use rustc::plugin::Registry; use rustc::lint::*; use rustc::middle::const_eval::lookup_const_by_id; use rustc::middle::def::*; use syntax::ast::*; use syntax::ast_util::{is_comparison_binop, binop_to_string}; use syntax::ptr::P; use syntax::codemap::Span; declare_lint! { pub BAD_BIT_MASK, Deny, "Deny the use of incompatible bit masks in comparisons, e.g. \ '(a & 1) == 2'" } declare_lint! { pub INEFFECTIVE_BIT_MASK, Warn, "Warn on the use of an ineffective bit mask in comparisons, e.g. \ '(a & 1) > 2'" } /// Checks for incompatible bit masks in comparisons, e.g. `x & 1 == 2`. /// This cannot work because the bit that makes up the value two was /// zeroed out by the bit-and with 1. So the formula for detecting if an /// expression of the type `_ m c` (where `` /// is one of {`&`, '|'} and `` is one of {`!=`, `>=`, `>` , /// `!=`, `>=`, `>`}) can be determined from the following table: /// /// |Comparison |Bit-Op|Example |is always|Formula | /// |------------|------|------------|---------|----------------------| /// |`==` or `!=`| `&` |`x & 2 == 3`|`false` |`c & m != c` | /// |`<` or `>=`| `&` |`x & 2 < 3` |`true` |`m < c` | /// |`>` or `<=`| `&` |`x & 1 > 1` |`false` |`m <= c` | /// |`==` or `!=`| `|` |`x | 1 == 0`|`false` |`c | m != c` | /// |`<` or `>=`| `|` |`x | 1 < 1` |`false` |`m >= c` | /// |`<=` or `>` | `|` |`x | 1 > 0` |`true` |`m > c` | /// /// This lint is **deny** by default /// /// There is also a lint that warns on ineffective masks that is *warn* /// by default #[derive(Copy,Clone)] pub struct BitMask; impl LintPass for BitMask { fn get_lints(&self) -> LintArray { lint_array!(BAD_BIT_MASK, INEFFECTIVE_BIT_MASK) } fn check_expr(&mut self, cx: &Context, e: &Expr) { if let ExprBinary(ref cmp, ref left, ref right) = e.node { if is_comparison_binop(cmp.node) { fetch_int_literal(cx, right).map_or_else(|| fetch_int_literal(cx, left).map_or((), |cmp_val| check_compare(cx, right, invert_cmp(cmp.node), cmp_val, &e.span)), |cmp_opt| check_compare(cx, left, cmp.node, cmp_opt, &e.span)) } } } } fn invert_cmp(cmp : BinOp_) -> BinOp_ { match cmp { BiEq => BiEq, BiNe => BiNe, BiLt => BiGt, BiGt => BiLt, BiLe => BiGe, BiGe => BiLe, _ => BiOr // Dummy } } fn check_compare(cx: &Context, bit_op: &Expr, cmp_op: BinOp_, cmp_value: u64, span: &Span) { match &bit_op.node { &ExprParen(ref subexp) => check_compare(cx, subexp, cmp_op, cmp_value, span), &ExprBinary(ref op, ref left, ref right) => { if op.node != BiBitAnd && op.node != BiBitOr { return; } fetch_int_literal(cx, right).or_else(|| fetch_int_literal( cx, left)).map_or((), |mask| check_bit_mask(cx, op.node, cmp_op, mask, cmp_value, span)) }, _ => () } } fn check_bit_mask(cx: &Context, bit_op: BinOp_, cmp_op: BinOp_, mask_value: u64, cmp_value: u64, span: &Span) { match cmp_op { BiEq | BiNe => match bit_op { BiBitAnd => if mask_value & cmp_value != mask_value { cx.span_lint(BAD_BIT_MASK, *span, &format!("incompatible bit mask: _ & {} can never be equal to {}", mask_value, cmp_value)); } else { if mask_value == 0 { cx.span_lint(BAD_BIT_MASK, *span, &format!("&-masking with zero")); } }, BiBitOr => if mask_value | cmp_value != cmp_value { cx.span_lint(BAD_BIT_MASK, *span, &format!("incompatible bit mask: _ | {} can never be equal to {}", mask_value, cmp_value)); }, _ => () }, BiLt | BiGe => match bit_op { BiBitAnd => if mask_value < cmp_value { cx.span_lint(BAD_BIT_MASK, *span, &format!( "incompatible bit mask: _ & {} will always be lower than {}", mask_value, cmp_value)); } else { if mask_value == 0 { cx.span_lint(BAD_BIT_MASK, *span, &format!("&-masking with zero")); } }, BiBitOr => if mask_value >= cmp_value { cx.span_lint(BAD_BIT_MASK, *span, &format!( "incompatible bit mask: _ | {} will never be lower than {}", mask_value, cmp_value)); } else { if mask_value < cmp_value { cx.span_lint(INEFFECTIVE_BIT_MASK, *span, &format!( "ineffective bit mask: x | {} compared to {} is the same as x compared directly", mask_value, cmp_value)); } }, _ => () }, BiLe | BiGt => match bit_op { BiBitAnd => if mask_value <= cmp_value { cx.span_lint(BAD_BIT_MASK, *span, &format!( "incompatible bit mask: _ & {} will never be higher than {}", mask_value, cmp_value)); } else { if mask_value == 0 { cx.span_lint(BAD_BIT_MASK, *span, &format!("&-masking with zero")); } }, BiBitOr => if mask_value > cmp_value { cx.span_lint(BAD_BIT_MASK, *span, &format!( "incompatible bit mask: _ | {} will always be higher than {}", mask_value, cmp_value)); } else { if mask_value < cmp_value { cx.span_lint(INEFFECTIVE_BIT_MASK, *span, &format!( "ineffective bit mask: x | {} compared to {} is the same as x compared directly", mask_value, cmp_value)); } }, _ => () }, _ => () } } fn fetch_int_literal(cx: &Context, lit : &Expr) -> Option { match &lit.node { &ExprLit(ref lit_ptr) => { if let &LitInt(value, _) = &lit_ptr.node { Option::Some(value) //TODO: Handle sign } else { Option::None } }, &ExprPath(_, _) => { // Important to let the borrow expire before the const lookup to avoid double // borrowing. let def_map = cx.tcx.def_map.borrow(); match def_map.get(&lit.id) { Some(&PathResolution { base_def: DefConst(def_id), ..}) => Some(def_id), _ => None } } .and_then(|def_id| lookup_const_by_id(cx.tcx, def_id, Option::None)) .and_then(|l| fetch_int_literal(cx, l)), _ => Option::None } }