#![deny(unused_must_use)] use proc_macro::Diagnostic; use quote::{format_ident, quote}; use syn::spanned::Spanned; use std::collections::{BTreeSet, HashMap}; /// Implements #[derive(SessionDiagnostic)], which allows for errors to be specified as a struct, independent /// from the actual diagnostics emitting code. /// ```ignore (pseudo-rust) /// # extern crate rustc_errors; /// # use rustc_errors::Applicability; /// # extern crate rustc_span; /// # use rustc_span::{symbol::Ident, Span}; /// # extern crate rust_middle; /// # use rustc_middle::ty::Ty; /// #[derive(SessionDiagnostic)] /// #[code = "E0505"] /// #[error = "cannot move out of {name} because it is borrowed"] /// pub struct MoveOutOfBorrowError<'tcx> { /// pub name: Ident, /// pub ty: Ty<'tcx>, /// #[label = "cannot move out of borrow"] /// pub span: Span, /// #[label = "`{ty}` first borrowed here"] /// pub other_span: Span, /// #[suggestion(message = "consider cloning here", code = "{name}.clone()")] /// pub opt_sugg: Option<(Span, Applicability)> /// } /// ``` /// Then, later, to emit the error: /// /// ```ignore (pseudo-rust) /// sess.emit_err(MoveOutOfBorrowError { /// expected, /// actual, /// span, /// other_span, /// opt_sugg: Some(suggestion, Applicability::MachineApplicable), /// }); /// ``` pub fn session_diagnostic_derive(s: synstructure::Structure<'_>) -> proc_macro2::TokenStream { // Names for the diagnostic we build and the session we build it from. let diag = format_ident!("diag"); let sess = format_ident!("sess"); SessionDiagnosticDerive::new(diag, sess, s).into_tokens() } // Checks whether the type name of `ty` matches `name`. // // Given some struct at a::b::c::Foo, this will return true for c::Foo, b::c::Foo, or // a::b::c::Foo. This reasonably allows qualified names to be used in the macro. fn type_matches_path(ty: &syn::Type, name: &[&str]) -> bool { if let syn::Type::Path(ty) = ty { ty.path .segments .iter() .map(|s| s.ident.to_string()) .rev() .zip(name.iter().rev()) .all(|(x, y)| &x.as_str() == y) } else { false } } /// The central struct for constructing the as_error method from an annotated struct. struct SessionDiagnosticDerive<'a> { structure: synstructure::Structure<'a>, builder: SessionDiagnosticDeriveBuilder<'a>, } impl std::convert::From for SessionDiagnosticDeriveError { fn from(e: syn::Error) -> Self { SessionDiagnosticDeriveError::SynError(e) } } /// Equivalent to rustc:errors::diagnostic::DiagnosticId, except stores the quoted expression to /// initialise the code with. enum DiagnosticId { Error(proc_macro2::TokenStream), Lint(proc_macro2::TokenStream), } #[derive(Debug)] enum SessionDiagnosticDeriveError { SynError(syn::Error), ErrorHandled, } impl SessionDiagnosticDeriveError { fn to_compile_error(self) -> proc_macro2::TokenStream { match self { SessionDiagnosticDeriveError::SynError(e) => e.to_compile_error(), SessionDiagnosticDeriveError::ErrorHandled => { // Return ! to avoid having to create a blank DiagnosticBuilder to return when an // error has already been emitted to the compiler. quote! { unreachable!() } } } } } fn span_err(span: impl proc_macro::MultiSpan, msg: &str) -> proc_macro::Diagnostic { Diagnostic::spanned(span, proc_macro::Level::Error, msg) } /// For methods that return a Result<_, SessionDiagnosticDeriveError>: emit a diagnostic on /// span $span with msg $msg (and, optionally, perform additional decoration using the FnOnce /// passed in `diag`). Then, return Err(ErrorHandled). macro_rules! throw_span_err { ($span:expr, $msg:expr) => {{ throw_span_err!($span, $msg, |diag| diag) }}; ($span:expr, $msg:expr, $f:expr) => {{ return Err(_throw_span_err($span, $msg, $f)); }}; } /// When possible, prefer using throw_span_err! over using this function directly. This only exists /// as a function to constrain `f` to an impl FnOnce. fn _throw_span_err( span: impl proc_macro::MultiSpan, msg: &str, f: impl FnOnce(proc_macro::Diagnostic) -> proc_macro::Diagnostic, ) -> SessionDiagnosticDeriveError { let diag = span_err(span, msg); f(diag).emit(); SessionDiagnosticDeriveError::ErrorHandled } impl<'a> SessionDiagnosticDerive<'a> { fn new(diag: syn::Ident, sess: syn::Ident, structure: synstructure::Structure<'a>) -> Self { // Build the mapping of field names to fields. This allows attributes to peek values from // other fields. let mut fields_map = HashMap::new(); // Convenience bindings. let ast = structure.ast(); if let syn::Data::Struct(syn::DataStruct { fields, .. }) = &ast.data { for field in fields.iter() { if let Some(ident) = &field.ident { fields_map.insert(ident.to_string(), field); } } } Self { builder: SessionDiagnosticDeriveBuilder { diag, sess, fields: fields_map, kind: None }, structure, } } fn into_tokens(self) -> proc_macro2::TokenStream { let SessionDiagnosticDerive { structure, mut builder } = self; let ast = structure.ast(); let attrs = &ast.attrs; let implementation = { if let syn::Data::Struct(..) = ast.data { let preamble = { let preamble = attrs.iter().map(|attr| { builder .generate_structure_code(attr) .unwrap_or_else(|v| v.to_compile_error()) }); quote! { #(#preamble)*; } }; let body = structure.each(|field_binding| { let field = field_binding.ast(); let result = field.attrs.iter().map(|attr| { builder .generate_field_code( attr, FieldInfo { vis: &field.vis, binding: field_binding, ty: &field.ty, span: &field.span(), }, ) .unwrap_or_else(|v| v.to_compile_error()) }); return quote! { #(#result);* }; }); // Finally, putting it altogether. match builder.kind { None => { span_err(ast.span().unwrap(), "`code` not specified") .help("use the [code = \"...\"] attribute to set this diagnostic's error code ") .emit(); SessionDiagnosticDeriveError::ErrorHandled.to_compile_error() } Some((kind, _)) => match kind { DiagnosticId::Lint(_lint) => todo!(), DiagnosticId::Error(code) => { let (diag, sess) = (&builder.diag, &builder.sess); quote! { let mut #diag = #sess.struct_err_with_code("", rustc_errors::DiagnosticId::Error(#code)); #preamble match self { #body } #diag } } }, } } else { span_err( ast.span().unwrap(), "`#[derive(SessionDiagnostic)]` can only be used on structs", ) .emit(); SessionDiagnosticDeriveError::ErrorHandled.to_compile_error() } }; let sess = &builder.sess; structure.gen_impl(quote! { gen impl<'__session_diagnostic_sess> rustc_session::SessionDiagnostic<'__session_diagnostic_sess> for @Self { fn into_diagnostic( self, #sess: &'__session_diagnostic_sess rustc_session::Session ) -> rustc_errors::DiagnosticBuilder<'__session_diagnostic_sess, rustc_errors::ErrorGuaranteed> { #implementation } } }) } } /// Field information passed to the builder. Deliberately omits attrs to discourage the generate_* /// methods from walking the attributes themselves. struct FieldInfo<'a> { vis: &'a syn::Visibility, binding: &'a synstructure::BindingInfo<'a>, ty: &'a syn::Type, span: &'a proc_macro2::Span, } /// Tracks persistent information required for building up the individual calls to diagnostic /// methods for the final generated method. This is a separate struct to SessionDerive only to be /// able to destructure and split self.builder and the self.structure up to avoid a double mut /// borrow later on. struct SessionDiagnosticDeriveBuilder<'a> { /// Name of the session parameter that's passed in to the as_error method. sess: syn::Ident, /// Store a map of field name to its corresponding field. This is built on construction of the /// derive builder. fields: HashMap, /// The identifier to use for the generated DiagnosticBuilder instance. diag: syn::Ident, /// Whether this is a lint or an error. This dictates how the diag will be initialised. Span /// stores at what Span the kind was first set at (for error reporting purposes, if the kind /// was multiply specified). kind: Option<(DiagnosticId, proc_macro2::Span)>, } impl<'a> SessionDiagnosticDeriveBuilder<'a> { fn generate_structure_code( &mut self, attr: &syn::Attribute, ) -> Result { Ok(match attr.parse_meta()? { syn::Meta::NameValue(syn::MetaNameValue { lit: syn::Lit::Str(s), .. }) => { let formatted_str = self.build_format(&s.value(), attr.span()); let name = attr.path.segments.last().unwrap().ident.to_string(); let name = name.as_str(); match name { "message" => { let diag = &self.diag; quote! { #diag.set_primary_message(#formatted_str); } } attr @ "error" | attr @ "lint" => { self.set_kind_once( if attr == "error" { DiagnosticId::Error(formatted_str) } else if attr == "lint" { DiagnosticId::Lint(formatted_str) } else { unreachable!() }, s.span(), )?; // This attribute is only allowed to be applied once, and the attribute // will be set in the initialisation code. quote! {} } other => throw_span_err!( attr.span().unwrap(), &format!( "`#[{} = ...]` is not a valid SessionDiagnostic struct attribute", other ) ), } } _ => todo!("unhandled meta kind"), }) } #[must_use] fn set_kind_once( &mut self, kind: DiagnosticId, span: proc_macro2::Span, ) -> Result<(), SessionDiagnosticDeriveError> { if self.kind.is_none() { self.kind = Some((kind, span)); Ok(()) } else { let kind_str = |kind: &DiagnosticId| match kind { DiagnosticId::Lint(..) => "lint", DiagnosticId::Error(..) => "error", }; let existing_kind = kind_str(&self.kind.as_ref().unwrap().0); let this_kind = kind_str(&kind); let msg = if this_kind == existing_kind { format!("`{}` specified multiple times", existing_kind) } else { format!("`{}` specified when `{}` was already specified", this_kind, existing_kind) }; throw_span_err!(span.unwrap(), &msg); } } fn generate_field_code( &mut self, attr: &syn::Attribute, info: FieldInfo<'_>, ) -> Result { let field_binding = &info.binding.binding; let option_ty = option_inner_ty(&info.ty); let generated_code = self.generate_non_option_field_code( attr, FieldInfo { vis: info.vis, binding: info.binding, ty: option_ty.unwrap_or(&info.ty), span: info.span, }, )?; Ok(if option_ty.is_none() { quote! { #generated_code } } else { quote! { if let Some(#field_binding) = #field_binding { #generated_code } } }) } fn generate_non_option_field_code( &mut self, attr: &syn::Attribute, info: FieldInfo<'_>, ) -> Result { let diag = &self.diag; let field_binding = &info.binding.binding; let name = attr.path.segments.last().unwrap().ident.to_string(); let name = name.as_str(); // At this point, we need to dispatch based on the attribute key + the // type. let meta = attr.parse_meta()?; Ok(match meta { syn::Meta::NameValue(syn::MetaNameValue { lit: syn::Lit::Str(s), .. }) => { let formatted_str = self.build_format(&s.value(), attr.span()); match name { "message" => { if type_matches_path(&info.ty, &["rustc_span", "Span"]) { quote! { #diag.set_span(*#field_binding); #diag.set_primary_message(#formatted_str); } } else { throw_span_err!( attr.span().unwrap(), "the `#[message = \"...\"]` attribute can only be applied to fields of type Span" ); } } "label" => { if type_matches_path(&info.ty, &["rustc_span", "Span"]) { quote! { #diag.span_label(*#field_binding, #formatted_str); } } else { throw_span_err!( attr.span().unwrap(), "The `#[label = ...]` attribute can only be applied to fields of type Span" ); } } other => throw_span_err!( attr.span().unwrap(), &format!( "`#[{} = ...]` is not a valid SessionDiagnostic field attribute", other ) ), } } syn::Meta::List(list) => { match list.path.segments.iter().last().unwrap().ident.to_string().as_str() { suggestion_kind @ "suggestion" | suggestion_kind @ "suggestion_short" | suggestion_kind @ "suggestion_hidden" | suggestion_kind @ "suggestion_verbose" => { // For suggest, we need to ensure we are running on a (Span, // Applicability) pair. let (span, applicability) = (|| match &info.ty { ty @ syn::Type::Path(..) if type_matches_path(ty, &["rustc_span", "Span"]) => { let binding = &info.binding.binding; Ok(( quote!(*#binding), quote!(rustc_errors::Applicability::Unspecified), )) } syn::Type::Tuple(tup) => { let mut span_idx = None; let mut applicability_idx = None; for (idx, elem) in tup.elems.iter().enumerate() { if type_matches_path(elem, &["rustc_span", "Span"]) { if span_idx.is_none() { span_idx = Some(syn::Index::from(idx)); } else { throw_span_err!( info.span.unwrap(), "type of field annotated with `#[suggestion(...)]` contains more than one Span" ); } } else if type_matches_path( elem, &["rustc_errors", "Applicability"], ) { if applicability_idx.is_none() { applicability_idx = Some(syn::Index::from(idx)); } else { throw_span_err!( info.span.unwrap(), "type of field annotated with `#[suggestion(...)]` contains more than one Applicability" ); } } } if let Some(span_idx) = span_idx { let binding = &info.binding.binding; let span = quote!(#binding.#span_idx); let applicability = applicability_idx .map( |applicability_idx| quote!(#binding.#applicability_idx), ) .unwrap_or_else(|| { quote!(rustc_errors::Applicability::Unspecified) }); return Ok((span, applicability)); } throw_span_err!( info.span.unwrap(), "wrong types for suggestion", |diag| { diag.help("#[suggestion(...)] on a tuple field must be applied to fields of type (Span, Applicability)") } ); } _ => throw_span_err!( info.span.unwrap(), "wrong field type for suggestion", |diag| { diag.help("#[suggestion(...)] should be applied to fields of type Span or (Span, Applicability)") } ), })()?; // Now read the key-value pairs. let mut msg = None; let mut code = None; for arg in list.nested.iter() { if let syn::NestedMeta::Meta(syn::Meta::NameValue(arg_name_value)) = arg { if let syn::MetaNameValue { lit: syn::Lit::Str(s), .. } = arg_name_value { let name = arg_name_value .path .segments .last() .unwrap() .ident .to_string(); let name = name.as_str(); let formatted_str = self.build_format(&s.value(), arg.span()); match name { "message" => { msg = Some(formatted_str); } "code" => { code = Some(formatted_str); } other => throw_span_err!( arg.span().unwrap(), &format!( "`{}` is not a valid key for `#[suggestion(...)]`", other ) ), } } } } let msg = if let Some(msg) = msg { quote!(#msg.as_str()) } else { throw_span_err!( list.span().unwrap(), "missing suggestion message", |diag| { diag.help("provide a suggestion message using #[suggestion(message = \"...\")]") } ); }; let code = code.unwrap_or_else(|| quote! { String::new() }); // Now build it out: let suggestion_method = format_ident!("span_{}", suggestion_kind); quote! { #diag.#suggestion_method(#span, #msg, #code, #applicability); } } other => throw_span_err!( list.span().unwrap(), &format!("invalid annotation list `#[{}(...)]`", other) ), } } _ => panic!("unhandled meta kind"), }) } /// In the strings in the attributes supplied to this macro, we want callers to be able to /// reference fields in the format string. Take this, for example: /// ```ignore (not-usage-example) /// struct Point { /// #[error = "Expected a point greater than ({x}, {y})"] /// x: i32, /// y: i32, /// } /// ``` /// We want to automatically pick up that {x} refers `self.x` and {y} refers to `self.y`, then /// generate this call to format!: /// ```ignore (not-usage-example) /// format!("Expected a point greater than ({x}, {y})", x = self.x, y = self.y) /// ``` /// This function builds the entire call to format!. fn build_format(&self, input: &str, span: proc_macro2::Span) -> proc_macro2::TokenStream { // This set is used later to generate the final format string. To keep builds reproducible, // the iteration order needs to be deterministic, hence why we use a BTreeSet here instead // of a HashSet. let mut referenced_fields: BTreeSet = BTreeSet::new(); // At this point, we can start parsing the format string. let mut it = input.chars().peekable(); // Once the start of a format string has been found, process the format string and spit out // the referenced fields. Leaves `it` sitting on the closing brace of the format string, so the // next call to `it.next()` retrieves the next character. while let Some(c) = it.next() { if c == '{' && *it.peek().unwrap_or(&'\0') != '{' { let mut eat_argument = || -> Option { let mut result = String::new(); // Format specifiers look like // format := '{' [ argument ] [ ':' format_spec ] '}' . // Therefore, we only need to eat until ':' or '}' to find the argument. while let Some(c) = it.next() { result.push(c); let next = *it.peek().unwrap_or(&'\0'); if next == '}' { break; } else if next == ':' { // Eat the ':' character. assert_eq!(it.next().unwrap(), ':'); break; } } // Eat until (and including) the matching '}' while it.next()? != '}' { continue; } Some(result) }; if let Some(referenced_field) = eat_argument() { referenced_fields.insert(referenced_field); } } } // At this point, `referenced_fields` contains a set of the unique fields that were // referenced in the format string. Generate the corresponding "x = self.x" format // string parameters: let args = referenced_fields.into_iter().map(|field: String| { let field_ident = format_ident!("{}", field); let value = if self.fields.contains_key(&field) { quote! { &self.#field_ident } } else { // This field doesn't exist. Emit a diagnostic. Diagnostic::spanned( span.unwrap(), proc_macro::Level::Error, format!("`{}` doesn't refer to a field on this type", field), ) .emit(); quote! { "{#field}" } }; quote! { #field_ident = #value } }); quote! { format!(#input #(,#args)*) } } } /// If `ty` is an Option, returns Some(inner type). Else, returns None. fn option_inner_ty(ty: &syn::Type) -> Option<&syn::Type> { if type_matches_path(ty, &["std", "option", "Option"]) { if let syn::Type::Path(ty_path) = ty { let path = &ty_path.path; let ty = path.segments.iter().last().unwrap(); if let syn::PathArguments::AngleBracketed(bracketed) = &ty.arguments { if bracketed.args.len() == 1 { if let syn::GenericArgument::Type(ty) = &bracketed.args[0] { return Some(ty); } } } } } None }