/* Module: vec */ import option::{some, none}; import uint::next_power_of_two; import ptr::addr_of; #[abi = "rust-intrinsic"] native mod rusti { fn vec_len(&&v: [const T]) -> ctypes::size_t; } #[abi = "cdecl"] native mod rustrt { fn vec_reserve_shared(t: *sys::type_desc, &v: [const T], n: ctypes::size_t); fn vec_from_buf_shared(t: *sys::type_desc, ptr: *T, count: ctypes::size_t) -> [T]; } /* Type: init_op A function used to initialize the elements of a vector. */ type init_op = fn(uint) -> T; /* Predicate: is_empty Returns true if a vector contains no elements. */ pure fn is_empty(v: [const T]) -> bool { // FIXME: This would be easier if we could just call len for t: T in v { ret false; } ret true; } /* Predicate: is_not_empty Returns true if a vector contains some elements. */ pure fn is_not_empty(v: [const T]) -> bool { ret !is_empty(v); } /* Predicate: same_length Returns true if two vectors have the same length */ pure fn same_length(xs: [T], ys: [U]) -> bool { vec::len(xs) == vec::len(ys) } /* Function: reserve Reserves capacity for `n` elements in the given vector. If the capacity for `v` is already equal to or greater than the requested capacity, then no action is taken. Parameters: v - A vector n - The number of elements to reserve space for */ fn reserve(&v: [const T], n: uint) { rustrt::vec_reserve_shared(sys::get_type_desc::(), v, n); } /* Function: len Returns the length of a vector */ pure fn len(v: [const T]) -> uint { unchecked { rusti::vec_len(v) } } /* Function: init_fn Creates and initializes an immutable vector. Creates an immutable vector of size `n_elts` and initializes the elements to the value returned by the function `op`. */ fn init_fn(n_elts: uint, op: init_op) -> [T] { let v = []; reserve(v, n_elts); let i: uint = 0u; while i < n_elts { v += [op(i)]; i += 1u; } ret v; } // TODO: Remove me once we have slots. /* Function: init_fn_mut Creates and initializes a mutable vector. Creates a mutable vector of size `n_elts` and initializes the elements to the value returned by the function `op`. */ fn init_fn_mut(n_elts: uint, op: init_op) -> [mutable T] { let v = [mutable]; reserve(v, n_elts); let i: uint = 0u; while i < n_elts { v += [mutable op(i)]; i += 1u; } ret v; } /* Function: init_elt Creates and initializes an immutable vector. Creates an immutable vector of size `n_elts` and initializes the elements to the value `t`. */ fn init_elt(n_elts: uint, t: T) -> [T] { let v = []; reserve(v, n_elts); let i: uint = 0u; while i < n_elts { v += [t]; i += 1u; } ret v; } // TODO: Remove me once we have slots. /* Function: init_elt_mut Creates and initializes a mutable vector. Creates a mutable vector of size `n_elts` and initializes the elements to the value `t`. */ fn init_elt_mut(n_elts: uint, t: T) -> [mutable T] { let v = [mutable]; reserve(v, n_elts); let i: uint = 0u; while i < n_elts { v += [mutable t]; i += 1u; } ret v; } // FIXME: Possible typestate postcondition: // len(result) == len(v) (needs issue #586) /* Function: to_mut Produces a mutable vector from an immutable vector. */ fn to_mut(+v: [T]) -> [mutable T] unsafe { let r = ::unsafe::reinterpret_cast(v); ::unsafe::leak(v); r } /* Function: from_mut Produces an immutable vector from a mutable vector. */ fn from_mut(+v: [mutable T]) -> [T] unsafe { let r = ::unsafe::reinterpret_cast(v); ::unsafe::leak(v); r } // Accessors /* Function: head Returns the first element of a vector Predicates: (v) */ pure fn head(v: [const T]) : is_not_empty(v) -> T { ret v[0]; } /* Function: tail Returns all but the first element of a vector Predicates: (v) */ fn tail(v: [const T]) : is_not_empty(v) -> [T] { ret slice(v, 1u, len(v)); } /* Function tail_n Returns all but the first N elements of a vector */ fn tail_n(v: [const T], n: uint) -> [T] { slice(v, n, len(v)) } // FIXME: This name is sort of confusing next to init_fn, etc // but this is the name haskell uses for this function, // along with head/tail/last. /* Function: init Returns all but the last elemnt of a vector Preconditions: `v` is not empty */ fn init(v: [const T]) -> [T] { assert len(v) != 0u; slice(v, 0u, len(v) - 1u) } /* Function: last Returns the last element of a vector Returns: An option containing the last element of `v` if `v` is not empty, or none if `v` is empty. */ pure fn last(v: [const T]) -> option { if len(v) == 0u { ret none; } ret some(v[len(v) - 1u]); } /* Function: last_total Returns the last element of a non-empty vector `v` Predicates: (v) */ pure fn last_total(v: [const T]) : is_not_empty(v) -> T { ret v[len(v) - 1u]; } /* Function: slice Returns a copy of the elements from [`start`..`end`) from `v`. */ fn slice(v: [const T], start: uint, end: uint) -> [T] { assert (start <= end); assert (end <= len(v)); let result = []; reserve(result, end - start); let i = start; while i < end { result += [v[i]]; i += 1u; } ret result; } // TODO: Remove me once we have slots. /* Function: slice_mut Returns a copy of the elements from [`start`..`end`) from `v`. */ fn slice_mut(v: [const T], start: uint, end: uint) -> [mutable T] { assert (start <= end); assert (end <= len(v)); let result = [mutable]; reserve(result, end - start); let i = start; while i < end { result += [mutable v[i]]; i += 1u; } ret result; } /* Function: split Split the vector `v` by applying each element against the predicate `f`. */ fn split(v: [T], f: fn(T) -> bool) -> [[T]] { let ln = len(v); if (ln == 0u) { ret [] } let start = 0u; let result = []; while start < ln { alt position_from(v, start, ln, f) { none { break } some(i) { push(result, slice(v, start, i)); start = i + 1u; } } } push(result, slice(v, start, ln)); result } /* Function: splitn Split the vector `v` by applying each element against the predicate `f` up to `n` times. */ fn splitn(v: [T], n: uint, f: fn(T) -> bool) -> [[T]] { let ln = len(v); if (ln == 0u) { ret [] } let start = 0u; let count = n; let result = []; while start < ln && count > 0u { alt position_from(v, start, ln, f) { none { break } some(i) { push(result, slice(v, start, i)); // Make sure to skip the separator. start = i + 1u; count -= 1u; } } } push(result, slice(v, start, ln)); result } /* Function: rsplit Reverse split the vector `v` by applying each element against the predicate `f`. */ fn rsplit(v: [T], f: fn(T) -> bool) -> [[T]] { let ln = len(v); if (ln == 0u) { ret [] } let end = ln; let result = []; while end > 0u { alt rposition_from(v, 0u, end, f) { none { break } some(i) { push(result, slice(v, i + 1u, end)); end = i; } } } push(result, slice(v, 0u, end)); reversed(result) } /* Function: rsplitn Reverse split the vector `v` by applying each element against the predicate `f` up to `n times. */ fn rsplitn(v: [T], n: uint, f: fn(T) -> bool) -> [[T]] { let ln = len(v); if (ln == 0u) { ret [] } let end = ln; let count = n; let result = []; while end > 0u && count > 0u { alt rposition_from(v, 0u, end, f) { none { break } some(i) { push(result, slice(v, i + 1u, end)); // Make sure to skip the separator. end = i; count -= 1u; } } } push(result, slice(v, 0u, end)); reversed(result) } // Mutators /* Function: shift Removes the first element from a vector and return it */ fn shift(&v: [const T]) -> T { let ln = len::(v); assert (ln > 0u); let e = v[0]; v = slice::(v, 1u, ln); ret e; } /* Function: pop Remove the last element from a vector and return it */ fn pop(&v: [const T]) -> T unsafe { let ln = len(v); assert ln > 0u; let valptr = ptr::mut_addr_of(v[ln - 1u]); let val <- *valptr; unsafe::set_len(v, ln - 1u); val } /* Function: push Append an element to a vector and return it */ fn push(&v: [T], initval: T) { grow(v, 1u, initval) } // TODO: More. // Appending /* Function: grow Expands a vector in place, initializing the new elements to a given value Parameters: v - The vector to grow n - The number of elements to add initval - The value for the new elements */ fn grow(&v: [T], n: uint, initval: T) { reserve(v, next_power_of_two(len(v) + n)); let i: uint = 0u; while i < n { v += [initval]; i += 1u; } } // TODO: Remove me once we have slots. // FIXME: Can't grow take a [const T] /* Function: grow_mut Expands a vector in place, initializing the new elements to a given value Parameters: v - The vector to grow n - The number of elements to add initval - The value for the new elements */ fn grow_mut(&v: [mutable T], n: uint, initval: T) { reserve(v, next_power_of_two(len(v) + n)); let i: uint = 0u; while i < n { v += [mutable initval]; i += 1u; } } /* Function: grow_fn Expands a vector in place, initializing the new elements to the result of a function Function `init_op` is called `n` times with the values [0..`n`) Parameters: v - The vector to grow n - The number of elements to add init_op - A function to call to retreive each appended element's value */ fn grow_fn(&v: [T], n: uint, op: init_op) { reserve(v, next_power_of_two(len(v) + n)); let i: uint = 0u; while i < n { v += [op(i)]; i += 1u; } } /* Function: grow_set Sets the value of a vector element at a given index, growing the vector as needed Sets the element at position `index` to `val`. If `index` is past the end of the vector, expands the vector by replicating `initval` to fill the intervening space. */ fn grow_set(&v: [mutable T], index: uint, initval: T, val: T) { if index >= len(v) { grow_mut(v, index - len(v) + 1u, initval); } v[index] = val; } // Functional utilities /* Function: map Apply a function to each element of a vector and return the results */ fn map(v: [T], f: fn(T) -> U) -> [U] { let result = []; reserve(result, len(v)); for elem: T in v { result += [f(elem)]; } ret result; } /* Function: map_mut Apply a function to each element of a mutable vector and return the results */ fn map_mut(v: [const T], f: fn(T) -> U) -> [U] { let result = []; reserve(result, len(v)); for elem: T in v { // copy satisfies alias checker result += [f(copy elem)]; } ret result; } /* Function: map2 Apply a function to each pair of elements and return the results */ fn map2(v0: [T], v1: [U], f: fn(T, U) -> V) -> [V] { let v0_len = len(v0); if v0_len != len(v1) { fail; } let u: [V] = []; let i = 0u; while i < v0_len { u += [f(copy v0[i], copy v1[i])]; i += 1u; } ret u; } /* Function: filter_map Apply a function to each element of a vector and return the results If function `f` returns `none` then that element is excluded from the resulting vector. */ fn filter_map(v: [const T], f: fn(T) -> option) -> [U] { let result = []; for elem: T in v { alt f(copy elem) { none {/* no-op */ } some(result_elem) { result += [result_elem]; } } } ret result; } /* Function: filter Construct a new vector from the elements of a vector for which some predicate holds. Apply function `f` to each element of `v` and return a vector containing only those elements for which `f` returned true. */ fn filter(v: [T], f: fn(T) -> bool) -> [T] { let result = []; for elem: T in v { if f(elem) { result += [elem]; } } ret result; } /* Function: concat Concatenate a vector of vectors. Flattens a vector of vectors of T into a single vector of T. */ fn concat(v: [const [const T]]) -> [T] { let new: [T] = []; for inner: [T] in v { new += inner; } ret new; } /* Function: connect Concatenate a vector of vectors, placing a given separator between each */ fn connect(v: [const [const T]], sep: T) -> [T] { let new: [T] = []; let first = true; for inner: [T] in v { if first { first = false; } else { push(new, sep); } new += inner; } ret new; } /* Function: foldl Reduce a vector from left to right */ fn foldl(z: T, v: [const U], p: fn(T, U) -> T) -> T { let accum = z; iter(v) { |elt| accum = p(accum, elt); } ret accum; } /* Function: foldr Reduce a vector from right to left */ fn foldr(v: [const T], z: U, p: fn(T, U) -> U) -> U { let accum = z; riter(v) { |elt| accum = p(elt, accum); } ret accum; } /* Function: any Return true if a predicate matches any elements If the vector contains no elements then false is returned. */ fn any(v: [T], f: fn(T) -> bool) -> bool { for elem: T in v { if f(elem) { ret true; } } ret false; } /* Function: any2 Return true if a predicate matches any elements in both vectors. If the vectors contains no elements then false is returned. */ fn any2(v0: [T], v1: [U], f: fn(T, U) -> bool) -> bool { let v0_len = len(v0); let v1_len = len(v1); let i = 0u; while i < v0_len && i < v1_len { if f(v0[i], v1[i]) { ret true; }; i += 1u; } ret false; } /* Function: all Return true if a predicate matches all elements If the vector contains no elements then true is returned. */ fn all(v: [T], f: fn(T) -> bool) -> bool { for elem: T in v { if !f(elem) { ret false; } } ret true; } /* Function: all2 Return true if a predicate matches all elements in both vectors. If the vectors are not the same size then false is returned. */ fn all2(v0: [T], v1: [U], f: fn(T, U) -> bool) -> bool { let v0_len = len(v0); if v0_len != len(v1) { ret false; } let i = 0u; while i < v0_len { if !f(v0[i], v1[i]) { ret false; }; i += 1u; } ret true; } /* Function: contains Return true if a vector contains an element with the given value */ fn contains(v: [T], x: T) -> bool { for elt: T in v { if x == elt { ret true; } } ret false; } /* Function: count Returns the number of elements that are equal to a given value */ fn count(v: [const T], x: T) -> uint { let cnt = 0u; for elt: T in v { if x == elt { cnt += 1u; } } ret cnt; } /* Function: find Search for the first element that matches a given predicate Apply function `f` to each element of `v`, starting from the first. When function `f` returns true then an option containing the element is returned. If `f` matches no elements then none is returned. */ fn find(v: [T], f: fn(T) -> bool) -> option { find_from(v, 0u, len(v), f) } /* Function: find_from Search for the first element that matches a given predicate within a range Apply function `f` to each element of `v` within the range [`start`, `end`). When function `f` returns true then an option containing the element is returned. If `f` matches no elements then none is returned. */ fn find_from(v: [T], start: uint, end: uint, f: fn(T) -> bool) -> option { option::map(position_from(v, start, end, f)) { |i| v[i] } } /* Function: rfind Search for the last element that matches a given predicate Apply function `f` to each element of `v` in reverse order. When function `f` returns true then an option containing the element is returned. If `f` matches no elements then none is returned. */ fn rfind(v: [T], f: fn(T) -> bool) -> option { rfind_from(v, 0u, len(v), f) } /* Function: rfind_from Search for the last element that matches a given predicate within a range Apply function `f` to each element of `v` in reverse order within the range [`start`, `end`). When function `f` returns true then an option containing the element is returned. If `f` matches no elements then none is returned. */ fn rfind_from(v: [T], start: uint, end: uint, f: fn(T) -> bool) -> option { option::map(rposition_from(v, start, end, f)) { |i| v[i] } } /* Function: position_elt Find the first index containing a matching value Returns: option::some(uint) - The first index containing a matching value option::none - No elements matched */ fn position_elt(v: [T], x: T) -> option { position(v) { |y| x == y } } /* Function: position Find the first index matching some predicate Apply function `f` to each element of `v`. When function `f` returns true then an option containing the index is returned. If `f` matches no elements then none is returned. */ fn position(v: [T], f: fn(T) -> bool) -> option { position_from(v, 0u, len(v), f) } /* Function: position_from Find the first index matching some predicate within a range Apply function `f` to each element of `v` between the range [`start`, `end`). When function `f` returns true then an option containing the index is returned. If `f` matches no elements then none is returned. */ fn position_from(v: [T], start: uint, end: uint, f: fn(T) -> bool) -> option { assert start <= end; assert end <= len(v); let i = start; while i < end { if f(v[i]) { ret some::(i); } i += 1u; } ret none; } /* Function: rposition_elt Find the last index containing a matching value Returns: option::some(uint) - The last index containing a matching value option::none - No elements matched */ fn rposition_elt(v: [T], x: T) -> option { rposition(v) { |y| x == y } } /* Function: rposition Find the last index matching some predicate Apply function `f` to each element of `v` in reverse order. When function `f` returns true then an option containing the index is returned. If `f` matches no elements then none is returned. */ fn rposition(v: [T], f: fn(T) -> bool) -> option { rposition_from(v, 0u, len(v), f) } /* Function: rposition_from Find the last index matching some predicate within a range Apply function `f` to each element of `v` in reverse order between the range [`start`, `end`). When function `f` returns true then an option containing the index is returned. If `f` matches no elements then none is returned. */ fn rposition_from(v: [T], start: uint, end: uint, f: fn(T) -> bool) -> option { assert start <= end; assert end <= len(v); let i = end; while i > start { if f(v[i - 1u]) { ret some::(i - 1u); } i -= 1u; } ret none; } // FIXME: if issue #586 gets implemented, could have a postcondition // saying the two result lists have the same length -- or, could // return a nominal record with a constraint saying that, instead of // returning a tuple (contingent on issue #869) /* Function: unzip Convert a vector of pairs into a pair of vectors Returns a tuple containing two vectors where the i-th element of the first vector contains the first element of the i-th tuple of the input vector, and the i-th element of the second vector contains the second element of the i-th tuple of the input vector. */ fn unzip(v: [(T, U)]) -> ([T], [U]) { let as = [], bs = []; for (a, b) in v { as += [a]; bs += [b]; } ret (as, bs); } /* Function: zip Convert two vectors to a vector of pairs Returns a vector of tuples, where the i-th tuple contains contains the i-th elements from each of the input vectors. Preconditions: (v, u) */ fn zip(v: [T], u: [U]) : same_length(v, u) -> [(T, U)] { let zipped = []; let sz = len(v), i = 0u; assert (sz == len(u)); while i < sz { zipped += [(v[i], u[i])]; i += 1u; } ret zipped; } /* Function: swap Swaps two elements in a vector Parameters: v - The input vector a - The index of the first element b - The index of the second element */ fn swap(v: [mutable T], a: uint, b: uint) { v[a] <-> v[b]; } /* Function: reverse Reverse the order of elements in a vector, in place */ fn reverse(v: [mutable T]) { let i: uint = 0u; let ln = len::(v); while i < ln / 2u { v[i] <-> v[ln - i - 1u]; i += 1u; } } /* Function: reversed Returns a vector with the order of elements reversed */ fn reversed(v: [const T]) -> [T] { let rs: [T] = []; let i = len::(v); if i == 0u { ret rs; } else { i -= 1u; } while i != 0u { rs += [v[i]]; i -= 1u; } rs += [v[0]]; ret rs; } // FIXME: Seems like this should take char params. Maybe belongs in char /* Function: enum_chars Returns a vector containing a range of chars */ fn enum_chars(start: u8, end: u8) : ::u8::le(start, end) -> [char] { let i = start; let r = []; while i <= end { r += [i as char]; i += 1u as u8; } ret r; } // FIXME: Probably belongs in uint. Compare to uint::range /* Function: enum_uints Returns a vector containing a range of uints */ fn enum_uints(start: uint, end: uint) : uint::le(start, end) -> [uint] { let i = start; let r = []; while i <= end { r += [i]; i += 1u; } ret r; } /* Function: iter Iterates over a vector Iterates over vector `v` and, for each element, calls function `f` with the element's value. */ fn iter(v: [const T], f: fn(T)) { iteri(v) { |_i, v| f(v) } } /* Function: iter2 Iterates over two vectors in parallel */ fn iter2(v: [U], v2: [T], f: fn(U, T)) { let i = 0; for elt in v { f(elt, v2[i]); i += 1; } } /* Function: iteri Iterates over a vector's elements and indexes Iterates over vector `v` and, for each element, calls function `f` with the element's value and index. */ fn iteri(v: [const T], f: fn(uint, T)) { let i = 0u, l = len(v); while i < l { f(i, v[i]); i += 1u; } } /* Function: riter Iterates over a vector in reverse Iterates over vector `v` and, for each element, calls function `f` with the element's value. */ fn riter(v: [const T], f: fn(T)) { riteri(v) { |_i, v| f(v) } } /* Function: riteri Iterates over a vector's elements and indexes in reverse Iterates over vector `v` and, for each element, calls function `f` with the element's value and index. */ fn riteri(v: [const T], f: fn(uint, T)) { let i = len(v); while 0u < i { i -= 1u; f(i, v[i]); }; } /* Function: permute Iterate over all permutations of vector `v`. Permutations are produced in lexicographic order with respect to the order of elements in `v` (so if `v` is sorted then the permutations are lexicographically sorted). The total number of permutations produced is `len(v)!`. If `v` contains repeated elements, then some permutations are repeated. */ fn permute(v: [const T], put: fn([T])) { let ln = len(v); if ln == 0u { put([]); } else { let i = 0u; while i < ln { let elt = v[i]; let rest = slice(v, 0u, i) + slice(v, i+1u, ln); permute(rest) {|permutation| put([elt] + permutation)} i += 1u; } } } fn windowed (nn: uint, xx: [TT]) -> [[TT]] { let ww = []; assert 1u <= nn; vec::iteri (xx, {|ii, _x| let len = vec::len(xx); if ii+nn <= len { let w = vec::slice ( xx, ii, ii+nn ); vec::push (ww, w); } }); ret ww; } /* Function: to_ptr FIXME: We don't need this wrapper */ unsafe fn to_ptr(v: [T]) -> *T { ret unsafe::to_ptr(v); } /* Function: as_buf Work with the buffer of a vector. Allows for unsafe manipulation of vector contents, which is useful for native interop. */ fn as_buf(v: [const E], f: fn(*E) -> T) -> T unsafe { let buf = unsafe::to_ptr(v); f(buf) } /* Module: unsafe */ mod unsafe { type vec_repr = {mutable fill: uint, mutable alloc: uint, data: u8}; /* Function: from_buf Constructs a vector from an unsafe pointer to a buffer Parameters: ptr - An unsafe pointer to a buffer of `T` elts - The number of elements in the buffer */ unsafe fn from_buf(ptr: *T, elts: uint) -> [T] { ret rustrt::vec_from_buf_shared(sys::get_type_desc::(), ptr, elts); } /* Function: set_len Sets the length of a vector This well explicitly set the size of the vector, without actually modifing its buffers, so it is up to the caller to ensure that the vector is actually the specified size. */ unsafe fn set_len(&v: [const T], new_len: uint) { let repr: **vec_repr = ::unsafe::reinterpret_cast(addr_of(v)); (**repr).fill = new_len * sys::size_of::(); } /* Function: to_ptr Returns an unsafe pointer to the vector's buffer The caller must ensure that the vector outlives the pointer this function returns, or else it will end up pointing to garbage. Modifying the vector may cause its buffer to be reallocated, which would also make any pointers to it invalid. */ unsafe fn to_ptr(v: [const T]) -> *T { let repr: **vec_repr = ::unsafe::reinterpret_cast(addr_of(v)); ret ::unsafe::reinterpret_cast(addr_of((**repr).data)); } } /* Module: u8 */ mod u8 { export cmp; export lt, le, eq, ne, ge, gt; export hash; #[nolink] #[abi = "cdecl"] native mod libc { fn memcmp(s1: *u8, s2: *u8, n: ctypes::size_t) -> ctypes::c_int; } /* Function cmp Bytewise string comparison */ pure fn cmp(&&a: [u8], &&b: [u8]) -> int unsafe { let a_len = len(a); let b_len = len(b); let n = math::min(a_len, b_len) as ctypes::size_t; let r = libc::memcmp(to_ptr(a), to_ptr(b), n) as int; if r != 0 { r } else { if a_len == b_len { 0 } else if a_len < b_len { -1 } else { 1 } } } /* Function: lt Bytewise less than or equal */ pure fn lt(&&a: [u8], &&b: [u8]) -> bool { cmp(a, b) < 0 } /* Function: le Bytewise less than or equal */ pure fn le(&&a: [u8], &&b: [u8]) -> bool { cmp(a, b) <= 0 } /* Function: eq Bytewise equality */ pure fn eq(&&a: [u8], &&b: [u8]) -> bool unsafe { cmp(a, b) == 0 } /* Function: ne Bytewise inequality */ pure fn ne(&&a: [u8], &&b: [u8]) -> bool unsafe { cmp(a, b) != 0 } /* Function: ge Bytewise greater than or equal */ pure fn ge(&&a: [u8], &&b: [u8]) -> bool { cmp(a, b) >= 0 } /* Function: gt Bytewise greater than */ pure fn gt(&&a: [u8], &&b: [u8]) -> bool { cmp(a, b) > 0 } /* Function: hash String hash function */ fn hash(&&s: [u8]) -> uint { // djb hash. // FIXME: replace with murmur. let u: uint = 5381u; vec::iter(s, { |c| u *= 33u; u += c as uint; }); ret u; } } #[cfg(test)] mod tests { fn square(n: uint) -> uint { ret n * n; } fn square_ref(&&n: uint) -> uint { ret n * n; } pure fn is_three(&&n: uint) -> bool { ret n == 3u; } pure fn is_odd(&&n: uint) -> bool { ret n % 2u == 1u; } pure fn is_equal(&&x: uint, &&y:uint) -> bool { ret x == y; } fn square_if_odd(&&n: uint) -> option { ret if n % 2u == 1u { some(n * n) } else { none }; } fn add(&&x: uint, &&y: uint) -> uint { ret x + y; } #[test] fn test_unsafe_ptrs() unsafe { // Test on-stack copy-from-buf. let a = [1, 2, 3]; let ptr = to_ptr(a); let b = unsafe::from_buf(ptr, 3u); assert (len(b) == 3u); assert (b[0] == 1); assert (b[1] == 2); assert (b[2] == 3); // Test on-heap copy-from-buf. let c = [1, 2, 3, 4, 5]; ptr = to_ptr(c); let d = unsafe::from_buf(ptr, 5u); assert (len(d) == 5u); assert (d[0] == 1); assert (d[1] == 2); assert (d[2] == 3); assert (d[3] == 4); assert (d[4] == 5); } #[test] fn test_init_fn() { // Test on-stack init_fn. let v = init_fn(3u, square); assert (len(v) == 3u); assert (v[0] == 0u); assert (v[1] == 1u); assert (v[2] == 4u); // Test on-heap init_fn. v = init_fn(5u, square); assert (len(v) == 5u); assert (v[0] == 0u); assert (v[1] == 1u); assert (v[2] == 4u); assert (v[3] == 9u); assert (v[4] == 16u); } #[test] fn test_init_elt() { // Test on-stack init_elt. let v = init_elt(2u, 10u); assert (len(v) == 2u); assert (v[0] == 10u); assert (v[1] == 10u); // Test on-heap init_elt. v = init_elt(6u, 20u); assert (v[0] == 20u); assert (v[1] == 20u); assert (v[2] == 20u); assert (v[3] == 20u); assert (v[4] == 20u); assert (v[5] == 20u); } #[test] fn test_is_empty() { assert (is_empty::([])); assert (!is_empty([0])); } #[test] fn test_is_not_empty() { assert (is_not_empty([0])); assert (!is_not_empty::([])); } #[test] fn test_head() { let a = [11, 12]; check (is_not_empty(a)); assert (head(a) == 11); } #[test] fn test_tail() { let a = [11]; check (is_not_empty(a)); assert (tail(a) == []); a = [11, 12]; check (is_not_empty(a)); assert (tail(a) == [12]); } #[test] fn test_last() { let n = last([]); assert (n == none); n = last([1, 2, 3]); assert (n == some(3)); n = last([1, 2, 3, 4, 5]); assert (n == some(5)); } #[test] fn test_slice() { // Test on-stack -> on-stack slice. let v = slice([1, 2, 3], 1u, 3u); assert (len(v) == 2u); assert (v[0] == 2); assert (v[1] == 3); // Test on-heap -> on-stack slice. v = slice([1, 2, 3, 4, 5], 0u, 3u); assert (len(v) == 3u); assert (v[0] == 1); assert (v[1] == 2); assert (v[2] == 3); // Test on-heap -> on-heap slice. v = slice([1, 2, 3, 4, 5, 6], 1u, 6u); assert (len(v) == 5u); assert (v[0] == 2); assert (v[1] == 3); assert (v[2] == 4); assert (v[3] == 5); assert (v[4] == 6); } #[test] fn test_pop() { // Test on-stack pop. let v = [1, 2, 3]; let e = pop(v); assert (len(v) == 2u); assert (v[0] == 1); assert (v[1] == 2); assert (e == 3); // Test on-heap pop. v = [1, 2, 3, 4, 5]; e = pop(v); assert (len(v) == 4u); assert (v[0] == 1); assert (v[1] == 2); assert (v[2] == 3); assert (v[3] == 4); assert (e == 5); } #[test] fn test_push() { // Test on-stack push(). let v = []; push(v, 1); assert (len(v) == 1u); assert (v[0] == 1); // Test on-heap push(). push(v, 2); assert (len(v) == 2u); assert (v[0] == 1); assert (v[1] == 2); } #[test] fn test_grow() { // Test on-stack grow(). let v = []; grow(v, 2u, 1); assert (len(v) == 2u); assert (v[0] == 1); assert (v[1] == 1); // Test on-heap grow(). grow(v, 3u, 2); assert (len(v) == 5u); assert (v[0] == 1); assert (v[1] == 1); assert (v[2] == 2); assert (v[3] == 2); assert (v[4] == 2); } #[test] fn test_grow_fn() { let v = []; grow_fn(v, 3u, square); assert (len(v) == 3u); assert (v[0] == 0u); assert (v[1] == 1u); assert (v[2] == 4u); } #[test] fn test_grow_set() { let v = [mutable 1, 2, 3]; grow_set(v, 4u, 4, 5); assert (len(v) == 5u); assert (v[0] == 1); assert (v[1] == 2); assert (v[2] == 3); assert (v[3] == 4); assert (v[4] == 5); } #[test] fn test_map() { // Test on-stack map. let v = [1u, 2u, 3u]; let w = map(v, square_ref); assert (len(w) == 3u); assert (w[0] == 1u); assert (w[1] == 4u); assert (w[2] == 9u); // Test on-heap map. v = [1u, 2u, 3u, 4u, 5u]; w = map(v, square_ref); assert (len(w) == 5u); assert (w[0] == 1u); assert (w[1] == 4u); assert (w[2] == 9u); assert (w[3] == 16u); assert (w[4] == 25u); } #[test] fn test_map2() { fn times(&&x: int, &&y: int) -> int { ret x * y; } let f = times; let v0 = [1, 2, 3, 4, 5]; let v1 = [5, 4, 3, 2, 1]; let u = map2::(v0, v1, f); let i = 0; while i < 5 { assert (v0[i] * v1[i] == u[i]); i += 1; } } #[test] fn test_filter_map() { // Test on-stack filter-map. let v = [1u, 2u, 3u]; let w = filter_map(v, square_if_odd); assert (len(w) == 2u); assert (w[0] == 1u); assert (w[1] == 9u); // Test on-heap filter-map. v = [1u, 2u, 3u, 4u, 5u]; w = filter_map(v, square_if_odd); assert (len(w) == 3u); assert (w[0] == 1u); assert (w[1] == 9u); assert (w[2] == 25u); fn halve(&&i: int) -> option { if i % 2 == 0 { ret option::some::(i / 2); } else { ret option::none::; } } fn halve_for_sure(&&i: int) -> int { ret i / 2; } let all_even: [int] = [0, 2, 8, 6]; let all_odd1: [int] = [1, 7, 3]; let all_odd2: [int] = []; let mix: [int] = [9, 2, 6, 7, 1, 0, 0, 3]; let mix_dest: [int] = [1, 3, 0, 0]; assert (filter_map(all_even, halve) == map(all_even, halve_for_sure)); assert (filter_map(all_odd1, halve) == []); assert (filter_map(all_odd2, halve) == []); assert (filter_map(mix, halve) == mix_dest); } #[test] fn test_filter() { assert filter([1u, 2u, 3u], is_odd) == [1u, 3u]; assert filter([1u, 2u, 4u, 8u, 16u], is_three) == []; } #[test] fn test_foldl() { // Test on-stack fold. let v = [1u, 2u, 3u]; let sum = foldl(0u, v, add); assert (sum == 6u); // Test on-heap fold. v = [1u, 2u, 3u, 4u, 5u]; sum = foldl(0u, v, add); assert (sum == 15u); } #[test] fn test_foldl2() { fn sub(&&a: int, &&b: int) -> int { a - b } let v = [1, 2, 3, 4]; let sum = foldl(0, v, sub); assert sum == -10; } #[test] fn test_foldr() { fn sub(&&a: int, &&b: int) -> int { a - b } let v = [1, 2, 3, 4]; let sum = foldr(v, 0, sub); assert sum == -2; } #[test] fn test_iter_empty() { let i = 0; iter::([], { |_v| i += 1 }); assert i == 0; } #[test] fn test_iter_nonempty() { let i = 0; iter([1, 2, 3], { |v| i += v }); assert i == 6; } #[test] fn test_iteri() { let i = 0; iteri([1, 2, 3], { |j, v| if i == 0 { assert v == 1; } assert j + 1u == v as uint; i += v; }); assert i == 6; } #[test] fn test_riter_empty() { let i = 0; riter::([], { |_v| i += 1 }); assert i == 0; } #[test] fn test_riter_nonempty() { let i = 0; riter([1, 2, 3], { |v| if i == 0 { assert v == 3; } i += v }); assert i == 6; } #[test] fn test_riteri() { let i = 0; riteri([0, 1, 2], { |j, v| if i == 0 { assert v == 2; } assert j == v as uint; i += v; }); assert i == 3; } #[test] fn test_permute() { let results: [[int]]; results = []; permute([]) {|v| results += [v]; } assert results == [[]]; results = []; permute([7]) {|v| results += [v]; } assert results == [[7]]; results = []; permute([1,1]) {|v| results += [v]; } assert results == [[1,1],[1,1]]; results = []; permute([5,2,0]) {|v| results += [v]; } assert results == [[5,2,0],[5,0,2],[2,5,0],[2,0,5],[0,5,2],[0,2,5]]; } #[test] fn test_any_and_all() { assert (any([1u, 2u, 3u], is_three)); assert (!any([0u, 1u, 2u], is_three)); assert (any([1u, 2u, 3u, 4u, 5u], is_three)); assert (!any([1u, 2u, 4u, 5u, 6u], is_three)); assert (all([3u, 3u, 3u], is_three)); assert (!all([3u, 3u, 2u], is_three)); assert (all([3u, 3u, 3u, 3u, 3u], is_three)); assert (!all([3u, 3u, 0u, 1u, 2u], is_three)); } #[test] fn test_any2_and_all2() { assert (any2([2u, 4u, 6u], [2u, 4u, 6u], is_equal)); assert (any2([1u, 2u, 3u], [4u, 5u, 3u], is_equal)); assert (!any2([1u, 2u, 3u], [4u, 5u, 6u], is_equal)); assert (any2([2u, 4u, 6u], [2u, 4u], is_equal)); assert (all2([2u, 4u, 6u], [2u, 4u, 6u], is_equal)); assert (!all2([1u, 2u, 3u], [4u, 5u, 3u], is_equal)); assert (!all2([1u, 2u, 3u], [4u, 5u, 6u], is_equal)); assert (!all2([2u, 4u, 6u], [2u, 4u], is_equal)); } #[test] fn test_zip_unzip() { let v1 = [1, 2, 3]; let v2 = [4, 5, 6]; check (same_length(v1, v2)); // Silly, but what else can we do? let z1 = zip(v1, v2); assert ((1, 4) == z1[0]); assert ((2, 5) == z1[1]); assert ((3, 6) == z1[2]); let (left, right) = unzip(z1); assert ((1, 4) == (left[0], right[0])); assert ((2, 5) == (left[1], right[1])); assert ((3, 6) == (left[2], right[2])); } #[test] fn test_position_elt() { assert position_elt([], 1) == none; let v1 = [1, 2, 3, 3, 2, 5]; assert position_elt(v1, 1) == some(0u); assert position_elt(v1, 2) == some(1u); assert position_elt(v1, 5) == some(5u); assert position_elt(v1, 4) == none; } #[test] fn test_position() { fn less_than_three(&&i: int) -> bool { ret i < 3; } fn is_eighteen(&&i: int) -> bool { ret i == 18; } assert position([], less_than_three) == none; let v1 = [5, 4, 3, 2, 1]; assert position(v1, less_than_three) == some(3u); assert position(v1, is_eighteen) == none; } #[test] fn test_position_from() { assert position_from([], 0u, 0u, f) == none; fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' } let v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')]; assert position_from(v, 0u, 0u, f) == none; assert position_from(v, 0u, 1u, f) == none; assert position_from(v, 0u, 2u, f) == some(1u); assert position_from(v, 0u, 3u, f) == some(1u); assert position_from(v, 0u, 4u, f) == some(1u); assert position_from(v, 1u, 1u, f) == none; assert position_from(v, 1u, 2u, f) == some(1u); assert position_from(v, 1u, 3u, f) == some(1u); assert position_from(v, 1u, 4u, f) == some(1u); assert position_from(v, 2u, 2u, f) == none; assert position_from(v, 2u, 3u, f) == none; assert position_from(v, 2u, 4u, f) == some(3u); assert position_from(v, 3u, 3u, f) == none; assert position_from(v, 3u, 4u, f) == some(3u); assert position_from(v, 4u, 4u, f) == none; } #[test] fn test_find() { assert find([], f) == none; fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' } fn g(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'd' } let v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')]; assert find(v, f) == some((1, 'b')); assert find(v, g) == none; } #[test] fn test_find_from() { assert find_from([], 0u, 0u, f) == none; fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' } let v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')]; assert find_from(v, 0u, 0u, f) == none; assert find_from(v, 0u, 1u, f) == none; assert find_from(v, 0u, 2u, f) == some((1, 'b')); assert find_from(v, 0u, 3u, f) == some((1, 'b')); assert find_from(v, 0u, 4u, f) == some((1, 'b')); assert find_from(v, 1u, 1u, f) == none; assert find_from(v, 1u, 2u, f) == some((1, 'b')); assert find_from(v, 1u, 3u, f) == some((1, 'b')); assert find_from(v, 1u, 4u, f) == some((1, 'b')); assert find_from(v, 2u, 2u, f) == none; assert find_from(v, 2u, 3u, f) == none; assert find_from(v, 2u, 4u, f) == some((3, 'b')); assert find_from(v, 3u, 3u, f) == none; assert find_from(v, 3u, 4u, f) == some((3, 'b')); assert find_from(v, 4u, 4u, f) == none; } #[test] fn test_rposition() { assert find([], f) == none; fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' } fn g(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'd' } let v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')]; assert position(v, f) == some(1u); assert position(v, g) == none; } #[test] fn test_rposition_from() { assert rposition_from([], 0u, 0u, f) == none; fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' } let v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')]; assert rposition_from(v, 0u, 0u, f) == none; assert rposition_from(v, 0u, 1u, f) == none; assert rposition_from(v, 0u, 2u, f) == some(1u); assert rposition_from(v, 0u, 3u, f) == some(1u); assert rposition_from(v, 0u, 4u, f) == some(3u); assert rposition_from(v, 1u, 1u, f) == none; assert rposition_from(v, 1u, 2u, f) == some(1u); assert rposition_from(v, 1u, 3u, f) == some(1u); assert rposition_from(v, 1u, 4u, f) == some(3u); assert rposition_from(v, 2u, 2u, f) == none; assert rposition_from(v, 2u, 3u, f) == none; assert rposition_from(v, 2u, 4u, f) == some(3u); assert rposition_from(v, 3u, 3u, f) == none; assert rposition_from(v, 3u, 4u, f) == some(3u); assert rposition_from(v, 4u, 4u, f) == none; } #[test] fn test_rfind() { assert rfind([], f) == none; fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' } fn g(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'd' } let v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')]; assert rfind(v, f) == some((3, 'b')); assert rfind(v, g) == none; } #[test] fn test_rfind_from() { assert rfind_from([], 0u, 0u, f) == none; fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' } let v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')]; assert rfind_from(v, 0u, 0u, f) == none; assert rfind_from(v, 0u, 1u, f) == none; assert rfind_from(v, 0u, 2u, f) == some((1, 'b')); assert rfind_from(v, 0u, 3u, f) == some((1, 'b')); assert rfind_from(v, 0u, 4u, f) == some((3, 'b')); assert rfind_from(v, 1u, 1u, f) == none; assert rfind_from(v, 1u, 2u, f) == some((1, 'b')); assert rfind_from(v, 1u, 3u, f) == some((1, 'b')); assert rfind_from(v, 1u, 4u, f) == some((3, 'b')); assert rfind_from(v, 2u, 2u, f) == none; assert rfind_from(v, 2u, 3u, f) == none; assert rfind_from(v, 2u, 4u, f) == some((3, 'b')); assert rfind_from(v, 3u, 3u, f) == none; assert rfind_from(v, 3u, 4u, f) == some((3, 'b')); assert rfind_from(v, 4u, 4u, f) == none; } #[test] fn reverse_and_reversed() { let v: [mutable int] = [mutable 10, 20]; assert (v[0] == 10); assert (v[1] == 20); reverse(v); assert (v[0] == 20); assert (v[1] == 10); let v2 = reversed::([10, 20]); assert (v2[0] == 20); assert (v2[1] == 10); v[0] = 30; assert (v2[0] == 20); // Make sure they work with 0-length vectors too. let v4 = reversed::([]); assert (v4 == []); let v3: [mutable int] = [mutable]; reverse::(v3); } #[test] fn reversed_mut() { let v2 = reversed::([mutable 10, 20]); assert (v2[0] == 20); assert (v2[1] == 10); } #[test] fn test_init() { let v = init([1, 2, 3]); assert v == [1, 2]; } #[test] fn test_split() { fn f(&&x: int) -> bool { x == 3 } assert split([], f) == []; assert split([1, 2], f) == [[1, 2]]; assert split([3, 1, 2], f) == [[], [1, 2]]; assert split([1, 2, 3], f) == [[1, 2], []]; assert split([1, 2, 3, 4, 3, 5], f) == [[1, 2], [4], [5]]; } #[test] fn test_splitn() { fn f(&&x: int) -> bool { x == 3 } assert splitn([], 1u, f) == []; assert splitn([1, 2], 1u, f) == [[1, 2]]; assert splitn([3, 1, 2], 1u, f) == [[], [1, 2]]; assert splitn([1, 2, 3], 1u, f) == [[1, 2], []]; assert splitn([1, 2, 3, 4, 3, 5], 1u, f) == [[1, 2], [4, 3, 5]]; } #[test] fn test_rsplit() { fn f(&&x: int) -> bool { x == 3 } assert rsplit([], f) == []; assert rsplit([1, 2], f) == [[1, 2]]; assert rsplit([1, 2, 3], f) == [[1, 2], []]; assert rsplit([1, 2, 3, 4, 3, 5], f) == [[1, 2], [4], [5]]; } #[test] fn test_rsplitn() { fn f(&&x: int) -> bool { x == 3 } assert rsplitn([], 1u, f) == []; assert rsplitn([1, 2], 1u, f) == [[1, 2]]; assert rsplitn([1, 2, 3], 1u, f) == [[1, 2], []]; assert rsplitn([1, 2, 3, 4, 3, 5], 1u, f) == [[1, 2, 3, 4], [5]]; } #[test] // FIXME: Windows can't undwind #[ignore(cfg(target_os = "win32"))] fn test_init_empty() { let r = task::join( task::spawn_joinable {|| task::unsupervise(); init::([]); }); assert r == task::tr_failure } #[test] fn test_concat() { assert concat([[1], [2,3]]) == [1, 2, 3]; } #[test] fn test_connect() { assert connect([], 0) == []; assert connect([[1], [2, 3]], 0) == [1, 0, 2, 3]; assert connect([[1], [2], [3]], 0) == [1, 0, 2, 0, 3]; } #[test] fn test_windowed () { assert [[1u,2u,3u],[2u,3u,4u],[3u,4u,5u],[4u,5u,6u]] == windowed (3u, [1u,2u,3u,4u,5u,6u]); assert [[1u,2u,3u,4u],[2u,3u,4u,5u],[3u,4u,5u,6u]] == windowed (4u, [1u,2u,3u,4u,5u,6u]); assert [] == windowed (7u, [1u,2u,3u,4u,5u,6u]); } #[test] #[should_fail] #[ignore(cfg(target_os = "win32"))] fn test_windowed_() { let _x = windowed (0u, [1u,2u,3u,4u,5u,6u]); } } // Local Variables: // mode: rust; // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: