use if_chain::if_chain; use rustc::declare_lint_pass; use rustc::lint::{LateContext, LateLintPass, LintArray, LintPass}; use rustc_errors::Applicability; use rustc_hir::*; use rustc_session::declare_tool_lint; use rustc_span::source_map::Spanned; use syntax::ast::RangeLimits; use crate::utils::sugg::Sugg; use crate::utils::{higher, SpanlessEq}; use crate::utils::{is_integer_const, snippet, snippet_opt, span_lint, span_lint_and_then}; declare_clippy_lint! { /// **What it does:** Checks for zipping a collection with the range of /// `0.._.len()`. /// /// **Why is this bad?** The code is better expressed with `.enumerate()`. /// /// **Known problems:** None. /// /// **Example:** /// ```rust /// # let x = vec![1]; /// x.iter().zip(0..x.len()); /// ``` /// Could be written as /// ```rust /// # let x = vec![1]; /// x.iter().enumerate(); /// ``` pub RANGE_ZIP_WITH_LEN, complexity, "zipping iterator with a range when `enumerate()` would do" } declare_clippy_lint! { /// **What it does:** Checks for exclusive ranges where 1 is added to the /// upper bound, e.g., `x..(y+1)`. /// /// **Why is this bad?** The code is more readable with an inclusive range /// like `x..=y`. /// /// **Known problems:** Will add unnecessary pair of parentheses when the /// expression is not wrapped in a pair but starts with a opening parenthesis /// and ends with a closing one. /// I.e., `let _ = (f()+1)..(f()+1)` results in `let _ = ((f()+1)..=f())`. /// /// **Example:** /// ```rust,ignore /// for x..(y+1) { .. } /// ``` /// Could be written as /// ```rust,ignore /// for x..=y { .. } /// ``` pub RANGE_PLUS_ONE, complexity, "`x..(y+1)` reads better as `x..=y`" } declare_clippy_lint! { /// **What it does:** Checks for inclusive ranges where 1 is subtracted from /// the upper bound, e.g., `x..=(y-1)`. /// /// **Why is this bad?** The code is more readable with an exclusive range /// like `x..y`. /// /// **Known problems:** None. /// /// **Example:** /// ```rust,ignore /// for x..=(y-1) { .. } /// ``` /// Could be written as /// ```rust,ignore /// for x..y { .. } /// ``` pub RANGE_MINUS_ONE, complexity, "`x..=(y-1)` reads better as `x..y`" } declare_lint_pass!(Ranges => [ RANGE_ZIP_WITH_LEN, RANGE_PLUS_ONE, RANGE_MINUS_ONE ]); impl<'a, 'tcx> LateLintPass<'a, 'tcx> for Ranges { fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr<'_>) { if let ExprKind::MethodCall(ref path, _, ref args) = expr.kind { let name = path.ident.as_str(); if name == "zip" && args.len() == 2 { let iter = &args[0].kind; let zip_arg = &args[1]; if_chain! { // `.iter()` call if let ExprKind::MethodCall(ref iter_path, _, ref iter_args ) = *iter; if iter_path.ident.name == sym!(iter); // range expression in `.zip()` call: `0..x.len()` if let Some(higher::Range { start: Some(start), end: Some(end), .. }) = higher::range(cx, zip_arg); if is_integer_const(cx, start, 0); // `.len()` call if let ExprKind::MethodCall(ref len_path, _, ref len_args) = end.kind; if len_path.ident.name == sym!(len) && len_args.len() == 1; // `.iter()` and `.len()` called on same `Path` if let ExprKind::Path(QPath::Resolved(_, ref iter_path)) = iter_args[0].kind; if let ExprKind::Path(QPath::Resolved(_, ref len_path)) = len_args[0].kind; if SpanlessEq::new(cx).eq_path_segments(&iter_path.segments, &len_path.segments); then { span_lint(cx, RANGE_ZIP_WITH_LEN, expr.span, &format!("It is more idiomatic to use `{}.iter().enumerate()`", snippet(cx, iter_args[0].span, "_"))); } } } } check_exclusive_range_plus_one(cx, expr); check_inclusive_range_minus_one(cx, expr); } } // exclusive range plus one: `x..(y+1)` fn check_exclusive_range_plus_one(cx: &LateContext<'_, '_>, expr: &Expr<'_>) { if_chain! { if let Some(higher::Range { start, end: Some(end), limits: RangeLimits::HalfOpen }) = higher::range(cx, expr); if let Some(y) = y_plus_one(cx, end); then { let span = if expr.span.from_expansion() { expr.span .ctxt() .outer_expn_data() .call_site } else { expr.span }; span_lint_and_then( cx, RANGE_PLUS_ONE, span, "an inclusive range would be more readable", |db| { let start = start.map_or(String::new(), |x| Sugg::hir(cx, x, "x").to_string()); let end = Sugg::hir(cx, y, "y"); if let Some(is_wrapped) = &snippet_opt(cx, span) { if is_wrapped.starts_with('(') && is_wrapped.ends_with(')') { db.span_suggestion( span, "use", format!("({}..={})", start, end), Applicability::MaybeIncorrect, ); } else { db.span_suggestion( span, "use", format!("{}..={}", start, end), Applicability::MachineApplicable, // snippet ); } } }, ); } } } // inclusive range minus one: `x..=(y-1)` fn check_inclusive_range_minus_one(cx: &LateContext<'_, '_>, expr: &Expr<'_>) { if_chain! { if let Some(higher::Range { start, end: Some(end), limits: RangeLimits::Closed }) = higher::range(cx, expr); if let Some(y) = y_minus_one(cx, end); then { span_lint_and_then( cx, RANGE_MINUS_ONE, expr.span, "an exclusive range would be more readable", |db| { let start = start.map_or(String::new(), |x| Sugg::hir(cx, x, "x").to_string()); let end = Sugg::hir(cx, y, "y"); db.span_suggestion( expr.span, "use", format!("{}..{}", start, end), Applicability::MachineApplicable, // snippet ); }, ); } } } fn y_plus_one<'t>(cx: &LateContext<'_, '_>, expr: &'t Expr<'_>) -> Option<&'t Expr<'t>> { match expr.kind { ExprKind::Binary( Spanned { node: BinOpKind::Add, .. }, ref lhs, ref rhs, ) => { if is_integer_const(cx, lhs, 1) { Some(rhs) } else if is_integer_const(cx, rhs, 1) { Some(lhs) } else { None } }, _ => None, } } fn y_minus_one<'t>(cx: &LateContext<'_, '_>, expr: &'t Expr<'_>) -> Option<&'t Expr<'t>> { match expr.kind { ExprKind::Binary( Spanned { node: BinOpKind::Sub, .. }, ref lhs, ref rhs, ) if is_integer_const(cx, rhs, 1) => Some(lhs), _ => None, } }