// Support code for rustc's built in test runner generator. Currently, // none of this is meant for users. It is intended to support the // simplest interface possible for representing and running tests // while providing a base that other test frameworks may build off of. import sort = sort::ivector; import getenv = generic_os::getenv; export test_name; export test_fn; export test_desc; export test_main; export test_result; export test_opts; export tr_ok; export tr_failed; export tr_ignored; export run_tests_console; export run_tests_console_; export run_test; export filter_tests; export parse_opts; export test_to_task; export default_test_to_task; // The name of a test. By convention this follows the rules for rust // paths, i.e it should be a series of identifiers seperated by double // colons. This way if some test runner wants to arrange the tests // heirarchically it may. type test_name = str; // A function that runs a test. If the function returns successfully, // the test succeeds; if the function fails then the test fails. We // may need to come up with a more clever definition of test in order // to support isolation of tests into tasks. type test_fn = fn(); // The definition of a single test. A test runner will run a list of // these. type test_desc = rec(test_name name, test_fn fn, bool ignore); // The default console test runner. It accepts the command line // arguments and a vector of test_descs (generated at compile time). fn test_main(&vec[str] args, &test_desc[] tests) { auto ivec_args = { auto iargs = ~[]; for (str arg in args) { iargs += ~[arg] } iargs }; check ivec::is_not_empty(ivec_args); auto opts = alt (parse_opts(ivec_args)) { either::left(?o) { o } either::right(?m) { fail m } }; if (!run_tests_console(opts, tests)) { fail "Some tests failed"; } } type test_opts = rec(option::t[str] filter, bool run_ignored); type opt_res = either::t[test_opts, str]; // Parses command line arguments into test options fn parse_opts(&str[] args) : ivec::is_not_empty(args) -> opt_res { // FIXME (#649): Shouldn't have to check here check ivec::is_not_empty(args); auto args_ = ivec::tail(args); auto opts = ~[getopts::optflag("ignored")]; auto match = alt (getopts::getopts_ivec(args_, opts)) { getopts::success(?m) { m } getopts::failure(?f) { ret either::right(getopts::fail_str(f)) } }; auto filter = if (vec::len(match.free) > 0u) { option::some(match.free.(0)) } else { option::none }; auto run_ignored = getopts::opt_present(match, "ignored"); auto test_opts = rec(filter = filter, run_ignored = run_ignored); ret either::left(test_opts); } tag test_result { tr_ok; tr_failed; tr_ignored; } // To get isolation and concurrency tests have to be run in their own tasks. // In cases where test functions and closures it is not ok to just dump them // into a task and run them, so this transformation gives the caller a chance // to create the test task. type test_to_task = fn(&fn()) -> task; // A simple console test runner fn run_tests_console(&test_opts opts, &test_desc[] tests) -> bool { run_tests_console_(opts, tests, default_test_to_task) } fn run_tests_console_(&test_opts opts, &test_desc[] tests, &test_to_task to_task) -> bool { auto filtered_tests = filter_tests(opts, tests); auto out = io::stdout(); auto total = ivec::len(filtered_tests); out.write_line(#fmt("running %u tests", total)); auto futures = ~[]; auto passed = 0u; auto failed = 0u; auto ignored = 0u; auto failures = ~[]; // It's tempting to just spawn all the tests at once but that doesn't // provide a great user experience because you might sit waiting for the // result of a particular test for an unusually long amount of time. auto concurrency = get_concurrency(); log #fmt("using %u test tasks", concurrency); auto run_idx = 0u; auto wait_idx = 0u; while (wait_idx < total) { while (ivec::len(futures) < concurrency && run_idx < total) { futures += ~[run_test(filtered_tests.(run_idx), to_task)]; run_idx += 1u; } auto future = futures.(0); out.write_str(#fmt("running %s ... ", future.test.name)); auto result = future.wait(); alt (result) { tr_ok { passed += 1u; write_ok(out, concurrency); out.write_line(""); } tr_failed { failed += 1u; write_failed(out, concurrency); out.write_line(""); failures += ~[future.test]; } tr_ignored { ignored += 1u; write_ignored(out, concurrency); out.write_line(""); } } futures = ivec::slice(futures, 1u, ivec::len(futures)); wait_idx += 1u; } assert passed + failed + ignored == total; auto success = failed == 0u; if (!success) { out.write_line("\nfailures:"); for (test_desc test in failures) { out.write_line(#fmt(" %s", test.name)); } } out.write_str(#fmt("\nresult: ")); if (success) { write_ok(out, concurrency); } else { write_failed(out, concurrency); } out.write_str(#fmt(". %u passed; %u failed; %u ignored\n\n", passed, failed, ignored)); ret success; fn write_ok(&io::writer out, uint concurrency) { write_pretty(out, "ok", term::color_green, concurrency); } fn write_failed(&io::writer out, uint concurrency) { write_pretty(out, "FAILED", term::color_red, concurrency); } fn write_ignored(&io::writer out, uint concurrency) { write_pretty(out, "ignored", term::color_yellow, concurrency); } fn write_pretty(&io::writer out, &str word, u8 color, uint concurrency) { // In the presence of concurrency, outputing control characters // can cause some crazy artifacting if (concurrency == 1u && term::color_supported()) { term::fg(out.get_buf_writer(), color); } out.write_str(word); if (concurrency == 1u && term::color_supported()) { term::reset(out.get_buf_writer()); } } } fn get_concurrency() -> uint { alt getenv("RUST_THREADS") { option::some(?t) { auto threads = uint::parse_buf(str::bytes(t), 10u); threads > 0u ? threads : 1u } option::none { 1u } } } fn filter_tests(&test_opts opts, &test_desc[] tests) -> test_desc[] { auto filtered = tests; // Remove tests that don't match the test filter filtered = if (option::is_none(opts.filter)) { filtered } else { auto filter_str = alt opts.filter { option::some(?f) { f } option::none { "" } }; auto filter = bind fn(&test_desc test, str filter_str) -> option::t[test_desc] { if (str::find(test.name, filter_str) >= 0) { ret option::some(test); } else { ret option::none; } } (_, filter_str); ivec::filter_map(filter, filtered) }; // Maybe pull out the ignored test and unignore them filtered = if (!opts.run_ignored) { filtered } else { auto filter = fn(&test_desc test) -> option::t[test_desc] { if (test.ignore) { ret option::some(rec(name = test.name, fn = test.fn, ignore = false)); } else { ret option::none; } }; ivec::filter_map(filter, filtered) }; // Sort the tests alphabetically filtered = { fn lteq(&test_desc t1, &test_desc t2) -> bool { str::lteq(t1.name, t2.name) } sort::merge_sort(lteq, filtered) }; ret filtered; } type test_future = rec(test_desc test, @fn() fnref, fn() -> test_result wait); fn run_test(&test_desc test, &test_to_task to_task) -> test_future { // FIXME: Because of the unsafe way we're passing the test function // to the test task, we need to make sure we keep a reference to that // function around for longer than the lifetime of the task. To that end // we keep the function boxed in the test future. auto fnref = @test.fn; if (!test.ignore) { auto test_task = to_task(*fnref); ret rec(test = test, fnref = fnref, wait = bind fn(&task test_task) -> test_result { alt (task::join(test_task)) { task::tr_success { tr_ok } task::tr_failure { tr_failed } } } (test_task)); } else { ret rec(test = test, fnref = fnref, wait = fn() -> test_result { tr_ignored }); } } native "rust" mod rustrt { fn hack_allow_leaks(); } // We need to run our tests in another task in order to trap test failures. // But, at least currently, functions can't be used as spawn arguments so // we've got to treat our test functions as unsafe pointers. This function // only works with functions that don't contain closures. fn default_test_to_task(&fn() f) -> task { fn run_task(*mutable fn() fptr) { // If this task fails we don't want that failure to propagate to the // test runner or else we couldn't keep running tests task::unsupervise(); // FIXME (236): Hack supreme - unwinding doesn't work yet so if this // task fails memory will not be freed correctly. This turns off the // sanity checks in the runtime's memory region for the task, so that // the test runner can continue. rustrt::hack_allow_leaks(); // Run the test (*fptr)() } auto fptr = ptr::addr_of(f); ret spawn run_task(fptr); } // Local Variables: // mode: rust; // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // compile-command: "make -k -C .. 2>&1 | sed -e 's/\\/x\\//x:\\//g'"; // End: