// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use common; use llvm; use llvm::{ContextRef, ModuleRef, ValueRef}; use rustc::dep_graph::DepGraphSafe; use rustc::hir; use rustc::hir::def_id::DefId; use debuginfo; use callee; use base; use declare; use monomorphize::Instance; use monomorphize::partitioning::CodegenUnit; use type_::Type; use type_of::PointeeInfo; use rustc_data_structures::base_n; use rustc::mir::mono::Stats; use rustc::session::config::{self, NoDebugInfo}; use rustc::session::Session; use rustc::ty::layout::{LayoutError, LayoutOf, Size, TyLayout}; use rustc::ty::{self, Ty, TyCtxt}; use rustc::util::nodemap::FxHashMap; use std::ffi::{CStr, CString}; use std::cell::{Cell, RefCell}; use std::ptr; use std::iter; use std::str; use std::sync::Arc; use syntax::symbol::InternedString; use abi::Abi; /// There is one `CodegenCx` per compilation unit. Each one has its own LLVM /// `ContextRef` so that several compilation units may be optimized in parallel. /// All other LLVM data structures in the `CodegenCx` are tied to that `ContextRef`. pub struct CodegenCx<'a, 'tcx: 'a> { pub tcx: TyCtxt<'a, 'tcx, 'tcx>, pub check_overflow: bool, pub use_dll_storage_attrs: bool, pub tls_model: llvm::ThreadLocalMode, pub llmod: ModuleRef, pub llcx: ContextRef, pub stats: RefCell, pub codegen_unit: Arc>, /// Cache instances of monomorphic and polymorphic items pub instances: RefCell, ValueRef>>, /// Cache generated vtables pub vtables: RefCell, Option>), ValueRef>>, /// Cache of constant strings, pub const_cstr_cache: RefCell>, /// Reverse-direction for const ptrs cast from globals. /// Key is a ValueRef holding a *T, /// Val is a ValueRef holding a *[T]. /// /// Needed because LLVM loses pointer->pointee association /// when we ptrcast, and we have to ptrcast during translation /// of a [T] const because we form a slice, a (*T,usize) pair, not /// a pointer to an LLVM array type. Similar for trait objects. pub const_unsized: RefCell>, /// Cache of emitted const globals (value -> global) pub const_globals: RefCell>, /// Mapping from static definitions to their DefId's. pub statics: RefCell>, /// List of globals for static variables which need to be passed to the /// LLVM function ReplaceAllUsesWith (RAUW) when translation is complete. /// (We have to make sure we don't invalidate any ValueRefs referring /// to constants.) pub statics_to_rauw: RefCell>, /// Statics that will be placed in the llvm.used variable /// See http://llvm.org/docs/LangRef.html#the-llvm-used-global-variable for details pub used_statics: RefCell>, pub lltypes: RefCell, Option), Type>>, pub scalar_lltypes: RefCell, Type>>, pub pointee_infos: RefCell, Size), Option>>, pub isize_ty: Type, pub dbg_cx: Option>, eh_personality: Cell>, eh_unwind_resume: Cell>, pub rust_try_fn: Cell>, intrinsics: RefCell>, /// A counter that is used for generating local symbol names local_gen_sym_counter: Cell, } impl<'a, 'tcx> DepGraphSafe for CodegenCx<'a, 'tcx> { } pub fn get_reloc_model(sess: &Session) -> llvm::RelocMode { let reloc_model_arg = match sess.opts.cg.relocation_model { Some(ref s) => &s[..], None => &sess.target.target.options.relocation_model[..], }; match ::back::write::RELOC_MODEL_ARGS.iter().find( |&&arg| arg.0 == reloc_model_arg) { Some(x) => x.1, _ => { sess.err(&format!("{:?} is not a valid relocation mode", reloc_model_arg)); sess.abort_if_errors(); bug!(); } } } fn get_tls_model(sess: &Session) -> llvm::ThreadLocalMode { let tls_model_arg = match sess.opts.debugging_opts.tls_model { Some(ref s) => &s[..], None => &sess.target.target.options.tls_model[..], }; match ::back::write::TLS_MODEL_ARGS.iter().find( |&&arg| arg.0 == tls_model_arg) { Some(x) => x.1, _ => { sess.err(&format!("{:?} is not a valid TLS model", tls_model_arg)); sess.abort_if_errors(); bug!(); } } } fn is_any_library(sess: &Session) -> bool { sess.crate_types.borrow().iter().any(|ty| { *ty != config::CrateTypeExecutable }) } pub fn is_pie_binary(sess: &Session) -> bool { !is_any_library(sess) && get_reloc_model(sess) == llvm::RelocMode::PIC } pub unsafe fn create_context_and_module(sess: &Session, mod_name: &str) -> (ContextRef, ModuleRef) { let llcx = llvm::LLVMRustContextCreate(sess.fewer_names()); let mod_name = CString::new(mod_name).unwrap(); let llmod = llvm::LLVMModuleCreateWithNameInContext(mod_name.as_ptr(), llcx); // Ensure the data-layout values hardcoded remain the defaults. if sess.target.target.options.is_builtin { let tm = ::back::write::create_target_machine(sess); llvm::LLVMRustSetDataLayoutFromTargetMachine(llmod, tm); llvm::LLVMRustDisposeTargetMachine(tm); let data_layout = llvm::LLVMGetDataLayout(llmod); let data_layout = str::from_utf8(CStr::from_ptr(data_layout).to_bytes()) .ok().expect("got a non-UTF8 data-layout from LLVM"); // Unfortunately LLVM target specs change over time, and right now we // don't have proper support to work with any more than one // `data_layout` than the one that is in the rust-lang/rust repo. If // this compiler is configured against a custom LLVM, we may have a // differing data layout, even though we should update our own to use // that one. // // As an interim hack, if CFG_LLVM_ROOT is not an empty string then we // disable this check entirely as we may be configured with something // that has a different target layout. // // Unsure if this will actually cause breakage when rustc is configured // as such. // // FIXME(#34960) let cfg_llvm_root = option_env!("CFG_LLVM_ROOT").unwrap_or(""); let custom_llvm_used = cfg_llvm_root.trim() != ""; if !custom_llvm_used && sess.target.target.data_layout != data_layout { bug!("data-layout for builtin `{}` target, `{}`, \ differs from LLVM default, `{}`", sess.target.target.llvm_target, sess.target.target.data_layout, data_layout); } } let data_layout = CString::new(&sess.target.target.data_layout[..]).unwrap(); llvm::LLVMSetDataLayout(llmod, data_layout.as_ptr()); let llvm_target = sess.target.target.llvm_target.as_bytes(); let llvm_target = CString::new(llvm_target).unwrap(); llvm::LLVMRustSetNormalizedTarget(llmod, llvm_target.as_ptr()); if is_pie_binary(sess) { llvm::LLVMRustSetModulePIELevel(llmod); } (llcx, llmod) } impl<'a, 'tcx> CodegenCx<'a, 'tcx> { pub fn new(tcx: TyCtxt<'a, 'tcx, 'tcx>, codegen_unit: Arc>, llmod_id: &str) -> CodegenCx<'a, 'tcx> { // An interesting part of Windows which MSVC forces our hand on (and // apparently MinGW didn't) is the usage of `dllimport` and `dllexport` // attributes in LLVM IR as well as native dependencies (in C these // correspond to `__declspec(dllimport)`). // // Whenever a dynamic library is built by MSVC it must have its public // interface specified by functions tagged with `dllexport` or otherwise // they're not available to be linked against. This poses a few problems // for the compiler, some of which are somewhat fundamental, but we use // the `use_dll_storage_attrs` variable below to attach the `dllexport` // attribute to all LLVM functions that are exported e.g. they're // already tagged with external linkage). This is suboptimal for a few // reasons: // // * If an object file will never be included in a dynamic library, // there's no need to attach the dllexport attribute. Most object // files in Rust are not destined to become part of a dll as binaries // are statically linked by default. // * If the compiler is emitting both an rlib and a dylib, the same // source object file is currently used but with MSVC this may be less // feasible. The compiler may be able to get around this, but it may // involve some invasive changes to deal with this. // // The flipside of this situation is that whenever you link to a dll and // you import a function from it, the import should be tagged with // `dllimport`. At this time, however, the compiler does not emit // `dllimport` for any declarations other than constants (where it is // required), which is again suboptimal for even more reasons! // // * Calling a function imported from another dll without using // `dllimport` causes the linker/compiler to have extra overhead (one // `jmp` instruction on x86) when calling the function. // * The same object file may be used in different circumstances, so a // function may be imported from a dll if the object is linked into a // dll, but it may be just linked against if linked into an rlib. // * The compiler has no knowledge about whether native functions should // be tagged dllimport or not. // // For now the compiler takes the perf hit (I do not have any numbers to // this effect) by marking very little as `dllimport` and praying the // linker will take care of everything. Fixing this problem will likely // require adding a few attributes to Rust itself (feature gated at the // start) and then strongly recommending static linkage on MSVC! let use_dll_storage_attrs = tcx.sess.target.target.options.is_like_msvc; let check_overflow = tcx.sess.overflow_checks(); let tls_model = get_tls_model(&tcx.sess); unsafe { let (llcx, llmod) = create_context_and_module(&tcx.sess, &llmod_id[..]); let dbg_cx = if tcx.sess.opts.debuginfo != NoDebugInfo { let dctx = debuginfo::CrateDebugContext::new(llmod); debuginfo::metadata::compile_unit_metadata(tcx, codegen_unit.name(), &dctx); Some(dctx) } else { None }; let mut cx = CodegenCx { tcx, check_overflow, use_dll_storage_attrs, tls_model, llmod, llcx, stats: RefCell::new(Stats::default()), codegen_unit, instances: RefCell::new(FxHashMap()), vtables: RefCell::new(FxHashMap()), const_cstr_cache: RefCell::new(FxHashMap()), const_unsized: RefCell::new(FxHashMap()), const_globals: RefCell::new(FxHashMap()), statics: RefCell::new(FxHashMap()), statics_to_rauw: RefCell::new(Vec::new()), used_statics: RefCell::new(Vec::new()), lltypes: RefCell::new(FxHashMap()), scalar_lltypes: RefCell::new(FxHashMap()), pointee_infos: RefCell::new(FxHashMap()), isize_ty: Type::from_ref(ptr::null_mut()), dbg_cx, eh_personality: Cell::new(None), eh_unwind_resume: Cell::new(None), rust_try_fn: Cell::new(None), intrinsics: RefCell::new(FxHashMap()), local_gen_sym_counter: Cell::new(0), }; cx.isize_ty = Type::isize(&cx); cx } } pub fn into_stats(self) -> Stats { self.stats.into_inner() } } impl<'b, 'tcx> CodegenCx<'b, 'tcx> { pub fn sess<'a>(&'a self) -> &'a Session { &self.tcx.sess } pub fn get_intrinsic(&self, key: &str) -> ValueRef { if let Some(v) = self.intrinsics.borrow().get(key).cloned() { return v; } match declare_intrinsic(self, key) { Some(v) => return v, None => bug!("unknown intrinsic '{}'", key) } } /// Generate a new symbol name with the given prefix. This symbol name must /// only be used for definitions with `internal` or `private` linkage. pub fn generate_local_symbol_name(&self, prefix: &str) -> String { let idx = self.local_gen_sym_counter.get(); self.local_gen_sym_counter.set(idx + 1); // Include a '.' character, so there can be no accidental conflicts with // user defined names let mut name = String::with_capacity(prefix.len() + 6); name.push_str(prefix); name.push_str("."); base_n::push_str(idx as u128, base_n::ALPHANUMERIC_ONLY, &mut name); name } pub fn eh_personality(&self) -> ValueRef { // The exception handling personality function. // // If our compilation unit has the `eh_personality` lang item somewhere // within it, then we just need to translate that. Otherwise, we're // building an rlib which will depend on some upstream implementation of // this function, so we just codegen a generic reference to it. We don't // specify any of the types for the function, we just make it a symbol // that LLVM can later use. // // Note that MSVC is a little special here in that we don't use the // `eh_personality` lang item at all. Currently LLVM has support for // both Dwarf and SEH unwind mechanisms for MSVC targets and uses the // *name of the personality function* to decide what kind of unwind side // tables/landing pads to emit. It looks like Dwarf is used by default, // injecting a dependency on the `_Unwind_Resume` symbol for resuming // an "exception", but for MSVC we want to force SEH. This means that we // can't actually have the personality function be our standard // `rust_eh_personality` function, but rather we wired it up to the // CRT's custom personality function, which forces LLVM to consider // landing pads as "landing pads for SEH". if let Some(llpersonality) = self.eh_personality.get() { return llpersonality } let tcx = self.tcx; let llfn = match tcx.lang_items().eh_personality() { Some(def_id) if !base::wants_msvc_seh(self.sess()) => { callee::resolve_and_get_fn(self, def_id, tcx.intern_substs(&[])) } _ => { let name = if base::wants_msvc_seh(self.sess()) { "__CxxFrameHandler3" } else { "rust_eh_personality" }; let fty = Type::variadic_func(&[], &Type::i32(self)); declare::declare_cfn(self, name, fty) } }; self.eh_personality.set(Some(llfn)); llfn } // Returns a ValueRef of the "eh_unwind_resume" lang item if one is defined, // otherwise declares it as an external function. pub fn eh_unwind_resume(&self) -> ValueRef { use attributes; let unwresume = &self.eh_unwind_resume; if let Some(llfn) = unwresume.get() { return llfn; } let tcx = self.tcx; assert!(self.sess().target.target.options.custom_unwind_resume); if let Some(def_id) = tcx.lang_items().eh_unwind_resume() { let llfn = callee::resolve_and_get_fn(self, def_id, tcx.intern_substs(&[])); unwresume.set(Some(llfn)); return llfn; } let ty = tcx.mk_fn_ptr(ty::Binder(tcx.mk_fn_sig( iter::once(tcx.mk_mut_ptr(tcx.types.u8)), tcx.types.never, false, hir::Unsafety::Unsafe, Abi::C ))); let llfn = declare::declare_fn(self, "rust_eh_unwind_resume", ty); attributes::unwind(llfn, true); unwresume.set(Some(llfn)); llfn } pub fn type_needs_drop(&self, ty: Ty<'tcx>) -> bool { common::type_needs_drop(self.tcx, ty) } pub fn type_is_sized(&self, ty: Ty<'tcx>) -> bool { common::type_is_sized(self.tcx, ty) } pub fn type_is_freeze(&self, ty: Ty<'tcx>) -> bool { common::type_is_freeze(self.tcx, ty) } pub fn type_has_metadata(&self, ty: Ty<'tcx>) -> bool { use syntax_pos::DUMMY_SP; if ty.is_sized(self.tcx.at(DUMMY_SP), ty::ParamEnv::reveal_all()) { return false; } let tail = self.tcx.struct_tail(ty); match tail.sty { ty::TyForeign(..) => false, ty::TyStr | ty::TySlice(..) | ty::TyDynamic(..) => true, _ => bug!("unexpected unsized tail: {:?}", tail.sty), } } } impl<'a, 'tcx> ty::layout::HasDataLayout for &'a CodegenCx<'a, 'tcx> { fn data_layout(&self) -> &ty::layout::TargetDataLayout { &self.tcx.data_layout } } impl<'a, 'tcx> ty::layout::HasTyCtxt<'tcx> for &'a CodegenCx<'a, 'tcx> { fn tcx<'b>(&'b self) -> TyCtxt<'b, 'tcx, 'tcx> { self.tcx } } impl<'a, 'tcx> LayoutOf> for &'a CodegenCx<'a, 'tcx> { type TyLayout = TyLayout<'tcx>; fn layout_of(self, ty: Ty<'tcx>) -> Self::TyLayout { self.tcx.layout_of(ty::ParamEnv::reveal_all().and(ty)) .unwrap_or_else(|e| match e { LayoutError::SizeOverflow(_) => self.sess().fatal(&e.to_string()), _ => bug!("failed to get layout for `{}`: {}", ty, e) }) } } /// Declare any llvm intrinsics that you might need fn declare_intrinsic(cx: &CodegenCx, key: &str) -> Option { macro_rules! ifn { ($name:expr, fn() -> $ret:expr) => ( if key == $name { let f = declare::declare_cfn(cx, $name, Type::func(&[], &$ret)); llvm::SetUnnamedAddr(f, false); cx.intrinsics.borrow_mut().insert($name, f.clone()); return Some(f); } ); ($name:expr, fn(...) -> $ret:expr) => ( if key == $name { let f = declare::declare_cfn(cx, $name, Type::variadic_func(&[], &$ret)); llvm::SetUnnamedAddr(f, false); cx.intrinsics.borrow_mut().insert($name, f.clone()); return Some(f); } ); ($name:expr, fn($($arg:expr),*) -> $ret:expr) => ( if key == $name { let f = declare::declare_cfn(cx, $name, Type::func(&[$($arg),*], &$ret)); llvm::SetUnnamedAddr(f, false); cx.intrinsics.borrow_mut().insert($name, f.clone()); return Some(f); } ); } macro_rules! mk_struct { ($($field_ty:expr),*) => (Type::struct_(cx, &[$($field_ty),*], false)) } let i8p = Type::i8p(cx); let void = Type::void(cx); let i1 = Type::i1(cx); let t_i8 = Type::i8(cx); let t_i16 = Type::i16(cx); let t_i32 = Type::i32(cx); let t_i64 = Type::i64(cx); let t_i128 = Type::i128(cx); let t_f32 = Type::f32(cx); let t_f64 = Type::f64(cx); ifn!("llvm.memcpy.p0i8.p0i8.i16", fn(i8p, i8p, t_i16, t_i32, i1) -> void); ifn!("llvm.memcpy.p0i8.p0i8.i32", fn(i8p, i8p, t_i32, t_i32, i1) -> void); ifn!("llvm.memcpy.p0i8.p0i8.i64", fn(i8p, i8p, t_i64, t_i32, i1) -> void); ifn!("llvm.memmove.p0i8.p0i8.i16", fn(i8p, i8p, t_i16, t_i32, i1) -> void); ifn!("llvm.memmove.p0i8.p0i8.i32", fn(i8p, i8p, t_i32, t_i32, i1) -> void); ifn!("llvm.memmove.p0i8.p0i8.i64", fn(i8p, i8p, t_i64, t_i32, i1) -> void); ifn!("llvm.memset.p0i8.i16", fn(i8p, t_i8, t_i16, t_i32, i1) -> void); ifn!("llvm.memset.p0i8.i32", fn(i8p, t_i8, t_i32, t_i32, i1) -> void); ifn!("llvm.memset.p0i8.i64", fn(i8p, t_i8, t_i64, t_i32, i1) -> void); ifn!("llvm.trap", fn() -> void); ifn!("llvm.debugtrap", fn() -> void); ifn!("llvm.frameaddress", fn(t_i32) -> i8p); ifn!("llvm.powi.f32", fn(t_f32, t_i32) -> t_f32); ifn!("llvm.powi.f64", fn(t_f64, t_i32) -> t_f64); ifn!("llvm.pow.f32", fn(t_f32, t_f32) -> t_f32); ifn!("llvm.pow.f64", fn(t_f64, t_f64) -> t_f64); ifn!("llvm.sqrt.f32", fn(t_f32) -> t_f32); ifn!("llvm.sqrt.f64", fn(t_f64) -> t_f64); ifn!("llvm.sin.f32", fn(t_f32) -> t_f32); ifn!("llvm.sin.f64", fn(t_f64) -> t_f64); ifn!("llvm.cos.f32", fn(t_f32) -> t_f32); ifn!("llvm.cos.f64", fn(t_f64) -> t_f64); ifn!("llvm.exp.f32", fn(t_f32) -> t_f32); ifn!("llvm.exp.f64", fn(t_f64) -> t_f64); ifn!("llvm.exp2.f32", fn(t_f32) -> t_f32); ifn!("llvm.exp2.f64", fn(t_f64) -> t_f64); ifn!("llvm.log.f32", fn(t_f32) -> t_f32); ifn!("llvm.log.f64", fn(t_f64) -> t_f64); ifn!("llvm.log10.f32", fn(t_f32) -> t_f32); ifn!("llvm.log10.f64", fn(t_f64) -> t_f64); ifn!("llvm.log2.f32", fn(t_f32) -> t_f32); ifn!("llvm.log2.f64", fn(t_f64) -> t_f64); ifn!("llvm.fma.f32", fn(t_f32, t_f32, t_f32) -> t_f32); ifn!("llvm.fma.f64", fn(t_f64, t_f64, t_f64) -> t_f64); ifn!("llvm.fabs.f32", fn(t_f32) -> t_f32); ifn!("llvm.fabs.f64", fn(t_f64) -> t_f64); ifn!("llvm.floor.f32", fn(t_f32) -> t_f32); ifn!("llvm.floor.f64", fn(t_f64) -> t_f64); ifn!("llvm.ceil.f32", fn(t_f32) -> t_f32); ifn!("llvm.ceil.f64", fn(t_f64) -> t_f64); ifn!("llvm.trunc.f32", fn(t_f32) -> t_f32); ifn!("llvm.trunc.f64", fn(t_f64) -> t_f64); ifn!("llvm.copysign.f32", fn(t_f32, t_f32) -> t_f32); ifn!("llvm.copysign.f64", fn(t_f64, t_f64) -> t_f64); ifn!("llvm.round.f32", fn(t_f32) -> t_f32); ifn!("llvm.round.f64", fn(t_f64) -> t_f64); ifn!("llvm.rint.f32", fn(t_f32) -> t_f32); ifn!("llvm.rint.f64", fn(t_f64) -> t_f64); ifn!("llvm.nearbyint.f32", fn(t_f32) -> t_f32); ifn!("llvm.nearbyint.f64", fn(t_f64) -> t_f64); ifn!("llvm.ctpop.i8", fn(t_i8) -> t_i8); ifn!("llvm.ctpop.i16", fn(t_i16) -> t_i16); ifn!("llvm.ctpop.i32", fn(t_i32) -> t_i32); ifn!("llvm.ctpop.i64", fn(t_i64) -> t_i64); ifn!("llvm.ctpop.i128", fn(t_i128) -> t_i128); ifn!("llvm.ctlz.i8", fn(t_i8 , i1) -> t_i8); ifn!("llvm.ctlz.i16", fn(t_i16, i1) -> t_i16); ifn!("llvm.ctlz.i32", fn(t_i32, i1) -> t_i32); ifn!("llvm.ctlz.i64", fn(t_i64, i1) -> t_i64); ifn!("llvm.ctlz.i128", fn(t_i128, i1) -> t_i128); ifn!("llvm.cttz.i8", fn(t_i8 , i1) -> t_i8); ifn!("llvm.cttz.i16", fn(t_i16, i1) -> t_i16); ifn!("llvm.cttz.i32", fn(t_i32, i1) -> t_i32); ifn!("llvm.cttz.i64", fn(t_i64, i1) -> t_i64); ifn!("llvm.cttz.i128", fn(t_i128, i1) -> t_i128); ifn!("llvm.bswap.i16", fn(t_i16) -> t_i16); ifn!("llvm.bswap.i32", fn(t_i32) -> t_i32); ifn!("llvm.bswap.i64", fn(t_i64) -> t_i64); ifn!("llvm.bswap.i128", fn(t_i128) -> t_i128); ifn!("llvm.bitreverse.i8", fn(t_i8) -> t_i8); ifn!("llvm.bitreverse.i16", fn(t_i16) -> t_i16); ifn!("llvm.bitreverse.i32", fn(t_i32) -> t_i32); ifn!("llvm.bitreverse.i64", fn(t_i64) -> t_i64); ifn!("llvm.bitreverse.i128", fn(t_i128) -> t_i128); ifn!("llvm.sadd.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct!{t_i8, i1}); ifn!("llvm.sadd.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct!{t_i16, i1}); ifn!("llvm.sadd.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct!{t_i32, i1}); ifn!("llvm.sadd.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct!{t_i64, i1}); ifn!("llvm.sadd.with.overflow.i128", fn(t_i128, t_i128) -> mk_struct!{t_i128, i1}); ifn!("llvm.uadd.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct!{t_i8, i1}); ifn!("llvm.uadd.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct!{t_i16, i1}); ifn!("llvm.uadd.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct!{t_i32, i1}); ifn!("llvm.uadd.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct!{t_i64, i1}); ifn!("llvm.uadd.with.overflow.i128", fn(t_i128, t_i128) -> mk_struct!{t_i128, i1}); ifn!("llvm.ssub.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct!{t_i8, i1}); ifn!("llvm.ssub.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct!{t_i16, i1}); ifn!("llvm.ssub.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct!{t_i32, i1}); ifn!("llvm.ssub.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct!{t_i64, i1}); ifn!("llvm.ssub.with.overflow.i128", fn(t_i128, t_i128) -> mk_struct!{t_i128, i1}); ifn!("llvm.usub.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct!{t_i8, i1}); ifn!("llvm.usub.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct!{t_i16, i1}); ifn!("llvm.usub.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct!{t_i32, i1}); ifn!("llvm.usub.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct!{t_i64, i1}); ifn!("llvm.usub.with.overflow.i128", fn(t_i128, t_i128) -> mk_struct!{t_i128, i1}); ifn!("llvm.smul.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct!{t_i8, i1}); ifn!("llvm.smul.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct!{t_i16, i1}); ifn!("llvm.smul.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct!{t_i32, i1}); ifn!("llvm.smul.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct!{t_i64, i1}); ifn!("llvm.smul.with.overflow.i128", fn(t_i128, t_i128) -> mk_struct!{t_i128, i1}); ifn!("llvm.umul.with.overflow.i8", fn(t_i8, t_i8) -> mk_struct!{t_i8, i1}); ifn!("llvm.umul.with.overflow.i16", fn(t_i16, t_i16) -> mk_struct!{t_i16, i1}); ifn!("llvm.umul.with.overflow.i32", fn(t_i32, t_i32) -> mk_struct!{t_i32, i1}); ifn!("llvm.umul.with.overflow.i64", fn(t_i64, t_i64) -> mk_struct!{t_i64, i1}); ifn!("llvm.umul.with.overflow.i128", fn(t_i128, t_i128) -> mk_struct!{t_i128, i1}); ifn!("llvm.lifetime.start", fn(t_i64,i8p) -> void); ifn!("llvm.lifetime.end", fn(t_i64, i8p) -> void); ifn!("llvm.expect.i1", fn(i1, i1) -> i1); ifn!("llvm.eh.typeid.for", fn(i8p) -> t_i32); ifn!("llvm.localescape", fn(...) -> void); ifn!("llvm.localrecover", fn(i8p, i8p, t_i32) -> i8p); ifn!("llvm.x86.seh.recoverfp", fn(i8p, i8p) -> i8p); ifn!("llvm.assume", fn(i1) -> void); ifn!("llvm.prefetch", fn(i8p, t_i32, t_i32, t_i32) -> void); if cx.sess().opts.debuginfo != NoDebugInfo { ifn!("llvm.dbg.declare", fn(Type::metadata(cx), Type::metadata(cx)) -> void); ifn!("llvm.dbg.value", fn(Type::metadata(cx), t_i64, Type::metadata(cx)) -> void); } return None; }