//! Coercion logic. Coercions are certain type conversions that can implicitly //! happen in certain places, e.g. weakening `&mut` to `&` or deref coercions //! like going from `&Vec` to `&[T]`. //! //! See https://doc.rust-lang.org/nomicon/coercions.html and //! librustc_typeck/check/coercion.rs. use chalk_ir::{cast::Cast, Mutability, TyVariableKind}; use hir_def::lang_item::LangItemTarget; use crate::{ autoderef, static_lifetime, Canonical, DomainGoal, FnPointer, FnSig, Interner, Solution, Substitution, Ty, TyBuilder, TyExt, TyKind, }; use super::{InEnvironment, InferOk, InferResult, InferenceContext, TypeError}; impl<'a> InferenceContext<'a> { /// Unify two types, but may coerce the first one to the second one /// using "implicit coercion rules" if needed. pub(super) fn coerce(&mut self, from_ty: &Ty, to_ty: &Ty) -> bool { // TODO handle expectations properly if to_ty.is_unknown() { return true; } let from_ty = self.resolve_ty_shallow(from_ty).into_owned(); let to_ty = self.resolve_ty_shallow(to_ty); match self.coerce_inner(from_ty, &to_ty) { Ok(_result) => { // TODO deal with goals true } Err(_) => { // FIXME deal with error false } } } /// Merge two types from different branches, with possible coercion. /// /// Mostly this means trying to coerce one to the other, but /// - if we have two function types for different functions or closures, we need to /// coerce both to function pointers; /// - if we were concerned with lifetime subtyping, we'd need to look for a /// least upper bound. pub(super) fn coerce_merge_branch(&mut self, ty1: &Ty, ty2: &Ty) -> Ty { let ty1 = self.resolve_ty_shallow(ty1); let ty1 = ty1.as_ref(); let ty2 = self.resolve_ty_shallow(ty2); let ty2 = ty2.as_ref(); // Special case: two function types. Try to coerce both to // pointers to have a chance at getting a match. See // https://github.com/rust-lang/rust/blob/7b805396bf46dce972692a6846ce2ad8481c5f85/src/librustc_typeck/check/coercion.rs#L877-L916 let sig = match (ty1.kind(&Interner), ty2.kind(&Interner)) { (TyKind::FnDef(..), TyKind::FnDef(..)) | (TyKind::Closure(..), TyKind::FnDef(..)) | (TyKind::FnDef(..), TyKind::Closure(..)) | (TyKind::Closure(..), TyKind::Closure(..)) => { // FIXME: we're ignoring safety here. To be more correct, if we have one FnDef and one Closure, // we should be coercing the closure to a fn pointer of the safety of the FnDef cov_mark::hit!(coerce_fn_reification); let sig = ty1.callable_sig(self.db).expect("FnDef without callable sig"); Some(sig) } _ => None, }; if let Some(sig) = sig { let target_ty = TyKind::Function(sig.to_fn_ptr()).intern(&Interner); let result1 = self.coerce_inner(ty1.clone(), &target_ty); let result2 = self.coerce_inner(ty2.clone(), &target_ty); if let (Ok(_result1), Ok(_result2)) = (result1, result2) { // TODO deal with the goals return target_ty; } } // It might not seem like it, but order is important here: ty1 is our // "previous" type, ty2 is the "new" one being added. If the previous // type is a type variable and the new one is `!`, trying it the other // way around first would mean we make the type variable `!`, instead of // just marking it as possibly diverging. if self.coerce(ty2, ty1) { ty1.clone() } else if self.coerce(ty1, ty2) { ty2.clone() } else { // TODO record a type mismatch cov_mark::hit!(coerce_merge_fail_fallback); ty1.clone() } } fn coerce_inner(&mut self, from_ty: Ty, to_ty: &Ty) -> InferResult { if from_ty.is_never() { // Subtle: If we are coercing from `!` to `?T`, where `?T` is an unbound // type variable, we want `?T` to fallback to `!` if not // otherwise constrained. An example where this arises: // // let _: Option = Some({ return; }); // // here, we would coerce from `!` to `?T`. match to_ty.kind(&Interner) { TyKind::InferenceVar(tv, TyVariableKind::General) => { self.table.type_variable_table.set_diverging(*tv, true); } _ => {} } return Ok(InferOk {}); } // Consider coercing the subtype to a DST if let Ok(ret) = self.try_coerce_unsized(&from_ty, &to_ty) { return Ok(ret); } // Examine the supertype and consider auto-borrowing. match to_ty.kind(&Interner) { TyKind::Raw(mt, _) => { return self.coerce_ptr(from_ty, to_ty, *mt); } TyKind::Ref(mt, _, _) => { return self.coerce_ref(from_ty, to_ty, *mt); } _ => {} } match from_ty.kind(&Interner) { TyKind::FnDef(..) => { // Function items are coercible to any closure // type; function pointers are not (that would // require double indirection). // Additionally, we permit coercion of function // items to drop the unsafe qualifier. self.coerce_from_fn_item(from_ty, to_ty) } TyKind::Function(from_fn_ptr) => { // We permit coercion of fn pointers to drop the // unsafe qualifier. self.coerce_from_fn_pointer(from_ty.clone(), from_fn_ptr, to_ty) } TyKind::Closure(_, from_substs) => { // Non-capturing closures are coercible to // function pointers or unsafe function pointers. // It cannot convert closures that require unsafe. self.coerce_closure_to_fn(from_ty.clone(), from_substs, to_ty) } _ => { // Otherwise, just use unification rules. self.unify_inner(&from_ty, to_ty) } } } fn coerce_ptr(&mut self, from_ty: Ty, to_ty: &Ty, to_mt: Mutability) -> InferResult { let (_is_ref, from_mt, from_inner) = match from_ty.kind(&Interner) { TyKind::Ref(mt, _, ty) => (true, mt, ty), TyKind::Raw(mt, ty) => (false, mt, ty), _ => return self.unify_inner(&from_ty, to_ty), }; coerce_mutabilities(*from_mt, to_mt)?; // Check that the types which they point at are compatible. let from_raw = TyKind::Raw(to_mt, from_inner.clone()).intern(&Interner); // FIXME: behavior differs based on is_ref once we're computing adjustments self.unify_inner(&from_raw, to_ty) } /// Reborrows `&mut A` to `&mut B` and `&(mut) A` to `&B`. /// To match `A` with `B`, autoderef will be performed, /// calling `deref`/`deref_mut` where necessary. fn coerce_ref(&mut self, from_ty: Ty, to_ty: &Ty, to_mt: Mutability) -> InferResult { match from_ty.kind(&Interner) { TyKind::Ref(mt, _, _) => { coerce_mutabilities(*mt, to_mt)?; } _ => return self.unify_inner(&from_ty, to_ty), }; // NOTE: this code is mostly copied and adapted from rustc, and // currently more complicated than necessary, carrying errors around // etc.. This complication will become necessary when we actually track // details of coercion errors though, so I think it's useful to leave // the structure like it is. let canonicalized = self.canonicalize(from_ty.clone()); let autoderef = autoderef::autoderef( self.db, self.resolver.krate(), InEnvironment { goal: canonicalized.value.clone(), environment: self.trait_env.env.clone(), }, ); let mut first_error = None; let mut found = None; for (autoderefs, referent_ty) in autoderef.enumerate() { if autoderefs == 0 { // Don't let this pass, otherwise it would cause // &T to autoref to &&T. continue; } let referent_ty = canonicalized.decanonicalize_ty(referent_ty.value); // At this point, we have deref'd `a` to `referent_ty`. So // imagine we are coercing from `&'a mut Vec` to `&'b mut [T]`. // In the autoderef loop for `&'a mut Vec`, we would get // three callbacks: // // - `&'a mut Vec` -- 0 derefs, just ignore it // - `Vec` -- 1 deref // - `[T]` -- 2 deref // // At each point after the first callback, we want to // check to see whether this would match out target type // (`&'b mut [T]`) if we autoref'd it. We can't just // compare the referent types, though, because we still // have to consider the mutability. E.g., in the case // we've been considering, we have an `&mut` reference, so // the `T` in `[T]` needs to be unified with equality. // // Therefore, we construct reference types reflecting what // the types will be after we do the final auto-ref and // compare those. Note that this means we use the target // mutability [1], since it may be that we are coercing // from `&mut T` to `&U`. let lt = static_lifetime(); // FIXME: handle lifetimes correctly, see rustc let derefd_from_ty = TyKind::Ref(to_mt, lt, referent_ty).intern(&Interner); match self.unify_inner(&derefd_from_ty, to_ty) { Ok(result) => { found = Some(result); break; } Err(err) => { if first_error.is_none() { first_error = Some(err); } } } } // Extract type or return an error. We return the first error // we got, which should be from relating the "base" type // (e.g., in example above, the failure from relating `Vec` // to the target type), since that should be the least // confusing. let result = match found { Some(d) => d, None => { let err = first_error.expect("coerce_borrowed_pointer had no error"); return Err(err); } }; Ok(result) } /// Attempts to coerce from the type of a Rust function item into a function pointer. fn coerce_from_fn_item(&mut self, from_ty: Ty, to_ty: &Ty) -> InferResult { match to_ty.kind(&Interner) { TyKind::Function(_) => { let from_sig = from_ty.callable_sig(self.db).expect("FnDef had no sig"); // FIXME check ABI: Intrinsics are not coercible to function pointers // FIXME Safe `#[target_feature]` functions are not assignable to safe fn pointers (RFC 2396) // FIXME rustc normalizes assoc types in the sig here, not sure if necessary let from_sig = from_sig.to_fn_ptr(); let from_fn_pointer = TyKind::Function(from_sig.clone()).intern(&Interner); let ok = self.coerce_from_safe_fn(from_fn_pointer, &from_sig, to_ty)?; Ok(ok) } _ => self.unify_inner(&from_ty, to_ty), } } fn coerce_from_fn_pointer( &mut self, from_ty: Ty, from_f: &FnPointer, to_ty: &Ty, ) -> InferResult { self.coerce_from_safe_fn(from_ty, from_f, to_ty) } fn coerce_from_safe_fn( &mut self, from_ty: Ty, from_fn_ptr: &FnPointer, to_ty: &Ty, ) -> InferResult { if let TyKind::Function(to_fn_ptr) = to_ty.kind(&Interner) { if let (chalk_ir::Safety::Safe, chalk_ir::Safety::Unsafe) = (from_fn_ptr.sig.safety, to_fn_ptr.sig.safety) { let from_unsafe = TyKind::Function(safe_to_unsafe_fn_ty(from_fn_ptr.clone())).intern(&Interner); return self.unify_inner(&from_unsafe, to_ty); } } self.unify_inner(&from_ty, to_ty) } /// Attempts to coerce from the type of a non-capturing closure into a /// function pointer. fn coerce_closure_to_fn( &mut self, from_ty: Ty, from_substs: &Substitution, to_ty: &Ty, ) -> InferResult { match to_ty.kind(&Interner) { TyKind::Function(fn_ty) /* if from_substs is non-capturing (FIXME) */ => { // We coerce the closure, which has fn type // `extern "rust-call" fn((arg0,arg1,...)) -> _` // to // `fn(arg0,arg1,...) -> _` // or // `unsafe fn(arg0,arg1,...) -> _` let safety = fn_ty.sig.safety; let pointer_ty = coerce_closure_fn_ty(from_substs, safety); self.unify_inner(&pointer_ty, to_ty) } _ => self.unify_inner(&from_ty, to_ty), } } /// Coerce a type using `from_ty: CoerceUnsized` /// /// See: https://doc.rust-lang.org/nightly/std/marker/trait.CoerceUnsized.html fn try_coerce_unsized(&mut self, from_ty: &Ty, to_ty: &Ty) -> InferResult { // These 'if' statements require some explanation. // The `CoerceUnsized` trait is special - it is only // possible to write `impl CoerceUnsized for A` where // A and B have 'matching' fields. This rules out the following // two types of blanket impls: // // `impl CoerceUnsized for SomeType` // `impl CoerceUnsized for T` // // Both of these trigger a special `CoerceUnsized`-related error (E0376) // // We can take advantage of this fact to avoid performing unecessary work. // If either `source` or `target` is a type variable, then any applicable impl // would need to be generic over the self-type (`impl CoerceUnsized for T`) // or generic over the `CoerceUnsized` type parameter (`impl CoerceUnsized for // SomeType`). // // However, these are exactly the kinds of impls which are forbidden by // the compiler! Therefore, we can be sure that coercion will always fail // when either the source or target type is a type variable. This allows us // to skip performing any trait selection, and immediately bail out. if from_ty.is_ty_var() { return Err(TypeError); } if to_ty.is_ty_var() { return Err(TypeError); } // Handle reborrows before trying to solve `Source: CoerceUnsized`. let coerce_from = match (from_ty.kind(&Interner), to_ty.kind(&Interner)) { (TyKind::Ref(from_mt, _, from_inner), TyKind::Ref(to_mt, _, _)) => { coerce_mutabilities(*from_mt, *to_mt)?; let lt = static_lifetime(); TyKind::Ref(*to_mt, lt, from_inner.clone()).intern(&Interner) } (TyKind::Ref(from_mt, _, from_inner), TyKind::Raw(to_mt, _)) => { coerce_mutabilities(*from_mt, *to_mt)?; TyKind::Raw(*to_mt, from_inner.clone()).intern(&Interner) } _ => from_ty.clone(), }; let krate = self.resolver.krate().unwrap(); let coerce_unsized_trait = match self.db.lang_item(krate, "coerce_unsized".into()) { Some(LangItemTarget::TraitId(trait_)) => trait_, _ => return Err(TypeError), }; let trait_ref = { let b = TyBuilder::trait_ref(self.db, coerce_unsized_trait); if b.remaining() != 2 { // The CoerceUnsized trait should have two generic params: Self and T. return Err(TypeError); } b.push(coerce_from.clone()).push(to_ty.clone()).build() }; let goal: InEnvironment = InEnvironment::new(&self.trait_env.env, trait_ref.cast(&Interner)); let canonicalized = self.canonicalize(goal); // FIXME: rustc's coerce_unsized is more specialized -- it only tries to // solve `CoerceUnsized` and `Unsize` goals at this point and leaves the // rest for later. Also, there's some logic about sized type variables. // Need to find out in what cases this is necessary let solution = self .db .trait_solve(krate, canonicalized.value.clone().cast(&Interner)) .ok_or(TypeError)?; match solution { Solution::Unique(v) => { canonicalized.apply_solution( &mut self.table, Canonical { binders: v.binders, // FIXME handle constraints value: v.value.subst, }, ); } _ => return Err(TypeError), }; Ok(InferOk {}) } } fn coerce_closure_fn_ty(closure_substs: &Substitution, safety: chalk_ir::Safety) -> Ty { let closure_sig = closure_substs.at(&Interner, 0).assert_ty_ref(&Interner).clone(); match closure_sig.kind(&Interner) { TyKind::Function(fn_ty) => TyKind::Function(FnPointer { num_binders: fn_ty.num_binders, sig: FnSig { safety, ..fn_ty.sig }, substitution: fn_ty.substitution.clone(), }) .intern(&Interner), _ => TyKind::Error.intern(&Interner), } } fn safe_to_unsafe_fn_ty(fn_ty: FnPointer) -> FnPointer { FnPointer { num_binders: fn_ty.num_binders, sig: FnSig { safety: chalk_ir::Safety::Unsafe, ..fn_ty.sig }, substitution: fn_ty.substitution, } } fn coerce_mutabilities(from: Mutability, to: Mutability) -> InferResult { match (from, to) { (Mutability::Mut, Mutability::Mut) | (Mutability::Mut, Mutability::Not) | (Mutability::Not, Mutability::Not) => Ok(InferOk {}), (Mutability::Not, Mutability::Mut) => Err(TypeError), } }