// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use back::abi; use lib::llvm::llvm; use lib::llvm::ValueRef; use lib; use metadata::csearch; use middle::subst; use middle::trans::base::*; use middle::trans::build::*; use middle::trans::callee::*; use middle::trans::callee; use middle::trans::cleanup; use middle::trans::common::*; use middle::trans::datum::*; use middle::trans::expr::{SaveIn, Ignore}; use middle::trans::expr; use middle::trans::glue; use middle::trans::monomorphize; use middle::trans::type_::Type; use middle::trans::type_of::*; use middle::ty; use middle::typeck; use middle::typeck::MethodCall; use util::common::indenter; use util::ppaux::Repr; use std::c_str::ToCStr; use syntax::abi::Rust; use syntax::parse::token; use syntax::{ast, ast_map, visit}; /** The main "translation" pass for methods. Generates code for non-monomorphized methods only. Other methods will be generated once they are invoked with specific type parameters, see `trans::base::lval_static_fn()` or `trans::base::monomorphic_fn()`. */ pub fn trans_impl(ccx: &CrateContext, name: ast::Ident, methods: &[@ast::Method], generics: &ast::Generics, id: ast::NodeId) { let _icx = push_ctxt("meth::trans_impl"); let tcx = ccx.tcx(); debug!("trans_impl(name={}, id={:?})", name.repr(tcx), id); // Both here and below with generic methods, be sure to recurse and look for // items that we need to translate. if !generics.ty_params.is_empty() { let mut v = TransItemVisitor{ ccx: ccx }; for method in methods.iter() { visit::walk_method_helper(&mut v, *method, ()); } return; } for method in methods.iter() { if method.generics.ty_params.len() == 0u { let llfn = get_item_val(ccx, method.id); trans_fn(ccx, method.decl, method.body, llfn, None, method.id, []); } else { let mut v = TransItemVisitor{ ccx: ccx }; visit::walk_method_helper(&mut v, *method, ()); } } } pub fn trans_method_callee<'a>( bcx: &'a Block<'a>, method_call: MethodCall, self_expr: Option<&ast::Expr>, arg_cleanup_scope: cleanup::ScopeId) -> Callee<'a> { let _icx = push_ctxt("meth::trans_method_callee"); let (origin, method_ty) = match bcx.tcx().method_map .borrow().find(&method_call) { Some(method) => { debug!("trans_method_callee({:?}, method={})", method_call, method.repr(bcx.tcx())); (method.origin, method.ty) } None => { bcx.sess().span_bug(bcx.tcx().map.span(method_call.expr_id), "method call expr wasn't in method map") } }; match origin { typeck::MethodStatic(did) => { Callee { bcx: bcx, data: Fn(callee::trans_fn_ref(bcx, did, MethodCall(method_call))) } } typeck::MethodParam(typeck::MethodParam { trait_id: trait_id, method_num: off, param_num: p, bound_num: b }) => { match bcx.fcx.param_substs { Some(substs) => { ty::populate_implementations_for_trait_if_necessary( bcx.tcx(), trait_id); let vtbl = find_vtable(bcx.tcx(), substs, p, b); trans_monomorphized_callee(bcx, method_call, trait_id, off, vtbl) } // how to get rid of this? None => fail!("trans_method_callee: missing param_substs") } } typeck::MethodObject(ref mt) => { let self_expr = match self_expr { Some(self_expr) => self_expr, None => { bcx.sess().span_bug(bcx.tcx().map.span(method_call.expr_id), "self expr wasn't provided for trait object \ callee (trying to call overloaded op?)") } }; trans_trait_callee(bcx, monomorphize_type(bcx, method_ty), mt.real_index, self_expr, arg_cleanup_scope) } } } pub fn trans_static_method_callee(bcx: &Block, method_id: ast::DefId, trait_id: ast::DefId, expr_id: ast::NodeId) -> ValueRef { let _icx = push_ctxt("meth::trans_static_method_callee"); let ccx = bcx.ccx(); debug!("trans_static_method_callee(method_id={:?}, trait_id={}, \ expr_id={:?})", method_id, ty::item_path_str(bcx.tcx(), trait_id), expr_id); let _indenter = indenter(); ty::populate_implementations_for_trait_if_necessary(bcx.tcx(), trait_id); // When we translate a static fn defined in a trait like: // // trait Trait { // fn foo(...) {...} // } // // this winds up being translated as something like: // // fn foo,M1...Mn>(...) {...} // // So when we see a call to this function foo, we have to figure // out which impl the `Trait` bound on the type `self` was // bound to. let bound_index = ty::lookup_trait_def(bcx.tcx(), trait_id). generics.type_param_defs().len(); let mname = if method_id.krate == ast::LOCAL_CRATE { match bcx.tcx().map.get(method_id.node) { ast_map::NodeTraitMethod(method) => { let ident = match *method { ast::Required(ref m) => m.ident, ast::Provided(ref m) => m.ident }; ident.name } _ => fail!("callee is not a trait method") } } else { csearch::get_item_path(bcx.tcx(), method_id).last().unwrap().name() }; debug!("trans_static_method_callee: method_id={:?}, expr_id={:?}, \ name={}", method_id, expr_id, token::get_name(mname)); let vtable_key = MethodCall::expr(expr_id); let vtbls = resolve_vtables_in_fn_ctxt(bcx.fcx, ccx.tcx.vtable_map.borrow() .get(&vtable_key).as_slice()); match vtbls.move_iter().nth(bound_index).unwrap().move_iter().nth(0).unwrap() { typeck::vtable_static(impl_did, rcvr_substs, rcvr_origins) => { assert!(rcvr_substs.tps.iter().all(|t| !ty::type_needs_infer(*t))); let mth_id = method_with_name(ccx, impl_did, mname); let (callee_substs, callee_origins) = combine_impl_and_methods_tps( bcx, mth_id, ExprId(expr_id), rcvr_substs, rcvr_origins); let llfn = trans_fn_ref_with_vtables(bcx, mth_id, ExprId(expr_id), callee_substs, Some(callee_origins)); let callee_ty = node_id_type(bcx, expr_id); let llty = type_of_fn_from_ty(ccx, callee_ty).ptr_to(); PointerCast(bcx, llfn, llty) } _ => { fail!("vtable_param left in monomorphized \ function's vtable substs"); } } } fn method_with_name(ccx: &CrateContext, impl_id: ast::DefId, name: ast::Name) -> ast::DefId { match ccx.impl_method_cache.borrow().find_copy(&(impl_id, name)) { Some(m) => return m, None => {} } let methods = ccx.tcx.impl_methods.borrow(); let methods = methods.find(&impl_id) .expect("could not find impl while translating"); let meth_did = methods.iter().find(|&did| ty::method(&ccx.tcx, *did).ident.name == name) .expect("could not find method while translating"); ccx.impl_method_cache.borrow_mut().insert((impl_id, name), *meth_did); *meth_did } fn trans_monomorphized_callee<'a>(bcx: &'a Block<'a>, method_call: MethodCall, trait_id: ast::DefId, n_method: uint, vtbl: typeck::vtable_origin) -> Callee<'a> { let _icx = push_ctxt("meth::trans_monomorphized_callee"); match vtbl { typeck::vtable_static(impl_did, rcvr_substs, rcvr_origins) => { let ccx = bcx.ccx(); let mname = ty::trait_method(ccx.tcx(), trait_id, n_method).ident; let mth_id = method_with_name(bcx.ccx(), impl_did, mname.name); // create a concatenated set of substitutions which includes // those from the impl and those from the method: let (callee_substs, callee_origins) = combine_impl_and_methods_tps( bcx, mth_id, MethodCall(method_call), rcvr_substs, rcvr_origins); // translate the function let llfn = trans_fn_ref_with_vtables(bcx, mth_id, MethodCall(method_call), callee_substs, Some(callee_origins)); Callee { bcx: bcx, data: Fn(llfn) } } typeck::vtable_param(..) => { fail!("vtable_param left in monomorphized function's vtable substs"); } } } fn combine_impl_and_methods_tps(bcx: &Block, mth_did: ast::DefId, node: ExprOrMethodCall, rcvr_substs: subst::Substs, rcvr_origins: typeck::vtable_res) -> (subst::Substs, typeck::vtable_res) { /*! * Creates a concatenated set of substitutions which includes * those from the impl and those from the method. This are * some subtle complications here. Statically, we have a list * of type parameters like `[T0, T1, T2, M1, M2, M3]` where * `Tn` are type parameters that appear on the receiver. For * example, if the receiver is a method parameter `A` with a * bound like `trait` then `Tn` would be `[B,C,D]`. * * The weird part is that the type `A` might now be bound to * any other type, such as `foo`. In that case, the vector * we want is: `[X, M1, M2, M3]`. Therefore, what we do now is * to slice off the method type parameters and append them to * the type parameters from the type that the receiver is * mapped to. */ let ccx = bcx.ccx(); let method = ty::method(ccx.tcx(), mth_did); let n_m_tps = method.generics.type_param_defs().len(); let node_substs = node_id_substs(bcx, node); debug!("rcvr_substs={:?}", rcvr_substs.repr(ccx.tcx())); debug!("node_substs={:?}", node_substs.repr(ccx.tcx())); let rcvr_self_ty = rcvr_substs.self_ty; let mut tps = rcvr_substs.tps; { let start = node_substs.tps.len() - n_m_tps; tps.extend(node_substs.tps.move_iter().skip(start)); } debug!("n_m_tps={:?}", n_m_tps); debug!("tps={}", tps.repr(ccx.tcx())); // Now, do the same work for the vtables. The vtables might not // exist, in which case we need to make them. let vtable_key = match node { ExprId(id) => MethodCall::expr(id), MethodCall(method_call) => method_call }; let mut vtables = rcvr_origins; match node_vtables(bcx, vtable_key) { Some(vt) => { let start = vt.len() - n_m_tps; vtables.extend(vt.move_iter().skip(start)); } None => { vtables.extend(range(0, n_m_tps).map( |_| -> typeck::vtable_param_res { Vec::new() } )); } } let ty_substs = subst::Substs { tps: tps, regions: subst::ErasedRegions, self_ty: rcvr_self_ty }; (ty_substs, vtables) } fn trans_trait_callee<'a>(bcx: &'a Block<'a>, method_ty: ty::t, n_method: uint, self_expr: &ast::Expr, arg_cleanup_scope: cleanup::ScopeId) -> Callee<'a> { /*! * Create a method callee where the method is coming from a trait * object (e.g., Box type). In this case, we must pull the fn * pointer out of the vtable that is packaged up with the object. * Objects are represented as a pair, so we first evaluate the self * expression and then extract the self data and vtable out of the * pair. */ let _icx = push_ctxt("meth::trans_trait_callee"); let mut bcx = bcx; // Translate self_datum and take ownership of the value by // converting to an rvalue. let self_datum = unpack_datum!( bcx, expr::trans(bcx, self_expr)); let llval = if ty::type_needs_drop(bcx.tcx(), self_datum.ty) { let self_datum = unpack_datum!( bcx, self_datum.to_rvalue_datum(bcx, "trait_callee")); // Convert to by-ref since `trans_trait_callee_from_llval` wants it // that way. let self_datum = unpack_datum!( bcx, self_datum.to_ref_datum(bcx)); // Arrange cleanup in case something should go wrong before the // actual call occurs. self_datum.add_clean(bcx.fcx, arg_cleanup_scope) } else { // We don't have to do anything about cleanups for &Trait and &mut Trait. assert!(self_datum.kind.is_by_ref()); self_datum.val }; trans_trait_callee_from_llval(bcx, method_ty, n_method, llval) } pub fn trans_trait_callee_from_llval<'a>(bcx: &'a Block<'a>, callee_ty: ty::t, n_method: uint, llpair: ValueRef) -> Callee<'a> { /*! * Same as `trans_trait_callee()` above, except that it is given * a by-ref pointer to the object pair. */ let _icx = push_ctxt("meth::trans_trait_callee"); let ccx = bcx.ccx(); // Load the data pointer from the object. debug!("(translating trait callee) loading second index from pair"); let llboxptr = GEPi(bcx, llpair, [0u, abi::trt_field_box]); let llbox = Load(bcx, llboxptr); let llself = PointerCast(bcx, llbox, Type::i8p(ccx)); // Load the function from the vtable and cast it to the expected type. debug!("(translating trait callee) loading method"); // Replace the self type (&Self or Box) with an opaque pointer. let llcallee_ty = match ty::get(callee_ty).sty { ty::ty_bare_fn(ref f) if f.abi == Rust => { type_of_rust_fn(ccx, true, f.sig.inputs.slice_from(1), f.sig.output) } _ => { ccx.sess().bug("meth::trans_trait_callee given non-bare-rust-fn"); } }; let llvtable = Load(bcx, PointerCast(bcx, GEPi(bcx, llpair, [0u, abi::trt_field_vtable]), Type::vtable(ccx).ptr_to().ptr_to())); let mptr = Load(bcx, GEPi(bcx, llvtable, [0u, n_method + 1])); let mptr = PointerCast(bcx, mptr, llcallee_ty.ptr_to()); return Callee { bcx: bcx, data: TraitMethod(MethodData { llfn: mptr, llself: llself, }) }; } /// Creates a returns a dynamic vtable for the given type and vtable origin. /// This is used only for objects. fn get_vtable(bcx: &Block, self_ty: ty::t, origins: typeck::vtable_param_res) -> ValueRef { let ccx = bcx.ccx(); let _icx = push_ctxt("meth::get_vtable"); // Check the cache. let hash_id = (self_ty, monomorphize::make_vtable_id(ccx, origins.get(0))); match ccx.vtables.borrow().find(&hash_id) { Some(&val) => { return val } None => { } } // Not in the cache. Actually build it. let methods = origins.move_iter().flat_map(|origin| { match origin { typeck::vtable_static(id, substs, sub_vtables) => { emit_vtable_methods(bcx, id, substs, sub_vtables).move_iter() } _ => ccx.sess().bug("get_vtable: expected a static origin"), } }); // Generate a destructor for the vtable. let drop_glue = glue::get_drop_glue(ccx, self_ty); let vtable = make_vtable(ccx, drop_glue, methods); ccx.vtables.borrow_mut().insert(hash_id, vtable); vtable } /// Helper function to declare and initialize the vtable. pub fn make_vtable>(ccx: &CrateContext, drop_glue: ValueRef, ptrs: I) -> ValueRef { let _icx = push_ctxt("meth::make_vtable"); let components: Vec<_> = Some(drop_glue).move_iter().chain(ptrs).collect(); unsafe { let tbl = C_struct(ccx, components.as_slice(), false); let sym = token::gensym("vtable"); let vt_gvar = format!("vtable{}", sym).with_c_str(|buf| { llvm::LLVMAddGlobal(ccx.llmod, val_ty(tbl).to_ref(), buf) }); llvm::LLVMSetInitializer(vt_gvar, tbl); llvm::LLVMSetGlobalConstant(vt_gvar, lib::llvm::True); lib::llvm::SetLinkage(vt_gvar, lib::llvm::InternalLinkage); vt_gvar } } fn emit_vtable_methods(bcx: &Block, impl_id: ast::DefId, substs: subst::Substs, vtables: typeck::vtable_res) -> Vec { let ccx = bcx.ccx(); let tcx = ccx.tcx(); let trt_id = match ty::impl_trait_ref(tcx, impl_id) { Some(t_id) => t_id.def_id, None => ccx.sess().bug("make_impl_vtable: don't know how to \ make a vtable for a type impl!") }; ty::populate_implementations_for_trait_if_necessary(bcx.tcx(), trt_id); let trait_method_def_ids = ty::trait_method_def_ids(tcx, trt_id); trait_method_def_ids.iter().map(|method_def_id| { let ident = ty::method(tcx, *method_def_id).ident; // The substitutions we have are on the impl, so we grab // the method type from the impl to substitute into. let m_id = method_with_name(ccx, impl_id, ident.name); let m = ty::method(tcx, m_id); debug!("(making impl vtable) emitting method {} at subst {}", m.repr(tcx), substs.repr(tcx)); if m.generics.has_type_params() || ty::type_has_self(ty::mk_bare_fn(tcx, m.fty.clone())) { debug!("(making impl vtable) method has self or type params: {}", token::get_ident(ident)); C_null(Type::nil(ccx).ptr_to()) } else { trans_fn_ref_with_vtables(bcx, m_id, ExprId(0), substs.clone(), Some(vtables.clone())) } }).collect() } pub fn trans_trait_cast<'a>(bcx: &'a Block<'a>, datum: Datum, id: ast::NodeId, dest: expr::Dest) -> &'a Block<'a> { /*! * Generates the code to convert from a pointer (`Box`, `&T`, etc) * into an object (`Box`, `&Trait`, etc). This means creating a * pair where the first word is the vtable and the second word is * the pointer. */ let mut bcx = bcx; let _icx = push_ctxt("meth::trans_cast"); let lldest = match dest { Ignore => { return datum.clean(bcx, "trait_cast", id); } SaveIn(dest) => dest }; let ccx = bcx.ccx(); let v_ty = datum.ty; let llbox_ty = type_of(bcx.ccx(), datum.ty); // Store the pointer into the first half of pair. let mut llboxdest = GEPi(bcx, lldest, [0u, abi::trt_field_box]); llboxdest = PointerCast(bcx, llboxdest, llbox_ty.ptr_to()); bcx = datum.store_to(bcx, llboxdest); // Store the vtable into the second half of pair. let origins = { let vtable_map = ccx.tcx.vtable_map.borrow(); resolve_param_vtables_under_param_substs(ccx.tcx(), bcx.fcx.param_substs, vtable_map.get(&MethodCall::expr(id)).get(0).as_slice()) }; let vtable = get_vtable(bcx, v_ty, origins); let llvtabledest = GEPi(bcx, lldest, [0u, abi::trt_field_vtable]); let llvtabledest = PointerCast(bcx, llvtabledest, val_ty(vtable).ptr_to()); Store(bcx, vtable, llvtabledest); bcx }