// Copyright 2012-2016 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use llvm::{self, ValueRef, AttributePlace}; use base; use builder::Builder; use common::{instance_ty, ty_fn_sig, type_is_fat_ptr, C_usize}; use context::CrateContext; use cabi_x86; use cabi_x86_64; use cabi_x86_win64; use cabi_arm; use cabi_aarch64; use cabi_powerpc; use cabi_powerpc64; use cabi_s390x; use cabi_mips; use cabi_mips64; use cabi_asmjs; use cabi_msp430; use cabi_sparc; use cabi_sparc64; use cabi_nvptx; use cabi_nvptx64; use cabi_hexagon; use mir::lvalue::LvalueRef; use type_::Type; use rustc::hir; use rustc::ty::{self, Ty}; use rustc::ty::layout::{self, Align, Size, FullLayout}; use rustc::ty::layout::{HasDataLayout, LayoutOf}; use rustc_back::PanicStrategy; use libc::c_uint; use std::{cmp, iter}; pub use syntax::abi::Abi; pub use rustc::ty::layout::{FAT_PTR_ADDR, FAT_PTR_EXTRA}; #[derive(Clone, Copy, PartialEq, Debug)] enum ArgKind { /// Pass the argument directly using the normal converted /// LLVM type or by coercing to another specified type Direct, /// Pass the argument indirectly via a hidden pointer Indirect, /// Ignore the argument (useful for empty struct) Ignore, } // Hack to disable non_upper_case_globals only for the bitflags! and not for the rest // of this module pub use self::attr_impl::ArgAttribute; #[allow(non_upper_case_globals)] #[allow(unused)] mod attr_impl { // The subset of llvm::Attribute needed for arguments, packed into a bitfield. bitflags! { #[derive(Default)] pub struct ArgAttribute: u16 { const ByVal = 1 << 0; const NoAlias = 1 << 1; const NoCapture = 1 << 2; const NonNull = 1 << 3; const ReadOnly = 1 << 4; const SExt = 1 << 5; const StructRet = 1 << 6; const ZExt = 1 << 7; const InReg = 1 << 8; } } } macro_rules! for_each_kind { ($flags: ident, $f: ident, $($kind: ident),+) => ({ $(if $flags.contains(ArgAttribute::$kind) { $f(llvm::Attribute::$kind) })+ }) } impl ArgAttribute { fn for_each_kind(&self, mut f: F) where F: FnMut(llvm::Attribute) { for_each_kind!(self, f, ByVal, NoAlias, NoCapture, NonNull, ReadOnly, SExt, StructRet, ZExt, InReg) } } /// A compact representation of LLVM attributes (at least those relevant for this module) /// that can be manipulated without interacting with LLVM's Attribute machinery. #[derive(Copy, Clone, Debug, Default)] pub struct ArgAttributes { regular: ArgAttribute, dereferenceable_bytes: u64, } impl ArgAttributes { pub fn set(&mut self, attr: ArgAttribute) -> &mut Self { self.regular = self.regular | attr; self } pub fn set_dereferenceable(&mut self, size: Size) -> &mut Self { self.dereferenceable_bytes = size.bytes(); self } pub fn contains(&self, attr: ArgAttribute) -> bool { self.regular.contains(attr) } pub fn apply_llfn(&self, idx: AttributePlace, llfn: ValueRef) { unsafe { self.regular.for_each_kind(|attr| attr.apply_llfn(idx, llfn)); if self.dereferenceable_bytes != 0 { llvm::LLVMRustAddDereferenceableAttr(llfn, idx.as_uint(), self.dereferenceable_bytes); } } } pub fn apply_callsite(&self, idx: AttributePlace, callsite: ValueRef) { unsafe { self.regular.for_each_kind(|attr| attr.apply_callsite(idx, callsite)); if self.dereferenceable_bytes != 0 { llvm::LLVMRustAddDereferenceableCallSiteAttr(callsite, idx.as_uint(), self.dereferenceable_bytes); } } } } #[derive(Copy, Clone, PartialEq, Eq, Debug)] pub enum RegKind { Integer, Float, Vector } #[derive(Copy, Clone, PartialEq, Eq, Debug)] pub struct Reg { pub kind: RegKind, pub size: Size, } macro_rules! reg_ctor { ($name:ident, $kind:ident, $bits:expr) => { pub fn $name() -> Reg { Reg { kind: RegKind::$kind, size: Size::from_bits($bits) } } } } impl Reg { reg_ctor!(i8, Integer, 8); reg_ctor!(i16, Integer, 16); reg_ctor!(i32, Integer, 32); reg_ctor!(i64, Integer, 64); reg_ctor!(f32, Float, 32); reg_ctor!(f64, Float, 64); } impl Reg { pub fn align(&self, ccx: &CrateContext) -> Align { let dl = ccx.data_layout(); match self.kind { RegKind::Integer => { match self.size.bits() { 1 => dl.i1_align, 2...8 => dl.i8_align, 9...16 => dl.i16_align, 17...32 => dl.i32_align, 33...64 => dl.i64_align, 65...128 => dl.i128_align, _ => bug!("unsupported integer: {:?}", self) } } RegKind::Float => { match self.size.bits() { 32 => dl.f32_align, 64 => dl.f64_align, _ => bug!("unsupported float: {:?}", self) } } RegKind::Vector => dl.vector_align(self.size) } } pub fn llvm_type(&self, ccx: &CrateContext) -> Type { match self.kind { RegKind::Integer => Type::ix(ccx, self.size.bits()), RegKind::Float => { match self.size.bits() { 32 => Type::f32(ccx), 64 => Type::f64(ccx), _ => bug!("unsupported float: {:?}", self) } } RegKind::Vector => { Type::vector(&Type::i8(ccx), self.size.bytes()) } } } } /// An argument passed entirely registers with the /// same kind (e.g. HFA / HVA on PPC64 and AArch64). #[derive(Clone, Copy, Debug)] pub struct Uniform { pub unit: Reg, /// The total size of the argument, which can be: /// * equal to `unit.size` (one scalar/vector) /// * a multiple of `unit.size` (an array of scalar/vectors) /// * if `unit.kind` is `Integer`, the last element /// can be shorter, i.e. `{ i64, i64, i32 }` for /// 64-bit integers with a total size of 20 bytes pub total: Size, } impl From for Uniform { fn from(unit: Reg) -> Uniform { Uniform { unit, total: unit.size } } } impl Uniform { pub fn align(&self, ccx: &CrateContext) -> Align { self.unit.align(ccx) } pub fn llvm_type(&self, ccx: &CrateContext) -> Type { let llunit = self.unit.llvm_type(ccx); if self.total <= self.unit.size { return llunit; } let count = self.total.bytes() / self.unit.size.bytes(); let rem_bytes = self.total.bytes() % self.unit.size.bytes(); if rem_bytes == 0 { return Type::array(&llunit, count); } // Only integers can be really split further. assert_eq!(self.unit.kind, RegKind::Integer); let args: Vec<_> = (0..count).map(|_| llunit) .chain(iter::once(Type::ix(ccx, rem_bytes * 8))) .collect(); Type::struct_(ccx, &args, false) } } pub trait LayoutExt<'tcx> { fn is_aggregate(&self) -> bool; fn homogeneous_aggregate<'a>(&self, ccx: &CrateContext<'a, 'tcx>) -> Option; } impl<'tcx> LayoutExt<'tcx> for FullLayout<'tcx> { fn is_aggregate(&self) -> bool { match self.abi { layout::Abi::Scalar(_) | layout::Abi::Vector { .. } => false, layout::Abi::Aggregate { .. } => true } } fn homogeneous_aggregate<'a>(&self, ccx: &CrateContext<'a, 'tcx>) -> Option { match self.abi { // The primitive for this algorithm. layout::Abi::Scalar(value) => { let kind = match value { layout::Int(..) | layout::Pointer => RegKind::Integer, layout::F32 | layout::F64 => RegKind::Float }; Some(Reg { kind, size: self.size(ccx) }) } layout::Abi::Vector { .. } => { Some(Reg { kind: RegKind::Vector, size: self.size(ccx) }) } layout::Abi::Aggregate { .. } => { let mut total = Size::from_bytes(0); let mut result = None; let is_union = match *self.fields { layout::FieldPlacement::Array { count, .. } => { if count > 0 { return self.field(ccx, 0).homogeneous_aggregate(ccx); } else { return None; } } layout::FieldPlacement::Union(_) => true, layout::FieldPlacement::Arbitrary { .. } => false }; for i in 0..self.fields.count() { if !is_union && total != self.fields.offset(i) { return None; } let field = self.field(ccx, i); match (result, field.homogeneous_aggregate(ccx)) { // The field itself must be a homogeneous aggregate. (_, None) => return None, // If this is the first field, record the unit. (None, Some(unit)) => { result = Some(unit); } // For all following fields, the unit must be the same. (Some(prev_unit), Some(unit)) => { if prev_unit != unit { return None; } } } // Keep track of the offset (without padding). let size = field.size(ccx); if is_union { total = cmp::max(total, size); } else { total += size; } } // There needs to be no padding. if total != self.size(ccx) { None } else { result } } } } } #[derive(Clone, Copy, Debug)] pub enum CastTarget { Uniform(Uniform), Pair(Reg, Reg) } impl From for CastTarget { fn from(unit: Reg) -> CastTarget { CastTarget::Uniform(Uniform::from(unit)) } } impl From for CastTarget { fn from(uniform: Uniform) -> CastTarget { CastTarget::Uniform(uniform) } } impl CastTarget { pub fn size(&self, ccx: &CrateContext) -> Size { match *self { CastTarget::Uniform(u) => u.total, CastTarget::Pair(a, b) => { (a.size.abi_align(a.align(ccx)) + b.size) .abi_align(self.align(ccx)) } } } pub fn align(&self, ccx: &CrateContext) -> Align { match *self { CastTarget::Uniform(u) => u.align(ccx), CastTarget::Pair(a, b) => { ccx.data_layout().aggregate_align .max(a.align(ccx)) .max(b.align(ccx)) } } } pub fn llvm_type(&self, ccx: &CrateContext) -> Type { match *self { CastTarget::Uniform(u) => u.llvm_type(ccx), CastTarget::Pair(a, b) => { Type::struct_(ccx, &[ a.llvm_type(ccx), b.llvm_type(ccx) ], false) } } } } /// Information about how a specific C type /// should be passed to or returned from a function /// /// This is borrowed from clang's ABIInfo.h #[derive(Debug)] pub struct ArgType<'tcx> { kind: ArgKind, pub layout: FullLayout<'tcx>, /// Cast target, either a single uniform or a pair of registers. pub cast: Option, /// Dummy argument, which is emitted before the real argument. pub pad: Option, /// Attributes of argument. pub attrs: ArgAttributes, pub nested: Vec> } impl<'a, 'tcx> ArgType<'tcx> { fn new(layout: FullLayout<'tcx>) -> ArgType<'tcx> { ArgType { kind: ArgKind::Direct, layout, cast: None, pad: None, attrs: ArgAttributes::default(), nested: vec![] } } pub fn make_indirect(&mut self, ccx: &CrateContext<'a, 'tcx>) { assert!(self.nested.is_empty()); assert_eq!(self.kind, ArgKind::Direct); // Wipe old attributes, likely not valid through indirection. self.attrs = ArgAttributes::default(); // For non-immediate arguments the callee gets its own copy of // the value on the stack, so there are no aliases. It's also // program-invisible so can't possibly capture self.attrs.set(ArgAttribute::NoAlias) .set(ArgAttribute::NoCapture) .set_dereferenceable(self.layout.size(ccx)); self.kind = ArgKind::Indirect; } pub fn ignore(&mut self) { assert!(self.nested.is_empty()); assert_eq!(self.kind, ArgKind::Direct); self.kind = ArgKind::Ignore; } pub fn extend_integer_width_to(&mut self, bits: u64) { // Only integers have signedness match self.layout.abi { layout::Abi::Scalar(layout::Int(i, signed)) => { if i.size().bits() < bits { self.attrs.set(if signed { ArgAttribute::SExt } else { ArgAttribute::ZExt }); } } _ => {} } } pub fn cast_to>(&mut self, target: T) { assert!(self.nested.is_empty()); self.cast = Some(target.into()); } pub fn pad_with(&mut self, reg: Reg) { assert!(self.nested.is_empty()); self.pad = Some(reg); } pub fn is_indirect(&self) -> bool { self.kind == ArgKind::Indirect } pub fn is_ignore(&self) -> bool { self.kind == ArgKind::Ignore } /// Get the LLVM type for an lvalue of the original Rust type of /// this argument/return, i.e. the result of `type_of::type_of`. pub fn memory_ty(&self, ccx: &CrateContext<'a, 'tcx>) -> Type { ccx.llvm_type_of(self.layout.ty) } /// Store a direct/indirect value described by this ArgType into a /// lvalue for the original Rust type of this argument/return. /// Can be used for both storing formal arguments into Rust variables /// or results of call/invoke instructions into their destinations. pub fn store(&self, bcx: &Builder<'a, 'tcx>, mut val: ValueRef, dst: LvalueRef<'tcx>) { if self.is_ignore() { return; } let ccx = bcx.ccx; if self.is_indirect() { let llsz = C_usize(ccx, self.layout.size(ccx).bytes()); base::call_memcpy(bcx, dst.llval, val, llsz, self.layout.align(ccx)); } else if let Some(ty) = self.cast { // FIXME(eddyb): Figure out when the simpler Store is safe, clang // uses it for i16 -> {i8, i8}, but not for i24 -> {i8, i8, i8}. let can_store_through_cast_ptr = false; if can_store_through_cast_ptr { let cast_dst = bcx.pointercast(dst.llval, ty.llvm_type(ccx).ptr_to()); bcx.store(val, cast_dst, Some(self.layout.align(ccx))); } else { // The actual return type is a struct, but the ABI // adaptation code has cast it into some scalar type. The // code that follows is the only reliable way I have // found to do a transform like i64 -> {i32,i32}. // Basically we dump the data onto the stack then memcpy it. // // Other approaches I tried: // - Casting rust ret pointer to the foreign type and using Store // is (a) unsafe if size of foreign type > size of rust type and // (b) runs afoul of strict aliasing rules, yielding invalid // assembly under -O (specifically, the store gets removed). // - Truncating foreign type to correct integral type and then // bitcasting to the struct type yields invalid cast errors. // We instead thus allocate some scratch space... let llscratch = bcx.alloca(ty.llvm_type(ccx), "abi_cast", None); let scratch_size = ty.size(ccx); bcx.lifetime_start(llscratch, scratch_size); // ...where we first store the value... bcx.store(val, llscratch, None); // ...and then memcpy it to the intended destination. base::call_memcpy(bcx, bcx.pointercast(dst.llval, Type::i8p(ccx)), bcx.pointercast(llscratch, Type::i8p(ccx)), C_usize(ccx, self.layout.size(ccx).bytes()), self.layout.align(ccx).min(ty.align(ccx))); bcx.lifetime_end(llscratch, scratch_size); } } else { val = base::from_immediate(bcx, val); bcx.store(val, dst.llval, None); } } pub fn store_fn_arg(&self, bcx: &Builder<'a, 'tcx>, idx: &mut usize, dst: LvalueRef<'tcx>) { if !self.nested.is_empty() { for (i, arg) in self.nested.iter().enumerate() { arg.store_fn_arg(bcx, idx, dst.project_field(bcx, i)); } return; } if self.pad.is_some() { *idx += 1; } if self.is_ignore() { return; } let val = llvm::get_param(bcx.llfn(), *idx as c_uint); *idx += 1; self.store(bcx, val, dst); } } /// Metadata describing how the arguments to a native function /// should be passed in order to respect the native ABI. /// /// I will do my best to describe this structure, but these /// comments are reverse-engineered and may be inaccurate. -NDM #[derive(Debug)] pub struct FnType<'tcx> { /// The LLVM types of each argument. pub args: Vec>, /// LLVM return type. pub ret: ArgType<'tcx>, pub variadic: bool, pub cconv: llvm::CallConv } impl<'a, 'tcx> FnType<'tcx> { pub fn of_instance(ccx: &CrateContext<'a, 'tcx>, instance: &ty::Instance<'tcx>) -> Self { let fn_ty = instance_ty(ccx.tcx(), &instance); let sig = ty_fn_sig(ccx, fn_ty); let sig = ccx.tcx().erase_late_bound_regions_and_normalize(&sig); Self::new(ccx, sig, &[]) } pub fn new(ccx: &CrateContext<'a, 'tcx>, sig: ty::FnSig<'tcx>, extra_args: &[Ty<'tcx>]) -> FnType<'tcx> { let mut fn_ty = FnType::unadjusted(ccx, sig, extra_args); fn_ty.adjust_for_abi(ccx, sig); fn_ty } pub fn new_vtable(ccx: &CrateContext<'a, 'tcx>, sig: ty::FnSig<'tcx>, extra_args: &[Ty<'tcx>]) -> FnType<'tcx> { let mut fn_ty = FnType::unadjusted(ccx, sig, extra_args); // Don't pass the vtable, it's not an argument of the virtual fn. assert_eq!(fn_ty.args[0].nested.len(), 2); fn_ty.args[0].nested[1].ignore(); fn_ty.adjust_for_abi(ccx, sig); fn_ty } pub fn unadjusted(ccx: &CrateContext<'a, 'tcx>, sig: ty::FnSig<'tcx>, extra_args: &[Ty<'tcx>]) -> FnType<'tcx> { debug!("FnType::unadjusted({:?}, {:?})", sig, extra_args); use self::Abi::*; let cconv = match ccx.sess().target.target.adjust_abi(sig.abi) { RustIntrinsic | PlatformIntrinsic | Rust | RustCall => llvm::CCallConv, // It's the ABI's job to select this, not us. System => bug!("system abi should be selected elsewhere"), Stdcall => llvm::X86StdcallCallConv, Fastcall => llvm::X86FastcallCallConv, Vectorcall => llvm::X86_VectorCall, Thiscall => llvm::X86_ThisCall, C => llvm::CCallConv, Unadjusted => llvm::CCallConv, Win64 => llvm::X86_64_Win64, SysV64 => llvm::X86_64_SysV, Aapcs => llvm::ArmAapcsCallConv, PtxKernel => llvm::PtxKernel, Msp430Interrupt => llvm::Msp430Intr, X86Interrupt => llvm::X86_Intr, // These API constants ought to be more specific... Cdecl => llvm::CCallConv, }; let mut inputs = sig.inputs(); let extra_args = if sig.abi == RustCall { assert!(!sig.variadic && extra_args.is_empty()); match sig.inputs().last().unwrap().sty { ty::TyTuple(ref tupled_arguments, _) => { inputs = &sig.inputs()[0..sig.inputs().len() - 1]; tupled_arguments } _ => { bug!("argument to function with \"rust-call\" ABI \ is not a tuple"); } } } else { assert!(sig.variadic || extra_args.is_empty()); extra_args }; let target = &ccx.sess().target.target; let win_x64_gnu = target.target_os == "windows" && target.arch == "x86_64" && target.target_env == "gnu"; let linux_s390x = target.target_os == "linux" && target.arch == "s390x" && target.target_env == "gnu"; let rust_abi = match sig.abi { RustIntrinsic | PlatformIntrinsic | Rust | RustCall => true, _ => false }; let arg_of = |ty: Ty<'tcx>, is_return: bool| { let mut arg = ArgType::new(ccx.layout_of(ty)); if ty.is_bool() { arg.attrs.set(ArgAttribute::ZExt); } else { if arg.layout.is_zst() { // For some forsaken reason, x86_64-pc-windows-gnu // doesn't ignore zero-sized struct arguments. // The same is true for s390x-unknown-linux-gnu. if is_return || rust_abi || (!win_x64_gnu && !linux_s390x) { arg.ignore(); } } } arg }; let ret_ty = sig.output(); let mut ret = arg_of(ret_ty, true); if !type_is_fat_ptr(ccx, ret_ty) { // The `noalias` attribute on the return value is useful to a // function ptr caller. if ret_ty.is_box() { // `Box` pointer return values never alias because ownership // is transferred ret.attrs.set(ArgAttribute::NoAlias); } // We can also mark the return value as `dereferenceable` in certain cases match ret_ty.sty { // These are not really pointers but pairs, (pointer, len) ty::TyRef(_, ty::TypeAndMut { ty, .. }) => { ret.attrs.set_dereferenceable(ccx.size_of(ty)); } ty::TyAdt(def, _) if def.is_box() => { ret.attrs.set_dereferenceable(ccx.size_of(ret_ty.boxed_ty())); } _ => {} } } let mut args = Vec::with_capacity(inputs.len() + extra_args.len()); // Handle safe Rust thin and fat pointers. let rust_ptr_attrs = |ty: Ty<'tcx>, arg: &mut ArgType| match ty.sty { // `Box` pointer parameters never alias because ownership is transferred ty::TyAdt(def, _) if def.is_box() => { arg.attrs.set(ArgAttribute::NoAlias); Some(ty.boxed_ty()) } ty::TyRef(_, mt) => { // `&mut` pointer parameters never alias other parameters, or mutable global data // // `&T` where `T` contains no `UnsafeCell` is immutable, and can be marked as // both `readonly` and `noalias`, as LLVM's definition of `noalias` is based solely // on memory dependencies rather than pointer equality let is_freeze = ccx.shared().type_is_freeze(mt.ty); let no_alias_is_safe = if ccx.shared().tcx().sess.opts.debugging_opts.mutable_noalias || ccx.shared().tcx().sess.panic_strategy() == PanicStrategy::Abort { // Mutable refrences or immutable shared references mt.mutbl == hir::MutMutable || is_freeze } else { // Only immutable shared references mt.mutbl != hir::MutMutable && is_freeze }; if no_alias_is_safe { arg.attrs.set(ArgAttribute::NoAlias); } if mt.mutbl == hir::MutImmutable && is_freeze { arg.attrs.set(ArgAttribute::ReadOnly); } Some(mt.ty) } _ => None }; for ty in inputs.iter().chain(extra_args.iter()) { let mut arg = arg_of(ty, false); if type_is_fat_ptr(ccx, ty) { let mut data = ArgType::new(arg.layout.field(ccx, 0)); let mut info = ArgType::new(arg.layout.field(ccx, 1)); if let Some(inner) = rust_ptr_attrs(ty, &mut data) { data.attrs.set(ArgAttribute::NonNull); if ccx.tcx().struct_tail(inner).is_trait() { // vtables can be safely marked non-null, readonly // and noalias. info.attrs.set(ArgAttribute::NonNull); info.attrs.set(ArgAttribute::ReadOnly); info.attrs.set(ArgAttribute::NoAlias); } } // FIXME(eddyb) other ABIs don't have logic for nested. if rust_abi { arg.nested = vec![data, info]; } } else { if let Some(inner) = rust_ptr_attrs(ty, &mut arg) { arg.attrs.set_dereferenceable(ccx.size_of(inner)); } } args.push(arg); } FnType { args, ret, variadic: sig.variadic, cconv, } } fn adjust_for_abi(&mut self, ccx: &CrateContext<'a, 'tcx>, sig: ty::FnSig<'tcx>) { let abi = sig.abi; if abi == Abi::Unadjusted { return } if abi == Abi::Rust || abi == Abi::RustCall || abi == Abi::RustIntrinsic || abi == Abi::PlatformIntrinsic { let fixup = |arg: &mut ArgType<'tcx>| { match arg.layout.abi { layout::Abi::Aggregate { .. } => {} _ => return } let size = arg.layout.size(ccx); if let Some(unit) = arg.layout.homogeneous_aggregate(ccx) { // Replace newtypes with their inner-most type. if unit.size == size { // Needs a cast as we've unpacked a newtype. arg.cast_to(unit); return; } // Pairs of floats. if unit.kind == RegKind::Float { if unit.size.checked_mul(2, ccx) == Some(size) { // FIXME(eddyb) This should be using Uniform instead of a pair, // but the resulting [2 x float/double] breaks emscripten. // See https://github.com/kripken/emscripten-fastcomp/issues/178. arg.cast_to(CastTarget::Pair(unit, unit)); return; } } } if size > layout::Pointer.size(ccx) { arg.make_indirect(ccx); } else { // We want to pass small aggregates as immediates, but using // a LLVM aggregate type for this leads to bad optimizations, // so we pick an appropriately sized integer type instead. arg.cast_to(Reg { kind: RegKind::Integer, size }); } }; // Fat pointers are returned by-value. if !self.ret.is_ignore() { if !type_is_fat_ptr(ccx, sig.output()) { fixup(&mut self.ret); } } for arg in &mut self.args { if arg.is_ignore() { continue; } if !arg.nested.is_empty() { for arg in &mut arg.nested { assert!(arg.nested.is_empty()); fixup(arg); } continue; } fixup(arg); } if self.ret.is_indirect() { self.ret.attrs.set(ArgAttribute::StructRet); } return; } match &ccx.sess().target.target.arch[..] { "x86" => { let flavor = if abi == Abi::Fastcall { cabi_x86::Flavor::Fastcall } else { cabi_x86::Flavor::General }; cabi_x86::compute_abi_info(ccx, self, flavor); }, "x86_64" => if abi == Abi::SysV64 { cabi_x86_64::compute_abi_info(ccx, self); } else if abi == Abi::Win64 || ccx.sess().target.target.options.is_like_windows { cabi_x86_win64::compute_abi_info(ccx, self); } else { cabi_x86_64::compute_abi_info(ccx, self); }, "aarch64" => cabi_aarch64::compute_abi_info(ccx, self), "arm" => cabi_arm::compute_abi_info(ccx, self), "mips" => cabi_mips::compute_abi_info(ccx, self), "mips64" => cabi_mips64::compute_abi_info(ccx, self), "powerpc" => cabi_powerpc::compute_abi_info(ccx, self), "powerpc64" => cabi_powerpc64::compute_abi_info(ccx, self), "s390x" => cabi_s390x::compute_abi_info(ccx, self), "asmjs" => cabi_asmjs::compute_abi_info(ccx, self), "wasm32" => cabi_asmjs::compute_abi_info(ccx, self), "msp430" => cabi_msp430::compute_abi_info(ccx, self), "sparc" => cabi_sparc::compute_abi_info(ccx, self), "sparc64" => cabi_sparc64::compute_abi_info(ccx, self), "nvptx" => cabi_nvptx::compute_abi_info(ccx, self), "nvptx64" => cabi_nvptx64::compute_abi_info(ccx, self), "hexagon" => cabi_hexagon::compute_abi_info(ccx, self), a => ccx.sess().fatal(&format!("unrecognized arch \"{}\" in target specification", a)) } if self.ret.is_indirect() { self.ret.attrs.set(ArgAttribute::StructRet); } } pub fn llvm_type(&self, ccx: &CrateContext<'a, 'tcx>) -> Type { let mut llargument_tys = Vec::new(); let llreturn_ty = if self.ret.is_ignore() { Type::void(ccx) } else if self.ret.is_indirect() { llargument_tys.push(self.ret.memory_ty(ccx).ptr_to()); Type::void(ccx) } else if let Some(cast) = self.ret.cast { cast.llvm_type(ccx) } else { ccx.immediate_llvm_type_of(self.ret.layout.ty) }; { let mut push = |arg: &ArgType<'tcx>| { if arg.is_ignore() { return; } // add padding if let Some(ty) = arg.pad { llargument_tys.push(ty.llvm_type(ccx)); } let llarg_ty = if arg.is_indirect() { arg.memory_ty(ccx).ptr_to() } else if let Some(cast) = arg.cast { cast.llvm_type(ccx) } else { ccx.immediate_llvm_type_of(arg.layout.ty) }; llargument_tys.push(llarg_ty); }; for arg in &self.args { if !arg.nested.is_empty() { for arg in &arg.nested { assert!(arg.nested.is_empty()); push(arg); } continue; } push(arg); } } if self.variadic { Type::variadic_func(&llargument_tys, &llreturn_ty) } else { Type::func(&llargument_tys, &llreturn_ty) } } pub fn apply_attrs_llfn(&self, llfn: ValueRef) { let mut i = if self.ret.is_indirect() { 1 } else { 0 }; if !self.ret.is_ignore() { self.ret.attrs.apply_llfn(llvm::AttributePlace::Argument(i), llfn); } i += 1; let mut apply = |arg: &ArgType| { if !arg.is_ignore() { if arg.pad.is_some() { i += 1; } arg.attrs.apply_llfn(llvm::AttributePlace::Argument(i), llfn); i += 1; } }; for arg in &self.args { if !arg.nested.is_empty() { for arg in &arg.nested { assert!(arg.nested.is_empty()); apply(arg); } continue; } apply(arg); } } pub fn apply_attrs_callsite(&self, callsite: ValueRef) { let mut i = if self.ret.is_indirect() { 1 } else { 0 }; if !self.ret.is_ignore() { self.ret.attrs.apply_callsite(llvm::AttributePlace::Argument(i), callsite); } i += 1; let mut apply = |arg: &ArgType| { if !arg.is_ignore() { if arg.pad.is_some() { i += 1; } arg.attrs.apply_callsite(llvm::AttributePlace::Argument(i), callsite); i += 1; } }; for arg in &self.args { if !arg.nested.is_empty() { for arg in &arg.nested { assert!(arg.nested.is_empty()); apply(arg); } continue; } apply(arg); } if self.cconv != llvm::CCallConv { llvm::SetInstructionCallConv(callsite, self.cconv); } } }