#[doc = "Floating point operations and constants for `f64`"]; // PORT import cmath::c_double::*; import cmath::c_double_targ_consts::*; // FIXME find out why these have to be exported explicitly export add, sub, mul, div, rem, lt, le, gt, eq, eq, ne; export is_positive, is_negative, is_nonpositive, is_nonnegative; export is_zero, is_infinite, is_finite; export NaN, is_NaN, infinity, neg_infinity; export consts; export logarithm; export acos, asin, atan, atan2, cbrt, ceil, copysign, cos, cosh, floor; export erf, erfc, exp, expm1, exp2, abs, abs_sub; export mul_add, fmax, fmin, nextafter, frexp, hypot, ldexp; export lgamma, ln, log_radix, ln1p, log10, log2, ilog_radix; export modf, pow, round, sin, sinh, sqrt, tan, tanh, tgamma, trunc; export signbit; export epsilon; type t = f64; // These are not defined inside consts:: for consistency with // the integer types // PORT check per architecture // FIXME obtain these in a different way const radix: uint = 2u; const mantissa_digits: uint = 53u; const digits: uint = 15u; const epsilon: f64 = 2.2204460492503131e-16_f64; const min_value: f64 = 2.2250738585072014e-308_f64; const max_value: f64 = 1.7976931348623157e+308_f64; const min_exp: int = -1021; const max_exp: int = 1024; const min_10_exp: int = -307; const max_10_exp: int = 308; const NaN: f64 = 0.0_f64/0.0_f64; const infinity: f64 = 1.0_f64/0.0_f64; const neg_infinity: f64 = -1.0_f64/0.0_f64; pure fn is_NaN(f: f64) -> bool { f != f } pure fn add(x: f64, y: f64) -> f64 { ret x + y; } pure fn sub(x: f64, y: f64) -> f64 { ret x - y; } pure fn mul(x: f64, y: f64) -> f64 { ret x * y; } pure fn div(x: f64, y: f64) -> f64 { ret x / y; } pure fn rem(x: f64, y: f64) -> f64 { ret x % y; } pure fn lt(x: f64, y: f64) -> bool { ret x < y; } pure fn le(x: f64, y: f64) -> bool { ret x <= y; } pure fn eq(x: f64, y: f64) -> bool { ret x == y; } pure fn ne(x: f64, y: f64) -> bool { ret x != y; } pure fn ge(x: f64, y: f64) -> bool { ret x >= y; } pure fn gt(x: f64, y: f64) -> bool { ret x > y; } #[doc( brief = "Returns true if `x` is a positive number, including \ +0.0f640 and +Infinity." )] pure fn is_positive(x: f64) -> bool { ret x > 0.0f64 || (1.0f64/x) == infinity; } #[doc( brief = "Returns true if `x` is a negative number, including \ -0.0f640 and -Infinity." )] pure fn is_negative(x: f64) -> bool { ret x < 0.0f64 || (1.0f64/x) == neg_infinity; } #[doc( brief = "Returns true if `x` is a negative number, including \ -0.0f640 and -Infinity. (This is the same as \ `f64::negative`.)" )] pure fn is_nonpositive(x: f64) -> bool { ret x < 0.0f64 || (1.0f64/x) == neg_infinity; } #[doc( brief = "Returns true if `x` is a positive number, including \ +0.0f640 and +Infinity.(This is the same as \ `f64::positive`.)" )] pure fn is_nonnegative(x: f64) -> bool { ret x > 0.0f64 || (1.0f64/x) == infinity; } #[doc( brief = "Returns true if `x` is a zero number (positive or \ negative zero)" )] pure fn is_zero(x: f64) -> bool { ret x == 0.0f64 || x == -0.0f64; } #[doc( brief = "Returns true if `x`is an infinite number." )] pure fn is_infinite(x: f64) -> bool { ret x == infinity || x == neg_infinity; } #[doc( brief = "Returns true if `x`is a finite number." )] pure fn is_finite(x: f64) -> bool { ret !(is_NaN(x) || is_infinite(x)); } // FIXME add is_normal, is_subnormal, and fpclassify /* Module: consts */ mod consts { // FIXME replace with mathematical constants from cmath #[doc( brief = "Archimedes' constant" )] const pi: f64 = 3.14159265358979323846264338327950288_f64; #[doc( brief = "pi/2.0" )] const frac_pi_2: f64 = 1.57079632679489661923132169163975144_f64; #[doc( brief = "pi/4.0" )] const frac_pi_4: f64 = 0.785398163397448309615660845819875721_f64; #[doc( brief = "1.0/pi" )] const frac_1_pi: f64 = 0.318309886183790671537767526745028724_f64; #[doc( brief = "2.0/pi" )] const frac_2_pi: f64 = 0.636619772367581343075535053490057448_f64; #[doc( brief = "2.0/sqrt(pi)" )] const frac_2_sqrtpi: f64 = 1.12837916709551257389615890312154517_f64; #[doc( brief = "sqrt(2.0)" )] const sqrt2: f64 = 1.41421356237309504880168872420969808_f64; #[doc( brief = "1.0/sqrt(2.0)" )] const frac_1_sqrt2: f64 = 0.707106781186547524400844362104849039_f64; #[doc( brief = "Euler's number" )] const e: f64 = 2.71828182845904523536028747135266250_f64; #[doc( brief = "log2(e)" )] const log2_e: f64 = 1.44269504088896340735992468100189214_f64; #[doc( brief = "log10(e)" )] const log10_e: f64 = 0.434294481903251827651128918916605082_f64; #[doc( brief = "ln(2.0)" )] const ln_2: f64 = 0.693147180559945309417232121458176568_f64; #[doc( brief = "ln(10.0)" )] const ln_10: f64 = 2.30258509299404568401799145468436421_f64; } pure fn signbit(x: f64) -> int { if is_negative(x) { ret 1; } else { ret 0; } } #[cfg(target_os="linux")] #[cfg(target_os="macos")] #[cfg(target_os="win32")] pure fn logarithm(n: f64, b: f64) -> f64 { // FIXME check if it is good to use log2 instead of ln here; // in theory should be faster since the radix is 2 ret log2(n) / log2(b); } #[cfg(target_os="freebsd")] pure fn logarithm(n: f64, b: f64) -> f64 { ret ln(n) / ln(b); } #[cfg(target_os="freebsd")] pure fn log2(n: f64) -> f64 { ret ln(n) / consts::ln_2; } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: //