] fn test_range() { let size = 200; let map: BTreeMap<_, _> = (0..size).map(|i| (i, i)).collect(); for i in 0..size { for j in i..size { let mut kvs = map.range((Included(&i), Included(&j))).map(|(&k, &v)| (k, v)); let mut pairs = (i..j + 1).map(|i| (i, i)); for (kv, pair) in kvs.by_ref().zip(pairs.by_ref()) { assert_eq!(kv, pair); } assert_eq!(kvs.next(), None); assert_eq!(pairs.next(), None); } } } #[test] fn test_range_mut() { let size = 200; let mut map: BTreeMap<_, _> = (0..size).map(|i| (i, i)).collect(); for i in 0..size { for j in i..size { let mut kvs = map.range_mut((Included(&i), Included(&j))).map(|(&k, &mut v)| (k, v)); let mut pairs = (i..j + 1).map(|i| (i, i)); for (kv, pair) in kvs.by_ref().zip(pairs.by_ref()) { assert_eq!(kv, pair); } assert_eq!(kvs.next(), None); assert_eq!(pairs.next(), None); } } } #[test] fn test_borrow() { // make sure these compile -- using the Borrow trait { let mut map = BTreeMap::new(); map.insert("0".to_string(), 1); assert_eq!(map["0"], 1); } { let mut map = BTreeMap::new(); map.insert(Box::new(0), 1); assert_eq!(map[&0], 1); } { let mut map = BTreeMap::new(); map.insert(Box::new([0, 1]) as Box<[i32]>, 1); assert_eq!(map[&[0, 1][..]], 1); } { let mut map = BTreeMap::new(); map.insert(Rc::new(0), 1); assert_eq!(map[&0], 1); } } #[test] fn test_entry() { let xs = [(1, 10), (2, 20), (3, 30), (4, 40), (5, 50), (6, 60)]; let mut map: BTreeMap<_, _> = xs.iter().cloned().collect(); // Existing key (insert) match map.entry(1) { Vacant(_) => unreachable!(), Occupied(mut view) => { assert_eq!(view.get(), &10); assert_eq!(view.insert(100), 10); } } assert_eq!(map.get(&1).unwrap(), &100); assert_eq!(map.len(), 6); // Existing key (update) match map.entry(2) { Vacant(_) => unreachable!(), Occupied(mut view) => { let v = view.get_mut(); *v *= 10; } } assert_eq!(map.get(&2).unwrap(), &200); assert_eq!(map.len(), 6); // Existing key (take) match map.entry(3) { Vacant(_) => unreachable!(), Occupied(view) => { assert_eq!(view.remove(), 30); } } assert_eq!(map.get(&3), None); assert_eq!(map.len(), 5); // Inexistent key (insert) match map.entry(10) { Occupied(_) => unreachable!(), Vacant(view) => { assert_eq!(*view.insert(1000), 1000); } } assert_eq!(map.get(&10).unwrap(), &1000); assert_eq!(map.len(), 6); } #[test] fn test_extend_ref() { let mut a = BTreeMap::new(); a.insert(1, "one"); let mut b = BTreeMap::new(); b.insert(2, "two"); b.insert(3, "three"); a.extend(&b); assert_eq!(a.len(), 3); assert_eq!(a[&1], "one"); assert_eq!(a[&2], "two"); assert_eq!(a[&3], "three"); } #[test] fn test_zst() { let mut m = BTreeMap::new(); assert_eq!(m.len(), 0); assert_eq!(m.insert((), ()), None); assert_eq!(m.len(), 1); assert_eq!(m.insert((), ()), Some(())); assert_eq!(m.len(), 1); assert_eq!(m.iter().count(), 1); m.clear(); assert_eq!(m.len(), 0); for _ in 0..100 { m.insert((), ()); } assert_eq!(m.len(), 1); assert_eq!(m.iter().count(), 1); } // This test's only purpose is to ensure that zero-sized keys with nonsensical orderings // do not cause segfaults when used with zero-sized values. All other map behavior is // undefined. #[test] fn test_bad_zst() { use std::cmp::Ordering; struct Bad; impl PartialEq for Bad { fn eq(&self, _: &Self) -> bool { false } } impl Eq for Bad {} impl PartialOrd for Bad { fn partial_cmp(&self, _: &Self) -> Option { Some(Ordering::Less) } } impl Ord for Bad { fn cmp(&self, _: &Self) -> Ordering { Ordering::Less } } let mut m = BTreeMap::new(); for _ in 0..100 { m.insert(Bad, Bad); } } #[test] fn test_clone() { let mut map = BTreeMap::new(); let size = 100; assert_eq!(map.len(), 0); for i in 0..size { assert_eq!(map.insert(i, 10 * i), None); assert_eq!(map.len(), i + 1); assert_eq!(map, map.clone()); } for i in 0..size { assert_eq!(map.insert(i, 100 * i), Some(10 * i)); assert_eq!(map.len(), size); assert_eq!(map, map.clone()); } for i in 0..size / 2 { assert_eq!(map.remove(&(i * 2)), Some(i * 200)); assert_eq!(map.len(), size - i - 1); assert_eq!(map, map.clone()); } for i in 0..size / 2 { assert_eq!(map.remove(&(2 * i)), None); assert_eq!(map.remove(&(2 * i + 1)), Some(i * 200 + 100)); assert_eq!(map.len(), size / 2 - i - 1); assert_eq!(map, map.clone()); } } #[test] #[allow(dead_code)] fn test_variance() { use std::collections::btree_map::{Iter, IntoIter, Range, Keys, Values}; fn map_key<'new>(v: BTreeMap<&'static str, ()>) -> BTreeMap<&'new str, ()> { v } fn map_val<'new>(v: BTreeMap<(), &'static str>) -> BTreeMap<(), &'new str> { v } fn iter_key<'a, 'new>(v: Iter<'a, &'static str, ()>) -> Iter<'a, &'new str, ()> { v } fn iter_val<'a, 'new>(v: Iter<'a, (), &'static str>) -> Iter<'a, (), &'new str> { v } fn into_iter_key<'new>(v: IntoIter<&'static str, ()>) -> IntoIter<&'new str, ()> { v } fn into_iter_val<'new>(v: IntoIter<(), &'static str>) -> IntoIter<(), &'new str> { v } fn range_key<'a, 'new>(v: Range<'a, &'static str, ()>) -> Range<'a, &'new str, ()> { v } fn range_val<'a, 'new>(v: Range<'a, (), &'static str>) -> Range<'a, (), &'new str> { v } fn keys<'a, 'new>(v: Keys<'a, &'static str, ()>) -> Keys<'a, &'new str, ()> { v } fn vals<'a, 'new>(v: Values<'a, (), &'static str>) -> Values<'a, (), &'new str> { v } } #[test] fn test_occupied_entry_key() { let mut a = BTreeMap::new(); let key = "hello there"; let value = "value goes here"; assert!(a.is_empty()); a.insert(key.clone(), value.clone()); assert_eq!(a.len(), 1); assert_eq!(a[key], value); match a.entry(key.clone()) { Vacant(_) => panic!(), Occupied(e) => assert_eq!(key, *e.key()), } assert_eq!(a.len(), 1); assert_eq!(a[key], value); } #[test] fn test_vacant_entry_key() { let mut a = BTreeMap::new(); let key = "hello there"; let value = "value goes here"; assert!(a.is_empty()); match a.entry(key.clone()) { Occupied(_) => panic!(), Vacant(e) => { assert_eq!(key, *e.key()); e.insert(value.clone()); } } assert_eq!(a.len(), 1); assert_eq!(a[key], value); } macro_rules! create_append_test { ($name:ident, $len:expr) => { #[test] fn $name() { let mut a = BTreeMap::new(); for i in 0..8 { a.insert(i, i); } let mut b = BTreeMap::new(); for i in 5..$len { b.insert(i, 2*i); } a.append(&mut b); assert_eq!(a.len(), $len); assert_eq!(b.len(), 0); for i in 0..$len { if i < 5 { assert_eq!(a[&i], i); } else { assert_eq!(a[&i], 2*i); } } assert_eq!(a.remove(&($len-1)), Some(2*($len-1))); assert_eq!(a.insert($len-1, 20), None); } }; } // These are mostly for testing the algorithm that "fixes" the right edge after insertion. // Single node. create_append_test!(test_append_9, 9); // Two leafs that don't need fixing. create_append_test!(test_append_17, 17); // Two leafs where the second one ends up underfull and needs stealing at the end. create_append_test!(test_append_14, 14); // Two leafs where the second one ends up empty because the insertion finished at the root. create_append_test!(test_append_12, 12); // Three levels; insertion finished at the root. create_append_test!(test_append_144, 144); // Three levels; insertion finished at leaf while there is an empty node on the second level. create_append_test!(test_append_145, 145); // Tests for several randomly chosen sizes. create_append_test!(test_append_170, 170); create_append_test!(test_append_181, 181); create_append_test!(test_append_239, 239); create_append_test!(test_append_1700, 1700); fn rand_data(len: usize) -> Vec<(u32, u32)> { let mut rng = DeterministicRng::new(); Vec::from_iter((0..len).map(|_| (rng.next(), rng.next()))) } #[test] fn test_split_off_empty_right() { let mut data = rand_data(173); let mut map = BTreeMap::from_iter(data.clone()); let right = map.split_off(&(data.iter().max().unwrap().0 + 1)); data.sort(); assert!(map.into_iter().eq(data)); assert!(right.into_iter().eq(None)); } #[test] fn test_split_off_empty_left() { let mut data = rand_data(314); let mut map = BTreeMap::from_iter(data.clone()); let right = map.split_off(&data.iter().min().unwrap().0); data.sort(); assert!(map.into_iter().eq(None)); assert!(right.into_iter().eq(data)); } #[test] fn test_split_off_large_random_sorted() { let mut data = rand_data(1529); // special case with maximum height. data.sort(); let mut map = BTreeMap::from_iter(data.clone()); let key = data[data.len() / 2].0; let right = map.split_off(&key); assert!(map.into_iter().eq(data.clone().into_iter().filter(|x| x.0 < key))); assert!(right.into_iter().eq(data.into_iter().filter(|x| x.0 >= key))); }