// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A wrapper around any Reader to treat it as an RNG. use container::Container; use result::{Ok, Err}; use io::Reader; use rand::Rng; /// An RNG that reads random bytes straight from a `Reader`. This will /// work best with an infinite reader, but this is not required. /// /// It will fail if it there is insufficient data to fulfill a request. /// /// # Example /// /// ```rust /// use std::rand::{reader, Rng}; /// use std::io::MemReader; /// /// let mut rng = reader::ReaderRng::new(MemReader::new(~[1,2,3,4,5,6,7,8])); /// println!("{:x}", rng.gen::()); /// ``` pub struct ReaderRng { priv reader: R } impl ReaderRng { /// Create a new `ReaderRng` from a `Reader`. pub fn new(r: R) -> ReaderRng { ReaderRng { reader: r } } } impl Rng for ReaderRng { fn next_u32(&mut self) -> u32 { // This is designed for speed: reading a LE integer on a LE // platform just involves blitting the bytes into the memory // of the u32, similarly for BE on BE; avoiding byteswapping. if cfg!(target_endian="little") { self.reader.read_le_u32().unwrap() } else { self.reader.read_be_u32().unwrap() } } fn next_u64(&mut self) -> u64 { // see above for explanation. if cfg!(target_endian="little") { self.reader.read_le_u64().unwrap() } else { self.reader.read_be_u64().unwrap() } } fn fill_bytes(&mut self, v: &mut [u8]) { if v.len() == 0 { return } match self.reader.read(v) { Ok(n) if n == v.len() => return, Ok(n) => fail!("ReaderRng.fill_bytes could not fill buffer: \ read {} out of {} bytes.", n, v.len()), Err(e) => fail!("ReaderRng.fill_bytes error: {}", e) } } } #[cfg(test)] mod test { use super::*; use io::MemReader; use cast; use rand::*; use prelude::*; #[test] fn test_reader_rng_u64() { // transmute from the target to avoid endianness concerns. let v = ~[1u64, 2u64, 3u64]; let bytes: ~[u8] = unsafe {cast::transmute(v)}; let mut rng = ReaderRng::new(MemReader::new(bytes)); assert_eq!(rng.next_u64(), 1); assert_eq!(rng.next_u64(), 2); assert_eq!(rng.next_u64(), 3); } #[test] fn test_reader_rng_u32() { // transmute from the target to avoid endianness concerns. let v = ~[1u32, 2u32, 3u32]; let bytes: ~[u8] = unsafe {cast::transmute(v)}; let mut rng = ReaderRng::new(MemReader::new(bytes)); assert_eq!(rng.next_u32(), 1); assert_eq!(rng.next_u32(), 2); assert_eq!(rng.next_u32(), 3); } #[test] fn test_reader_rng_fill_bytes() { let v = [1u8, 2, 3, 4, 5, 6, 7, 8]; let mut w = [0u8, .. 8]; let mut rng = ReaderRng::new(MemReader::new(v.to_owned())); rng.fill_bytes(w); assert_eq!(v, w); } #[test] #[should_fail] fn test_reader_rng_insufficient_bytes() { let mut rng = ReaderRng::new(MemReader::new(~[])); let mut v = [0u8, .. 3]; rng.fill_bytes(v); } }