#[doc = "Vectors"]; import option::{some, none}; import ptr::addr_of; import libc::size_t; export append; export init_op; export is_empty; export is_not_empty; export same_length; export reserve; export reserve_at_least; export capacity; export len; export from_fn; export from_elem; export to_mut; export from_mut; export head; export tail; export tailn; export init; export last; export last_opt; export slice; export view; export split; export splitn; export rsplit; export rsplitn; export shift; export pop; export push; export grow; export grow_fn; export grow_set; export map; export mapi; export map2; export flat_map; export filter_map; export filter; export concat; export connect; export foldl; export foldr; export any; export any2; export all; export alli; export all2; export contains; export count; export find; export find_between; export rfind; export rfind_between; export position_elem; export position; export position_between; export position_elem; export rposition; export rposition_between; export unzip; export zip; export swap; export reverse; export reversed; export iter, iter_between, each, eachi; export iter2; export iteri; export riter; export riteri; export permute; export windowed; export as_buf; export as_mut_buf; export unpack_slice; export unpack_const_slice; export unsafe; export u8; export extensions; #[abi = "cdecl"] native mod rustrt { fn vec_reserve_shared(++t: *sys::type_desc, ++v: **unsafe::vec_repr, ++n: libc::size_t); fn vec_from_buf_shared(++t: *sys::type_desc, ++ptr: *(), ++count: libc::size_t) -> *unsafe::vec_repr; } #[doc = "A function used to initialize the elements of a vector"] type init_op = fn(uint) -> T; #[doc = "Returns true if a vector contains no elements"] pure fn is_empty(v: [const T]/&) -> bool { unpack_const_slice(v) {|_p, len| len == 0u} } #[doc = "Returns true if a vector contains some elements"] pure fn is_not_empty(v: [const T]/&) -> bool { unpack_const_slice(v) {|_p, len| len > 0u} } #[doc = "Returns true if two vectors have the same length"] pure fn same_length(xs: [const T]/&, ys: [const U]/&) -> bool { len(xs) == len(ys) } #[doc = " Reserves capacity for exactly `n` elements in the given vector. If the capacity for `v` is already equal to or greater than the requested capacity, then no action is taken. # Arguments * v - A vector * n - The number of elements to reserve space for "] fn reserve(&v: [const T], n: uint) { // Only make the (slow) call into the runtime if we have to if capacity(v) < n { let ptr = ptr::addr_of(v) as **unsafe::vec_repr; rustrt::vec_reserve_shared(sys::get_type_desc::(), ptr, n as size_t); } } #[doc = " Reserves capacity for at least `n` elements in the given vector. This function will over-allocate in order to amortize the allocation costs in scenarios where the caller may need to repeatedly reserve additional space. If the capacity for `v` is already equal to or greater than the requested capacity, then no action is taken. # Arguments * v - A vector * n - The number of elements to reserve space for "] fn reserve_at_least(&v: [const T], n: uint) { reserve(v, uint::next_power_of_two(n)); } #[doc = " Returns the number of elements the vector can hold without reallocating "] #[inline(always)] pure fn capacity(&&v: [const T]) -> uint unsafe { let repr: **unsafe::vec_repr = ::unsafe::reinterpret_cast(addr_of(v)); (**repr).alloc / sys::size_of::() } #[doc = "Returns the length of a vector"] #[inline(always)] pure fn len(&&v: [const T]/&) -> uint unsafe { unpack_const_slice(v) {|_p, len| len} } #[doc = " Creates and initializes an immutable vector. Creates an immutable vector of size `n_elts` and initializes the elements to the value returned by the function `op`. "] pure fn from_fn(n_elts: uint, op: init_op) -> [T] { let mut v = []; unchecked{reserve(v, n_elts);} let mut i: uint = 0u; while i < n_elts { v += [op(i)]; i += 1u; } ret v; } #[doc = " Creates and initializes an immutable vector. Creates an immutable vector of size `n_elts` and initializes the elements to the value `t`. "] pure fn from_elem(n_elts: uint, t: T) -> [T] { let mut v = []; unchecked{reserve(v, n_elts)} let mut i: uint = 0u; unsafe { // because push is impure while i < n_elts { push(v, t); i += 1u; } } ret v; } #[doc = "Produces a mut vector from an immutable vector."] fn to_mut(+v: [T]) -> [mut T] unsafe { ::unsafe::transmute(v) } #[doc = "Produces an immutable vector from a mut vector."] fn from_mut(+v: [mut T]) -> [T] unsafe { ::unsafe::transmute(v) } // Accessors #[doc = "Returns the first element of a vector"] pure fn head(v: [const T]/&) -> T { v[0] } #[doc = "Returns a vector containing all but the first element of a slice"] pure fn tail(v: [const T]/&) -> [T] { ret slice(v, 1u, len(v)); } #[doc = "Returns a vector containing all but the first `n` \ elements of a slice"] pure fn tailn(v: [const T]/&, n: uint) -> [T] { slice(v, n, len(v)) } #[doc = "Returns a vector containing all but the last element of a slice"] pure fn init(v: [const T]/&) -> [T] { assert len(v) != 0u; slice(v, 0u, len(v) - 1u) } #[doc = " Returns the last element of the slice `v`, failing if the slice is empty. "] pure fn last(v: [const T]/&) -> T { if len(v) == 0u { fail "last_unsafe: empty vector" } v[len(v) - 1u] } #[doc = " Returns `some(x)` where `x` is the last element of the slice `v`, or `none` if the vector is empty. "] pure fn last_opt(v: [const T]/&) -> option { if len(v) == 0u { ret none; } some(v[len(v) - 1u]) } #[doc = "Returns a copy of the elements from [`start`..`end`) from `v`."] pure fn slice(v: [const T]/&, start: uint, end: uint) -> [T] { assert (start <= end); assert (end <= len(v)); let mut result = []; unchecked{reserve(result, end - start)} let mut i = start; while i < end { result += [v[i]]; i += 1u; } ret result; } #[doc = "Return a slice that points into another slice."] pure fn view(v: [T]/&, start: uint, end: uint) -> [T]/&a { assert (start <= end); assert (end <= len(v)); unpack_slice(v) {|p, _len| unsafe { ::unsafe::reinterpret_cast( (ptr::offset(p, start), (end - start) * sys::size_of::())) } } } #[doc = " Split the vector `v` by applying each element against the predicate `f`. "] fn split(v: [T]/&, f: fn(T) -> bool) -> [[T]] { let ln = len(v); if (ln == 0u) { ret [] } let mut start = 0u; let mut result = []; while start < ln { alt position_between(v, start, ln, f) { none { break } some(i) { push(result, slice(v, start, i)); start = i + 1u; } } } push(result, slice(v, start, ln)); result } #[doc = " Split the vector `v` by applying each element against the predicate `f` up to `n` times. "] fn splitn(v: [T]/&, n: uint, f: fn(T) -> bool) -> [[T]] { let ln = len(v); if (ln == 0u) { ret [] } let mut start = 0u; let mut count = n; let mut result = []; while start < ln && count > 0u { alt position_between(v, start, ln, f) { none { break } some(i) { push(result, slice(v, start, i)); // Make sure to skip the separator. start = i + 1u; count -= 1u; } } } push(result, slice(v, start, ln)); result } #[doc = " Reverse split the vector `v` by applying each element against the predicate `f`. "] fn rsplit(v: [T]/&, f: fn(T) -> bool) -> [[T]] { let ln = len(v); if (ln == 0u) { ret [] } let mut end = ln; let mut result = []; while end > 0u { alt rposition_between(v, 0u, end, f) { none { break } some(i) { push(result, slice(v, i + 1u, end)); end = i; } } } push(result, slice(v, 0u, end)); reversed(result) } #[doc = " Reverse split the vector `v` by applying each element against the predicate `f` up to `n times. "] fn rsplitn(v: [T]/&, n: uint, f: fn(T) -> bool) -> [[T]] { let ln = len(v); if (ln == 0u) { ret [] } let mut end = ln; let mut count = n; let mut result = []; while end > 0u && count > 0u { alt rposition_between(v, 0u, end, f) { none { break } some(i) { push(result, slice(v, i + 1u, end)); // Make sure to skip the separator. end = i; count -= 1u; } } } push(result, slice(v, 0u, end)); reversed(result) } // Mutators #[doc = "Removes the first element from a vector and return it"] fn shift(&v: [T]) -> T { let ln = len::(v); assert (ln > 0u); let e = v[0]; v = slice::(v, 1u, ln); ret e; } #[doc = "Prepend an element to a vector"] fn unshift(&v: [T], +t: T) { v = [t] + v; } #[doc = "Remove the last element from a vector and return it"] fn pop(&v: [const T]) -> T unsafe { let ln = len(v); assert ln > 0u; let valptr = ptr::mut_addr_of(v[ln - 1u]); let val <- *valptr; unsafe::set_len(v, ln - 1u); val } #[doc = "Append an element to a vector"] #[inline(always)] fn push(&v: [const T], +initval: T) { let ln = v.len(); unsafe { reserve_at_least(v, ln + 1u); unsafe::set_len(v, ln + 1u); let p = ptr::mut_addr_of(v[ln]); // FIXME: for performance, try replacing the memmove and <- with a // memset and unsafe::forget. ptr::memset(p, 0, 1u); // needed to stop drop glue from running on // garbage data. *p = initval; } } #[inline(always)] fn push_all(&v: [const T], rhs: [const T]/&) { for uint::range(0u, rhs.len()) {|i| push(v, rhs[i]); } } // Appending #[inline(always)] pure fn append(lhs: [T]/&, rhs: [const T]/&) -> [T] { let mut v = []; let mut i = 0u; while i < lhs.len() { unsafe { // This is impure, but it appears pure to the caller. push(v, lhs[i]); } i += 1u; } i = 0u; while i < rhs.len() { unsafe { // This is impure, but it appears pure to the caller. push(v, rhs[i]); } i += 1u; } ret v; } #[inline(always)] pure fn append_mut(lhs: [mut T]/&, rhs: [const T]/&) -> [mut T] { let mut v = [mut]; let mut i = 0u; while i < lhs.len() { unsafe { // This is impure, but it appears pure to the caller. push(v, lhs[i]); } i += 1u; } i = 0u; while i < rhs.len() { unsafe { // This is impure, but it appears pure to the caller. push(v, rhs[i]); } i += 1u; } ret v; } #[doc = " Expands a vector in place, initializing the new elements to a given value # Arguments * v - The vector to grow * n - The number of elements to add * initval - The value for the new elements "] fn grow(&v: [const T], n: uint, initval: T) { reserve_at_least(v, len(v) + n); let mut i: uint = 0u; while i < n { push(v, initval); i += 1u; } } #[doc = " Expands a vector in place, initializing the new elements to the result of a function Function `init_op` is called `n` times with the values [0..`n`) # Arguments * v - The vector to grow * n - The number of elements to add * init_op - A function to call to retreive each appended element's value "] fn grow_fn(&v: [const T], n: uint, op: init_op) { reserve_at_least(v, len(v) + n); let mut i: uint = 0u; while i < n { push(v, op(i)); i += 1u; } } #[doc = " Sets the value of a vector element at a given index, growing the vector as needed Sets the element at position `index` to `val`. If `index` is past the end of the vector, expands the vector by replicating `initval` to fill the intervening space. "] fn grow_set(&v: [mut T], index: uint, initval: T, val: T) { if index >= len(v) { grow(v, index - len(v) + 1u, initval); } v[index] = val; } // Functional utilities #[doc = " Apply a function to each element of a vector and return the results "] pure fn map(v: [T]/&, f: fn(T) -> U) -> [U] { let mut result = []; unchecked{reserve(result, len(v));} for each(v) {|elem| unsafe { push(result, f(elem)); } } ret result; } #[doc = " Apply a function to each element of a vector and return the results "] pure fn mapi(v: [T]/&, f: fn(uint, T) -> U) -> [U] { let mut result = []; unchecked{reserve(result, len(v));} for eachi(v) {|i, elem| result += [f(i, elem)]; } ret result; } #[doc = " Apply a function to each element of a vector and return a concatenation of each result vector "] pure fn flat_map(v: [T]/&, f: fn(T) -> [U]) -> [U] { let mut result = []; for each(v) {|elem| result += f(elem); } ret result; } #[doc = " Apply a function to each pair of elements and return the results "] pure fn map2(v0: [T]/&, v1: [U]/&, f: fn(T, U) -> V) -> [V] { let v0_len = len(v0); if v0_len != len(v1) { fail; } let mut u: [V] = []; let mut i = 0u; while i < v0_len { unsafe { push(u, f(copy v0[i], copy v1[i])) }; i += 1u; } ret u; } #[doc = " Apply a function to each element of a vector and return the results If function `f` returns `none` then that element is excluded from the resulting vector. "] pure fn filter_map(v: [T]/&, f: fn(T) -> option) -> [U] { let mut result = []; for each(v) {|elem| alt f(elem) { none {/* no-op */ } some(result_elem) { unsafe { push(result, result_elem); } } } } ret result; } #[doc = " Construct a new vector from the elements of a vector for which some predicate holds. Apply function `f` to each element of `v` and return a vector containing only those elements for which `f` returned true. "] pure fn filter(v: [T]/&, f: fn(T) -> bool) -> [T] { let mut result = []; for each(v) {|elem| if f(elem) { unsafe { push(result, elem); } } } ret result; } #[doc = " Concatenate a vector of vectors. Flattens a vector of vectors of T into a single vector of T. "] pure fn concat(v: [[T]]/&) -> [T] { let mut r = []; for each(v) {|inner| unsafe { push_all(r, inner); } } ret r; } #[doc = " Concatenate a vector of vectors, placing a given separator between each "] pure fn connect(v: [[T]]/&, sep: T) -> [T] { let mut r: [T] = []; let mut first = true; for each(v) {|inner| if first { first = false; } else { unsafe { push(r, sep); } } r += inner; } ret r; } #[doc = "Reduce a vector from left to right"] pure fn foldl(z: T, v: [U]/&, p: fn(T, U) -> T) -> T { let mut accum = z; iter(v) { |elt| accum = p(accum, elt); } ret accum; } #[doc = "Reduce a vector from right to left"] pure fn foldr(v: [T]/&, z: U, p: fn(T, U) -> U) -> U { let mut accum = z; riter(v) { |elt| accum = p(elt, accum); } ret accum; } #[doc = " Return true if a predicate matches any elements If the vector contains no elements then false is returned. "] pure fn any(v: [T]/&, f: fn(T) -> bool) -> bool { for each(v) {|elem| if f(elem) { ret true; } } ret false; } #[doc = " Return true if a predicate matches any elements in both vectors. If the vectors contains no elements then false is returned. "] pure fn any2(v0: [T]/&, v1: [U]/&, f: fn(T, U) -> bool) -> bool { let v0_len = len(v0); let v1_len = len(v1); let mut i = 0u; while i < v0_len && i < v1_len { if f(v0[i], v1[i]) { ret true; }; i += 1u; } ret false; } #[doc = " Return true if a predicate matches all elements If the vector contains no elements then true is returned. "] pure fn all(v: [T]/&, f: fn(T) -> bool) -> bool { for each(v) {|elem| if !f(elem) { ret false; } } ret true; } #[doc = " Return true if a predicate matches all elements If the vector contains no elements then true is returned. "] pure fn alli(v: [T]/&, f: fn(uint, T) -> bool) -> bool { for eachi(v) {|i, elem| if !f(i, elem) { ret false; } } ret true; } #[doc = " Return true if a predicate matches all elements in both vectors. If the vectors are not the same size then false is returned. "] pure fn all2(v0: [T]/&, v1: [U]/&, f: fn(T, U) -> bool) -> bool { let v0_len = len(v0); if v0_len != len(v1) { ret false; } let mut i = 0u; while i < v0_len { if !f(v0[i], v1[i]) { ret false; }; i += 1u; } ret true; } #[doc = "Return true if a vector contains an element with the given value"] pure fn contains(v: [T]/&, x: T) -> bool { for each(v) {|elt| if x == elt { ret true; } } ret false; } #[doc = "Returns the number of elements that are equal to a given value"] pure fn count(v: [T]/&, x: T) -> uint { let mut cnt = 0u; for each(v) {|elt| if x == elt { cnt += 1u; } } ret cnt; } #[doc = " Search for the first element that matches a given predicate Apply function `f` to each element of `v`, starting from the first. When function `f` returns true then an option containing the element is returned. If `f` matches no elements then none is returned. "] pure fn find(v: [T]/&, f: fn(T) -> bool) -> option { find_between(v, 0u, len(v), f) } #[doc = " Search for the first element that matches a given predicate within a range Apply function `f` to each element of `v` within the range [`start`, `end`). When function `f` returns true then an option containing the element is returned. If `f` matches no elements then none is returned. "] pure fn find_between(v: [T]/&, start: uint, end: uint, f: fn(T) -> bool) -> option { option::map(position_between(v, start, end, f)) { |i| v[i] } } #[doc = " Search for the last element that matches a given predicate Apply function `f` to each element of `v` in reverse order. When function `f` returns true then an option containing the element is returned. If `f` matches no elements then none is returned. "] pure fn rfind(v: [T]/&, f: fn(T) -> bool) -> option { rfind_between(v, 0u, len(v), f) } #[doc = " Search for the last element that matches a given predicate within a range Apply function `f` to each element of `v` in reverse order within the range [`start`, `end`). When function `f` returns true then an option containing the element is returned. If `f` matches no elements then none is returned. "] pure fn rfind_between(v: [T]/&, start: uint, end: uint, f: fn(T) -> bool) -> option { option::map(rposition_between(v, start, end, f)) { |i| v[i] } } #[doc = "Find the first index containing a matching value"] pure fn position_elem(v: [T]/&, x: T) -> option { position(v) { |y| x == y } } #[doc = " Find the first index matching some predicate Apply function `f` to each element of `v`. When function `f` returns true then an option containing the index is returned. If `f` matches no elements then none is returned. "] pure fn position(v: [T]/&, f: fn(T) -> bool) -> option { position_between(v, 0u, len(v), f) } #[doc = " Find the first index matching some predicate within a range Apply function `f` to each element of `v` between the range [`start`, `end`). When function `f` returns true then an option containing the index is returned. If `f` matches no elements then none is returned. "] pure fn position_between(v: [T]/&, start: uint, end: uint, f: fn(T) -> bool) -> option { assert start <= end; assert end <= len(v); let mut i = start; while i < end { if f(v[i]) { ret some::(i); } i += 1u; } ret none; } #[doc = "Find the last index containing a matching value"] pure fn rposition_elem(v: [T]/&, x: T) -> option { rposition(v) { |y| x == y } } #[doc = " Find the last index matching some predicate Apply function `f` to each element of `v` in reverse order. When function `f` returns true then an option containing the index is returned. If `f` matches no elements then none is returned. "] pure fn rposition(v: [T]/&, f: fn(T) -> bool) -> option { rposition_between(v, 0u, len(v), f) } #[doc = " Find the last index matching some predicate within a range Apply function `f` to each element of `v` in reverse order between the range [`start`, `end`). When function `f` returns true then an option containing the index is returned. If `f` matches no elements then none is returned. "] pure fn rposition_between(v: [T]/&, start: uint, end: uint, f: fn(T) -> bool) -> option { assert start <= end; assert end <= len(v); let mut i = end; while i > start { if f(v[i - 1u]) { ret some::(i - 1u); } i -= 1u; } ret none; } // FIXME: if issue #586 gets implemented, could have a postcondition // saying the two result lists have the same length -- or, could // return a nominal record with a constraint saying that, instead of // returning a tuple (contingent on issue #869) #[doc = " Convert a vector of pairs into a pair of vectors Returns a tuple containing two vectors where the i-th element of the first vector contains the first element of the i-th tuple of the input vector, and the i-th element of the second vector contains the second element of the i-th tuple of the input vector. "] pure fn unzip(v: [(T, U)]/&) -> ([T], [U]) { let mut as = [], bs = []; for each(v) {|p| let (a, b) = p; as += [a]; bs += [b]; } ret (as, bs); } #[doc = " Convert two vectors to a vector of pairs Returns a vector of tuples, where the i-th tuple contains contains the i-th elements from each of the input vectors. "] pure fn zip(v: [const T]/&, u: [const U]/&) -> [(T, U)] { let mut zipped = []; let sz = len(v); let mut i = 0u; assert sz == len(u); while i < sz { zipped += [(v[i], u[i])]; i += 1u; } ret zipped; } #[doc = " Swaps two elements in a vector # Arguments * v The input vector * a - The index of the first element * b - The index of the second element "] fn swap(&&v: [mut T], a: uint, b: uint) { v[a] <-> v[b]; } #[doc = "Reverse the order of elements in a vector, in place"] fn reverse(v: [mut T]) { let mut i: uint = 0u; let ln = len::(v); while i < ln / 2u { v[i] <-> v[ln - i - 1u]; i += 1u; } } #[doc = "Returns a vector with the order of elements reversed"] fn reversed(v: [const T]/&) -> [T] { let mut rs: [T] = []; let mut i = len::(v); if i == 0u { ret rs; } else { i -= 1u; } while i != 0u { rs += [v[i]]; i -= 1u; } rs += [v[0]]; ret rs; } #[doc = " Iterates over a slice Iterates over slice `v` and, for each element, calls function `f` with the element's value. "] #[inline(always)] pure fn iter(v: [T]/&, f: fn(T)) { iter_between(v, 0u, vec::len(v), f) } /* Function: iter_between Iterates over a slice Iterates over slice `v` and, for each element, calls function `f` with the element's value. */ #[inline(always)] pure fn iter_between(v: [T]/&, start: uint, end: uint, f: fn(T)) { unpack_slice(v) { |base_ptr, len| assert start <= end; assert end <= len; unsafe { let mut n = end; let mut p = ptr::offset(base_ptr, start); while n > start { f(*p); p = ptr::offset(p, 1u); n -= 1u; } } } } #[doc = " Iterates over a vector, with option to break Return true to continue, false to break. "] #[inline(always)] pure fn each(v: [const T]/&, f: fn(T) -> bool) unsafe { vec::unpack_slice(v) {|p, n| let mut n = n; let mut p = p; while n > 0u { if !f(*p) { break; } p = ptr::offset(p, 1u); n -= 1u; } } } #[doc = " Iterates over a vector's elements and indices Return true to continue, false to break. "] #[inline(always)] pure fn eachi(v: [const T]/&, f: fn(uint, T) -> bool) unsafe { vec::unpack_slice(v) {|p, n| let mut i = 0u; let mut p = p; while i < n { if !f(i, *p) { break; } p = ptr::offset(p, 1u); i += 1u; } } } #[doc = " Iterates over two vectors simultaneously # Failure Both vectors must have the same length "] #[inline] fn iter2(v1: [U]/&, v2: [T]/&, f: fn(U, T)) { assert len(v1) == len(v2); for uint::range(0u, len(v1)) {|i| f(v1[i], v2[i]) } } #[doc = " Iterates over a vector's elements and indexes Iterates over vector `v` and, for each element, calls function `f` with the element's value and index. "] #[inline(always)] pure fn iteri(v: [T]/&, f: fn(uint, T)) { let mut i = 0u; let l = len(v); while i < l { f(i, v[i]); i += 1u; } } #[doc = " Iterates over a vector in reverse Iterates over vector `v` and, for each element, calls function `f` with the element's value. "] pure fn riter(v: [T]/&, f: fn(T)) { riteri(v) { |_i, v| f(v) } } #[doc =" Iterates over a vector's elements and indexes in reverse Iterates over vector `v` and, for each element, calls function `f` with the element's value and index. "] pure fn riteri(v: [T]/&, f: fn(uint, T)) { let mut i = len(v); while 0u < i { i -= 1u; f(i, v[i]); }; } #[doc = " Iterate over all permutations of vector `v`. Permutations are produced in lexicographic order with respect to the order of elements in `v` (so if `v` is sorted then the permutations are lexicographically sorted). The total number of permutations produced is `len(v)!`. If `v` contains repeated elements, then some permutations are repeated. "] pure fn permute(v: [T]/&, put: fn([T])) { let ln = len(v); if ln == 0u { put([]); } else { let mut i = 0u; while i < ln { let elt = v[i]; let rest = slice(v, 0u, i) + slice(v, i+1u, ln); permute(rest) {|permutation| put([elt] + permutation)} i += 1u; } } } pure fn windowed(nn: uint, xx: [TT]/&) -> [[TT]] { let mut ww = []; assert 1u <= nn; vec::iteri (xx, {|ii, _x| let len = vec::len(xx); if ii+nn <= len { ww += [vec::slice(xx, ii, ii+nn)]; } }); ret ww; } #[doc = " Work with the buffer of a vector. Allows for unsafe manipulation of vector contents, which is useful for native interop. "] fn as_buf(v: [E]/&, f: fn(*E) -> T) -> T unsafe { unpack_slice(v) { |buf, _len| f(buf) } } fn as_mut_buf(v: [mut E]/&, f: fn(*mut E) -> T) -> T unsafe { unpack_mut_slice(v) { |buf, _len| f(buf) } } #[doc = " Work with the buffer and length of a slice. "] #[inline(always)] pure fn unpack_slice(s: [const T]/&, f: fn(*T, uint) -> U) -> U unsafe { let v : *(*T,uint) = ::unsafe::reinterpret_cast(ptr::addr_of(s)); let (buf,len) = *v; f(buf, len / sys::size_of::()) } #[doc = " Work with the buffer and length of a slice. "] #[inline(always)] pure fn unpack_const_slice(s: [const T]/&, f: fn(*const T, uint) -> U) -> U unsafe { let v : *(*const T,uint) = ::unsafe::reinterpret_cast(ptr::addr_of(s)); let (buf,len) = *v; f(buf, len / sys::size_of::()) } #[doc = " Work with the buffer and length of a slice. "] #[inline(always)] pure fn unpack_mut_slice(s: [mut T]/&, f: fn(*mut T, uint) -> U) -> U unsafe { let v : *(*const T,uint) = ::unsafe::reinterpret_cast(ptr::addr_of(s)); let (buf,len) = *v; f(buf, len / sys::size_of::()) } impl extensions for [T] { #[inline(always)] pure fn +(rhs: [T]/&) -> [T] { append(self, rhs) } } impl extensions for [mut T] { #[inline(always)] pure fn +(rhs: [mut T]/&) -> [mut T] { append_mut(self, rhs) } } #[doc = "Extension methods for vectors"] impl extensions/& for [const T]/& { #[doc = "Returns true if a vector contains no elements"] #[inline] pure fn is_empty() -> bool { is_empty(self) } #[doc = "Returns true if a vector contains some elements"] #[inline] pure fn is_not_empty() -> bool { is_not_empty(self) } #[doc = "Returns the length of a vector"] #[inline] pure fn len() -> uint { len(self) } } #[doc = "Extension methods for vectors"] impl extensions/& for [const T]/& { #[doc = "Returns the first element of a vector"] #[inline] pure fn head() -> T { head(self) } #[doc = "Returns all but the last elemnt of a vector"] #[inline] pure fn init() -> [T] { init(self) } #[doc = " Returns the last element of a `v`, failing if the vector is empty. "] #[inline] pure fn last() -> T { last(self) } #[doc = "Returns a copy of the elements from [`start`..`end`) from `v`."] #[inline] pure fn slice(start: uint, end: uint) -> [T] { slice(self, start, end) } #[doc = "Returns all but the first element of a vector"] #[inline] pure fn tail() -> [T] { tail(self) } } #[doc = "Extension methods for vectors"] impl extensions/& for [T]/& { #[doc = "Reduce a vector from right to left"] #[inline] pure fn foldr(z: U, p: fn(T, U) -> U) -> U { foldr(self, z, p) } #[doc = " Iterates over a vector Iterates over vector `v` and, for each element, calls function `f` with the element's value. "] #[inline] pure fn iter(f: fn(T)) { iter(self, f) } #[doc = " Iterates over a vector's elements and indexes Iterates over vector `v` and, for each element, calls function `f` with the element's value and index. "] #[inline] pure fn iteri(f: fn(uint, T)) { iteri(self, f) } #[doc = " Find the first index matching some predicate Apply function `f` to each element of `v`. When function `f` returns true then an option containing the index is returned. If `f` matches no elements then none is returned. "] #[inline] pure fn position(f: fn(T) -> bool) -> option { position(self, f) } #[doc = "Find the first index containing a matching value"] #[inline] pure fn position_elem(x: T) -> option { position_elem(self, x) } #[doc = " Iterates over a vector in reverse Iterates over vector `v` and, for each element, calls function `f` with the element's value. "] #[inline] pure fn riter(f: fn(T)) { riter(self, f) } #[doc =" Iterates over a vector's elements and indexes in reverse Iterates over vector `v` and, for each element, calls function `f` with the element's value and index. "] #[inline] pure fn riteri(f: fn(uint, T)) { riteri(self, f) } #[doc = " Find the last index matching some predicate Apply function `f` to each element of `v` in reverse order. When function `f` returns true then an option containing the index is returned. If `f` matches no elements then none is returned. "] #[inline] pure fn rposition(f: fn(T) -> bool) -> option { rposition(self, f) } #[doc = "Find the last index containing a matching value"] #[inline] pure fn rposition_elem(x: T) -> option { rposition_elem(self, x) } #[doc = " Apply a function to each element of a vector and return the results "] #[inline] pure fn map(f: fn(T) -> U) -> [U] { map(self, f) } #[doc = " Apply a function to the index and value of each element in the vector and return the results "] pure fn mapi(f: fn(uint, T) -> U) -> [U] { mapi(self, f) } #[doc = "Returns true if the function returns true for all elements. If the vector is empty, true is returned."] pure fn alli(f: fn(uint, T) -> bool) -> bool { alli(self, f) } #[doc = " Apply a function to each element of a vector and return a concatenation of each result vector "] #[inline] pure fn flat_map(f: fn(T) -> [U]) -> [U] { flat_map(self, f) } #[doc = " Apply a function to each element of a vector and return the results If function `f` returns `none` then that element is excluded from the resulting vector. "] #[inline] pure fn filter_map(f: fn(T) -> option) -> [U] { filter_map(self, f) } } #[doc = "Extension methods for vectors"] impl extensions/& for [T]/& { #[doc = " Construct a new vector from the elements of a vector for which some predicate holds. Apply function `f` to each element of `v` and return a vector containing only those elements for which `f` returned true. "] #[inline] pure fn filter(f: fn(T) -> bool) -> [T] { filter(self, f) } #[doc = " Search for the first element that matches a given predicate Apply function `f` to each element of `v`, starting from the first. When function `f` returns true then an option containing the element is returned. If `f` matches no elements then none is returned. "] #[inline] pure fn find(f: fn(T) -> bool) -> option { find(self, f) } #[doc = " Search for the last element that matches a given predicate Apply function `f` to each element of `v` in reverse order. When function `f` returns true then an option containing the element is returned. If `f` matches no elements then none is returned. "] #[inline] pure fn rfind(f: fn(T) -> bool) -> option { rfind(self, f) } } #[doc = "Unsafe operations"] mod unsafe { // FIXME: This should have crate visibility (#1893 blocks that) #[doc = "The internal representation of a vector"] type vec_repr = { box_header: (uint, uint, uint, uint), mut fill: uint, mut alloc: uint, data: u8 }; #[doc = " Constructs a vector from an unsafe pointer to a buffer # Arguments * ptr - An unsafe pointer to a buffer of `T` * elts - The number of elements in the buffer "] #[inline(always)] unsafe fn from_buf(ptr: *T, elts: uint) -> [T] { ret ::unsafe::reinterpret_cast( rustrt::vec_from_buf_shared(sys::get_type_desc::(), ptr as *(), elts as size_t)); } #[doc = " Sets the length of a vector This will explicitly set the size of the vector, without actually modifing its buffers, so it is up to the caller to ensure that the vector is actually the specified size. "] #[inline(always)] unsafe fn set_len(&&v: [const T], new_len: uint) { let repr: **vec_repr = ::unsafe::reinterpret_cast(addr_of(v)); (**repr).fill = new_len * sys::size_of::(); } #[doc = " Returns an unsafe pointer to the vector's buffer The caller must ensure that the vector outlives the pointer this function returns, or else it will end up pointing to garbage. Modifying the vector may cause its buffer to be reallocated, which would also make any pointers to it invalid. "] #[inline(always)] unsafe fn to_ptr(v: [const T]) -> *T { let repr: **vec_repr = ::unsafe::reinterpret_cast(addr_of(v)); ret ::unsafe::reinterpret_cast(addr_of((**repr).data)); } #[doc = " Form a slice from a pointer and length (as a number of units, not bytes). "] #[inline(always)] unsafe fn form_slice(p: *T, len: uint, f: fn([T]/&) -> U) -> U { let pair = (p, len * sys::size_of::()); let v : *([T]/&blk) = ::unsafe::reinterpret_cast(ptr::addr_of(pair)); f(*v) } } #[doc = "Operations on `[u8]`"] mod u8 { export cmp; export lt, le, eq, ne, ge, gt; export hash; #[doc = "Bytewise string comparison"] pure fn cmp(&&a: [u8], &&b: [u8]) -> int unsafe { let a_len = len(a); let b_len = len(b); let n = uint::min(a_len, b_len) as libc::size_t; let r = libc::memcmp(unsafe::to_ptr(a) as *libc::c_void, unsafe::to_ptr(b) as *libc::c_void, n) as int; if r != 0 { r } else { if a_len == b_len { 0 } else if a_len < b_len { -1 } else { 1 } } } #[doc = "Bytewise less than or equal"] pure fn lt(&&a: [u8], &&b: [u8]) -> bool { cmp(a, b) < 0 } #[doc = "Bytewise less than or equal"] pure fn le(&&a: [u8], &&b: [u8]) -> bool { cmp(a, b) <= 0 } #[doc = "Bytewise equality"] pure fn eq(&&a: [u8], &&b: [u8]) -> bool unsafe { cmp(a, b) == 0 } #[doc = "Bytewise inequality"] pure fn ne(&&a: [u8], &&b: [u8]) -> bool unsafe { cmp(a, b) != 0 } #[doc ="Bytewise greater than or equal"] pure fn ge(&&a: [u8], &&b: [u8]) -> bool { cmp(a, b) >= 0 } #[doc = "Bytewise greater than"] pure fn gt(&&a: [u8], &&b: [u8]) -> bool { cmp(a, b) > 0 } #[doc = "String hash function"] fn hash(&&s: [u8]) -> uint { /* Seems to have been tragically copy/pasted from str.rs, or vice versa. But I couldn't figure out how to abstract it out. -- tjc */ let mut u: uint = 5381u; vec::iter(s, { |c| u *= 33u; u += c as uint; }); ret u; } } // ___________________________________________________________________________ // ITERATION TRAIT METHODS // // This cannot be used with iter-trait.rs because of the region pointer // required in the slice. impl extensions/& of iter::base_iter for [const A]/& { fn each(blk: fn(A) -> bool) { each(self, blk) } fn size_hint() -> option { some(len(self)) } fn eachi(blk: fn(uint, A) -> bool) { iter::eachi(self, blk) } fn all(blk: fn(A) -> bool) -> bool { iter::all(self, blk) } fn any(blk: fn(A) -> bool) -> bool { iter::any(self, blk) } fn foldl(+b0: B, blk: fn(B, A) -> B) -> B { iter::foldl(self, b0, blk) } fn contains(x: A) -> bool { iter::contains(self, x) } fn count(x: A) -> uint { iter::count(self, x) } } impl extensions/& for [const A]/& { fn filter_to_vec(pred: fn(A) -> bool) -> [A] { iter::filter_to_vec(self, pred) } fn map_to_vec(op: fn(A) -> B) -> [B] { iter::map_to_vec(self, op) } fn to_vec() -> [A] { iter::to_vec(self) } // FIXME--bug in resolve prevents this from working (#2611) // fn flat_map_to_vec>(op: fn(A) -> IB) -> [B] { // iter::flat_map_to_vec(self, op) // } fn min() -> A { iter::min(self) } fn max() -> A { iter::max(self) } } // ___________________________________________________________________________ #[cfg(test)] mod tests { fn square(n: uint) -> uint { ret n * n; } fn square_ref(&&n: uint) -> uint { ret n * n; } pure fn is_three(&&n: uint) -> bool { ret n == 3u; } pure fn is_odd(&&n: uint) -> bool { ret n % 2u == 1u; } pure fn is_equal(&&x: uint, &&y:uint) -> bool { ret x == y; } fn square_if_odd(&&n: uint) -> option { ret if n % 2u == 1u { some(n * n) } else { none }; } fn add(&&x: uint, &&y: uint) -> uint { ret x + y; } #[test] fn test_unsafe_ptrs() unsafe { // Test on-stack copy-from-buf. let a = [1, 2, 3]; let mut ptr = unsafe::to_ptr(a); let b = unsafe::from_buf(ptr, 3u); assert (len(b) == 3u); assert (b[0] == 1); assert (b[1] == 2); assert (b[2] == 3); // Test on-heap copy-from-buf. let c = [1, 2, 3, 4, 5]; ptr = unsafe::to_ptr(c); let d = unsafe::from_buf(ptr, 5u); assert (len(d) == 5u); assert (d[0] == 1); assert (d[1] == 2); assert (d[2] == 3); assert (d[3] == 4); assert (d[4] == 5); } #[test] fn test_from_fn() { // Test on-stack from_fn. let mut v = from_fn(3u, square); assert (len(v) == 3u); assert (v[0] == 0u); assert (v[1] == 1u); assert (v[2] == 4u); // Test on-heap from_fn. v = from_fn(5u, square); assert (len(v) == 5u); assert (v[0] == 0u); assert (v[1] == 1u); assert (v[2] == 4u); assert (v[3] == 9u); assert (v[4] == 16u); } #[test] fn test_from_elem() { // Test on-stack from_elem. let mut v = from_elem(2u, 10u); assert (len(v) == 2u); assert (v[0] == 10u); assert (v[1] == 10u); // Test on-heap from_elem. v = from_elem(6u, 20u); assert (v[0] == 20u); assert (v[1] == 20u); assert (v[2] == 20u); assert (v[3] == 20u); assert (v[4] == 20u); assert (v[5] == 20u); } #[test] fn test_is_empty() { assert (is_empty::([])); assert (!is_empty([0])); } #[test] fn test_is_not_empty() { assert (is_not_empty([0])); assert (!is_not_empty::([])); } #[test] fn test_head() { let a = [11, 12]; assert (head(a) == 11); } #[test] fn test_tail() { let mut a = [11]; assert (tail(a) == []); a = [11, 12]; assert (tail(a) == [12]); } #[test] fn test_last() { let mut n = last_opt([]); assert (n == none); n = last_opt([1, 2, 3]); assert (n == some(3)); n = last_opt([1, 2, 3, 4, 5]); assert (n == some(5)); } #[test] fn test_slice() { // Test on-stack -> on-stack slice. let mut v = slice([1, 2, 3], 1u, 3u); assert (len(v) == 2u); assert (v[0] == 2); assert (v[1] == 3); // Test on-heap -> on-stack slice. v = slice([1, 2, 3, 4, 5], 0u, 3u); assert (len(v) == 3u); assert (v[0] == 1); assert (v[1] == 2); assert (v[2] == 3); // Test on-heap -> on-heap slice. v = slice([1, 2, 3, 4, 5, 6], 1u, 6u); assert (len(v) == 5u); assert (v[0] == 2); assert (v[1] == 3); assert (v[2] == 4); assert (v[3] == 5); assert (v[4] == 6); } #[test] fn test_pop() { // Test on-stack pop. let mut v = [1, 2, 3]; let mut e = pop(v); assert (len(v) == 2u); assert (v[0] == 1); assert (v[1] == 2); assert (e == 3); // Test on-heap pop. v = [1, 2, 3, 4, 5]; e = pop(v); assert (len(v) == 4u); assert (v[0] == 1); assert (v[1] == 2); assert (v[2] == 3); assert (v[3] == 4); assert (e == 5); } #[test] fn test_push() { // Test on-stack push(). let mut v = []; push(v, 1); assert (len(v) == 1u); assert (v[0] == 1); // Test on-heap push(). push(v, 2); assert (len(v) == 2u); assert (v[0] == 1); assert (v[1] == 2); } #[test] fn test_grow() { // Test on-stack grow(). let mut v = []; grow(v, 2u, 1); assert (len(v) == 2u); assert (v[0] == 1); assert (v[1] == 1); // Test on-heap grow(). grow(v, 3u, 2); assert (len(v) == 5u); assert (v[0] == 1); assert (v[1] == 1); assert (v[2] == 2); assert (v[3] == 2); assert (v[4] == 2); } #[test] fn test_grow_fn() { let mut v = []; grow_fn(v, 3u, square); assert (len(v) == 3u); assert (v[0] == 0u); assert (v[1] == 1u); assert (v[2] == 4u); } #[test] fn test_grow_set() { let mut v = [mut 1, 2, 3]; grow_set(v, 4u, 4, 5); assert (len(v) == 5u); assert (v[0] == 1); assert (v[1] == 2); assert (v[2] == 3); assert (v[3] == 4); assert (v[4] == 5); } #[test] fn test_map() { // Test on-stack map. let mut v = [1u, 2u, 3u]; let mut w = map(v, square_ref); assert (len(w) == 3u); assert (w[0] == 1u); assert (w[1] == 4u); assert (w[2] == 9u); // Test on-heap map. v = [1u, 2u, 3u, 4u, 5u]; w = map(v, square_ref); assert (len(w) == 5u); assert (w[0] == 1u); assert (w[1] == 4u); assert (w[2] == 9u); assert (w[3] == 16u); assert (w[4] == 25u); } #[test] fn test_map2() { fn times(&&x: int, &&y: int) -> int { ret x * y; } let f = times; let v0 = [1, 2, 3, 4, 5]; let v1 = [5, 4, 3, 2, 1]; let u = map2::(v0, v1, f); let mut i = 0; while i < 5 { assert (v0[i] * v1[i] == u[i]); i += 1; } } #[test] fn test_filter_map() { // Test on-stack filter-map. let mut v = [1u, 2u, 3u]; let mut w = filter_map(v, square_if_odd); assert (len(w) == 2u); assert (w[0] == 1u); assert (w[1] == 9u); // Test on-heap filter-map. v = [1u, 2u, 3u, 4u, 5u]; w = filter_map(v, square_if_odd); assert (len(w) == 3u); assert (w[0] == 1u); assert (w[1] == 9u); assert (w[2] == 25u); fn halve(&&i: int) -> option { if i % 2 == 0 { ret option::some::(i / 2); } else { ret option::none::; } } fn halve_for_sure(&&i: int) -> int { ret i / 2; } let all_even: [int] = [0, 2, 8, 6]; let all_odd1: [int] = [1, 7, 3]; let all_odd2: [int] = []; let mix: [int] = [9, 2, 6, 7, 1, 0, 0, 3]; let mix_dest: [int] = [1, 3, 0, 0]; assert (filter_map(all_even, halve) == map(all_even, halve_for_sure)); assert (filter_map(all_odd1, halve) == []); assert (filter_map(all_odd2, halve) == []); assert (filter_map(mix, halve) == mix_dest); } #[test] fn test_filter() { assert filter([1u, 2u, 3u], is_odd) == [1u, 3u]; assert filter([1u, 2u, 4u, 8u, 16u], is_three) == []; } #[test] fn test_foldl() { // Test on-stack fold. let mut v = [1u, 2u, 3u]; let mut sum = foldl(0u, v, add); assert (sum == 6u); // Test on-heap fold. v = [1u, 2u, 3u, 4u, 5u]; sum = foldl(0u, v, add); assert (sum == 15u); } #[test] fn test_foldl2() { fn sub(&&a: int, &&b: int) -> int { a - b } let mut v = [1, 2, 3, 4]; let sum = foldl(0, v, sub); assert sum == -10; } #[test] fn test_foldr() { fn sub(&&a: int, &&b: int) -> int { a - b } let mut v = [1, 2, 3, 4]; let sum = foldr(v, 0, sub); assert sum == -2; } #[test] fn test_iter_empty() { let mut i = 0; iter::([], { |_v| i += 1 }); assert i == 0; } #[test] fn test_iter_nonempty() { let mut i = 0; iter([1, 2, 3], { |v| i += v }); assert i == 6; } #[test] fn test_iteri() { let mut i = 0; iteri([1, 2, 3], { |j, v| if i == 0 { assert v == 1; } assert j + 1u == v as uint; i += v; }); assert i == 6; } #[test] fn test_riter_empty() { let mut i = 0; riter::([], { |_v| i += 1 }); assert i == 0; } #[test] fn test_riter_nonempty() { let mut i = 0; riter([1, 2, 3], { |v| if i == 0 { assert v == 3; } i += v }); assert i == 6; } #[test] fn test_riteri() { let mut i = 0; riteri([0, 1, 2], { |j, v| if i == 0 { assert v == 2; } assert j == v as uint; i += v; }); assert i == 3; } #[test] fn test_permute() { let mut results: [[int]]; results = []; permute([]) {|v| results += [v]; } assert results == [[]]; results = []; permute([7]) {|v| results += [v]; } assert results == [[7]]; results = []; permute([1,1]) {|v| results += [v]; } assert results == [[1,1],[1,1]]; results = []; permute([5,2,0]) {|v| results += [v]; } assert results == [[5,2,0],[5,0,2],[2,5,0],[2,0,5],[0,5,2],[0,2,5]]; } #[test] fn test_any_and_all() { assert (any([1u, 2u, 3u], is_three)); assert (!any([0u, 1u, 2u], is_three)); assert (any([1u, 2u, 3u, 4u, 5u], is_three)); assert (!any([1u, 2u, 4u, 5u, 6u], is_three)); assert (all([3u, 3u, 3u], is_three)); assert (!all([3u, 3u, 2u], is_three)); assert (all([3u, 3u, 3u, 3u, 3u], is_three)); assert (!all([3u, 3u, 0u, 1u, 2u], is_three)); } #[test] fn test_any2_and_all2() { assert (any2([2u, 4u, 6u], [2u, 4u, 6u], is_equal)); assert (any2([1u, 2u, 3u], [4u, 5u, 3u], is_equal)); assert (!any2([1u, 2u, 3u], [4u, 5u, 6u], is_equal)); assert (any2([2u, 4u, 6u], [2u, 4u], is_equal)); assert (all2([2u, 4u, 6u], [2u, 4u, 6u], is_equal)); assert (!all2([1u, 2u, 3u], [4u, 5u, 3u], is_equal)); assert (!all2([1u, 2u, 3u], [4u, 5u, 6u], is_equal)); assert (!all2([2u, 4u, 6u], [2u, 4u], is_equal)); } #[test] fn test_zip_unzip() { let v1 = [1, 2, 3]; let v2 = [4, 5, 6]; let z1 = zip(v1, v2); assert ((1, 4) == z1[0]); assert ((2, 5) == z1[1]); assert ((3, 6) == z1[2]); let (left, right) = unzip(z1); assert ((1, 4) == (left[0], right[0])); assert ((2, 5) == (left[1], right[1])); assert ((3, 6) == (left[2], right[2])); } #[test] fn test_position_elem() { assert position_elem([], 1) == none; let v1 = [1, 2, 3, 3, 2, 5]; assert position_elem(v1, 1) == some(0u); assert position_elem(v1, 2) == some(1u); assert position_elem(v1, 5) == some(5u); assert position_elem(v1, 4) == none; } #[test] fn test_position() { fn less_than_three(&&i: int) -> bool { ret i < 3; } fn is_eighteen(&&i: int) -> bool { ret i == 18; } assert position([], less_than_three) == none; let v1 = [5, 4, 3, 2, 1]; assert position(v1, less_than_three) == some(3u); assert position(v1, is_eighteen) == none; } #[test] fn test_position_between() { assert position_between([], 0u, 0u, f) == none; fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' } let mut v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')]; assert position_between(v, 0u, 0u, f) == none; assert position_between(v, 0u, 1u, f) == none; assert position_between(v, 0u, 2u, f) == some(1u); assert position_between(v, 0u, 3u, f) == some(1u); assert position_between(v, 0u, 4u, f) == some(1u); assert position_between(v, 1u, 1u, f) == none; assert position_between(v, 1u, 2u, f) == some(1u); assert position_between(v, 1u, 3u, f) == some(1u); assert position_between(v, 1u, 4u, f) == some(1u); assert position_between(v, 2u, 2u, f) == none; assert position_between(v, 2u, 3u, f) == none; assert position_between(v, 2u, 4u, f) == some(3u); assert position_between(v, 3u, 3u, f) == none; assert position_between(v, 3u, 4u, f) == some(3u); assert position_between(v, 4u, 4u, f) == none; } #[test] fn test_find() { assert find([], f) == none; fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' } fn g(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'd' } let mut v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')]; assert find(v, f) == some((1, 'b')); assert find(v, g) == none; } #[test] fn test_find_between() { assert find_between([], 0u, 0u, f) == none; fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' } let mut v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')]; assert find_between(v, 0u, 0u, f) == none; assert find_between(v, 0u, 1u, f) == none; assert find_between(v, 0u, 2u, f) == some((1, 'b')); assert find_between(v, 0u, 3u, f) == some((1, 'b')); assert find_between(v, 0u, 4u, f) == some((1, 'b')); assert find_between(v, 1u, 1u, f) == none; assert find_between(v, 1u, 2u, f) == some((1, 'b')); assert find_between(v, 1u, 3u, f) == some((1, 'b')); assert find_between(v, 1u, 4u, f) == some((1, 'b')); assert find_between(v, 2u, 2u, f) == none; assert find_between(v, 2u, 3u, f) == none; assert find_between(v, 2u, 4u, f) == some((3, 'b')); assert find_between(v, 3u, 3u, f) == none; assert find_between(v, 3u, 4u, f) == some((3, 'b')); assert find_between(v, 4u, 4u, f) == none; } #[test] fn test_rposition() { assert find([], f) == none; fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' } fn g(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'd' } let mut v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')]; assert position(v, f) == some(1u); assert position(v, g) == none; } #[test] fn test_rposition_between() { assert rposition_between([], 0u, 0u, f) == none; fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' } let mut v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')]; assert rposition_between(v, 0u, 0u, f) == none; assert rposition_between(v, 0u, 1u, f) == none; assert rposition_between(v, 0u, 2u, f) == some(1u); assert rposition_between(v, 0u, 3u, f) == some(1u); assert rposition_between(v, 0u, 4u, f) == some(3u); assert rposition_between(v, 1u, 1u, f) == none; assert rposition_between(v, 1u, 2u, f) == some(1u); assert rposition_between(v, 1u, 3u, f) == some(1u); assert rposition_between(v, 1u, 4u, f) == some(3u); assert rposition_between(v, 2u, 2u, f) == none; assert rposition_between(v, 2u, 3u, f) == none; assert rposition_between(v, 2u, 4u, f) == some(3u); assert rposition_between(v, 3u, 3u, f) == none; assert rposition_between(v, 3u, 4u, f) == some(3u); assert rposition_between(v, 4u, 4u, f) == none; } #[test] fn test_rfind() { assert rfind([], f) == none; fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' } fn g(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'd' } let mut v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')]; assert rfind(v, f) == some((3, 'b')); assert rfind(v, g) == none; } #[test] fn test_rfind_between() { assert rfind_between([], 0u, 0u, f) == none; fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' } let mut v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')]; assert rfind_between(v, 0u, 0u, f) == none; assert rfind_between(v, 0u, 1u, f) == none; assert rfind_between(v, 0u, 2u, f) == some((1, 'b')); assert rfind_between(v, 0u, 3u, f) == some((1, 'b')); assert rfind_between(v, 0u, 4u, f) == some((3, 'b')); assert rfind_between(v, 1u, 1u, f) == none; assert rfind_between(v, 1u, 2u, f) == some((1, 'b')); assert rfind_between(v, 1u, 3u, f) == some((1, 'b')); assert rfind_between(v, 1u, 4u, f) == some((3, 'b')); assert rfind_between(v, 2u, 2u, f) == none; assert rfind_between(v, 2u, 3u, f) == none; assert rfind_between(v, 2u, 4u, f) == some((3, 'b')); assert rfind_between(v, 3u, 3u, f) == none; assert rfind_between(v, 3u, 4u, f) == some((3, 'b')); assert rfind_between(v, 4u, 4u, f) == none; } #[test] fn reverse_and_reversed() { let v: [mut int] = [mut 10, 20]; assert (v[0] == 10); assert (v[1] == 20); reverse(v); assert (v[0] == 20); assert (v[1] == 10); let v2 = reversed::([10, 20]); assert (v2[0] == 20); assert (v2[1] == 10); v[0] = 30; assert (v2[0] == 20); // Make sure they work with 0-length vectors too. let v4 = reversed::([]); assert (v4 == []); let v3: [mut int] = [mut]; reverse::(v3); } #[test] fn reversed_mut() { let v2 = reversed::([mut 10, 20]); assert (v2[0] == 20); assert (v2[1] == 10); } #[test] fn test_init() { let v = init([1, 2, 3]); assert v == [1, 2]; } #[test] fn test_split() { fn f(&&x: int) -> bool { x == 3 } assert split([], f) == []; assert split([1, 2], f) == [[1, 2]]; assert split([3, 1, 2], f) == [[], [1, 2]]; assert split([1, 2, 3], f) == [[1, 2], []]; assert split([1, 2, 3, 4, 3, 5], f) == [[1, 2], [4], [5]]; } #[test] fn test_splitn() { fn f(&&x: int) -> bool { x == 3 } assert splitn([], 1u, f) == []; assert splitn([1, 2], 1u, f) == [[1, 2]]; assert splitn([3, 1, 2], 1u, f) == [[], [1, 2]]; assert splitn([1, 2, 3], 1u, f) == [[1, 2], []]; assert splitn([1, 2, 3, 4, 3, 5], 1u, f) == [[1, 2], [4, 3, 5]]; } #[test] fn test_rsplit() { fn f(&&x: int) -> bool { x == 3 } assert rsplit([], f) == []; assert rsplit([1, 2], f) == [[1, 2]]; assert rsplit([1, 2, 3], f) == [[1, 2], []]; assert rsplit([1, 2, 3, 4, 3, 5], f) == [[1, 2], [4], [5]]; } #[test] fn test_rsplitn() { fn f(&&x: int) -> bool { x == 3 } assert rsplitn([], 1u, f) == []; assert rsplitn([1, 2], 1u, f) == [[1, 2]]; assert rsplitn([1, 2, 3], 1u, f) == [[1, 2], []]; assert rsplitn([1, 2, 3, 4, 3, 5], 1u, f) == [[1, 2, 3, 4], [5]]; } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_init_empty() { init::([]); } #[test] fn test_concat() { assert concat([[1], [2,3]]) == [1, 2, 3]; } #[test] fn test_connect() { assert connect([], 0) == []; assert connect([[1], [2, 3]], 0) == [1, 0, 2, 3]; assert connect([[1], [2], [3]], 0) == [1, 0, 2, 0, 3]; } #[test] fn test_windowed () { assert [[1u,2u,3u],[2u,3u,4u],[3u,4u,5u],[4u,5u,6u]] == windowed (3u, [1u,2u,3u,4u,5u,6u]); assert [[1u,2u,3u,4u],[2u,3u,4u,5u],[3u,4u,5u,6u]] == windowed (4u, [1u,2u,3u,4u,5u,6u]); assert [] == windowed (7u, [1u,2u,3u,4u,5u,6u]); } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_windowed_() { let _x = windowed (0u, [1u,2u,3u,4u,5u,6u]); } #[test] fn to_mut_no_copy() unsafe { let x = [1, 2, 3]; let addr = unsafe::to_ptr(x); let x_mut = to_mut(x); let addr_mut = unsafe::to_ptr(x_mut); assert addr == addr_mut; } #[test] fn from_mut_no_copy() unsafe { let x = [mut 1, 2, 3]; let addr = unsafe::to_ptr(x); let x_imm = from_mut(x); let addr_imm = unsafe::to_ptr(x_imm); assert addr == addr_imm; } #[test] fn test_unshift() { let mut x = [1, 2, 3]; unshift(x, 0); assert x == [0, 1, 2, 3]; } #[test] fn test_capacity() { let mut v = [0u64]; reserve(v, 10u); assert capacity(v) == 10u; let mut v = [0u32]; reserve(v, 10u); assert capacity(v) == 10u; } #[test] fn test_view() { let v = [1, 2, 3, 4, 5]; let v = view(v, 1u, 3u); assert(len(v) == 2u); assert(v[0] == 2); assert(v[1] == 3); } } // Local Variables: // mode: rust; // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: