// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #![allow(non_camel_case_types)] #![allow(unsigned_negation)] pub use self::const_val::*; pub use self::constness::*; use metadata::csearch; use middle::{astencode, def}; use middle::pat_util::def_to_path; use middle::ty::{self}; use middle::astconv_util::{ast_ty_to_prim_ty}; use util::nodemap::DefIdMap; use syntax::ast::{self, Expr}; use syntax::parse::token::InternedString; use syntax::ptr::P; use syntax::visit::{self, Visitor}; use syntax::{ast_map, ast_util, codemap}; use std::collections::hash_map::Entry::Vacant; use std::rc::Rc; // // This pass classifies expressions by their constant-ness. // // Constant-ness comes in 3 flavours: // // - Integer-constants: can be evaluated by the frontend all the way down // to their actual value. They are used in a few places (enum // discriminants, switch arms) and are a subset of // general-constants. They cover all the integer and integer-ish // literals (nil, bool, int, uint, char, iNN, uNN) and all integer // operators and copies applied to them. // // - General-constants: can be evaluated by LLVM but not necessarily by // the frontend; usually due to reliance on target-specific stuff such // as "where in memory the value goes" or "what floating point mode the // target uses". This _includes_ integer-constants, plus the following // constructors: // // fixed-size vectors and strings: [] and ""/_ // vector and string slices: &[] and &"" // tuples: (,) // enums: foo(...) // floating point literals and operators // & and * pointers // copies of general constants // // (in theory, probably not at first: if/match on integer-const // conditions / discriminants) // // - Non-constants: everything else. // #[derive(Copy)] pub enum constness { integral_const, general_const, non_const } type constness_cache = DefIdMap; pub fn join(a: constness, b: constness) -> constness { match (a, b) { (integral_const, integral_const) => integral_const, (integral_const, general_const) | (general_const, integral_const) | (general_const, general_const) => general_const, _ => non_const } } pub fn join_all>(cs: It) -> constness { cs.fold(integral_const, |a, b| join(a, b)) } fn lookup_const<'a>(tcx: &'a ty::ctxt, e: &Expr) -> Option<&'a Expr> { let opt_def = tcx.def_map.borrow().get(&e.id).cloned(); match opt_def { Some(def::DefConst(def_id)) => { lookup_const_by_id(tcx, def_id) } Some(def::DefVariant(enum_def, variant_def, _)) => { lookup_variant_by_id(tcx, enum_def, variant_def) } _ => None } } fn lookup_variant_by_id<'a>(tcx: &'a ty::ctxt, enum_def: ast::DefId, variant_def: ast::DefId) -> Option<&'a Expr> { fn variant_expr<'a>(variants: &'a [P], id: ast::NodeId) -> Option<&'a Expr> { for variant in variants.iter() { if variant.node.id == id { return variant.node.disr_expr.as_ref().map(|e| &**e); } } None } if ast_util::is_local(enum_def) { match tcx.map.find(enum_def.node) { None => None, Some(ast_map::NodeItem(it)) => match it.node { ast::ItemEnum(ast::EnumDef { ref variants }, _) => { variant_expr(variants[], variant_def.node) } _ => None }, Some(_) => None } } else { match tcx.extern_const_variants.borrow().get(&variant_def) { Some(&ast::DUMMY_NODE_ID) => return None, Some(&expr_id) => { return Some(tcx.map.expect_expr(expr_id)); } None => {} } let expr_id = match csearch::maybe_get_item_ast(tcx, enum_def, box |a, b, c, d| astencode::decode_inlined_item(a, b, c, d)) { csearch::found(&ast::IIItem(ref item)) => match item.node { ast::ItemEnum(ast::EnumDef { ref variants }, _) => { // NOTE this doesn't do the right thing, it compares inlined // NodeId's to the original variant_def's NodeId, but they // come from different crates, so they will likely never match. variant_expr(variants[], variant_def.node).map(|e| e.id) } _ => None }, _ => None }; tcx.extern_const_variants.borrow_mut().insert(variant_def, expr_id.unwrap_or(ast::DUMMY_NODE_ID)); expr_id.map(|id| tcx.map.expect_expr(id)) } } pub fn lookup_const_by_id<'a>(tcx: &'a ty::ctxt, def_id: ast::DefId) -> Option<&'a Expr> { if ast_util::is_local(def_id) { match tcx.map.find(def_id.node) { None => None, Some(ast_map::NodeItem(it)) => match it.node { ast::ItemConst(_, ref const_expr) => { Some(&**const_expr) } _ => None }, Some(_) => None } } else { match tcx.extern_const_statics.borrow().get(&def_id) { Some(&ast::DUMMY_NODE_ID) => return None, Some(&expr_id) => { return Some(tcx.map.expect_expr(expr_id)); } None => {} } let expr_id = match csearch::maybe_get_item_ast(tcx, def_id, box |a, b, c, d| astencode::decode_inlined_item(a, b, c, d)) { csearch::found(&ast::IIItem(ref item)) => match item.node { ast::ItemConst(_, ref const_expr) => Some(const_expr.id), _ => None }, _ => None }; tcx.extern_const_statics.borrow_mut().insert(def_id, expr_id.unwrap_or(ast::DUMMY_NODE_ID)); expr_id.map(|id| tcx.map.expect_expr(id)) } } struct ConstEvalVisitor<'a, 'tcx: 'a> { tcx: &'a ty::ctxt<'tcx>, ccache: constness_cache, } impl<'a, 'tcx> ConstEvalVisitor<'a, 'tcx> { fn classify(&mut self, e: &Expr) -> constness { let did = ast_util::local_def(e.id); match self.ccache.get(&did) { Some(&x) => return x, None => {} } let cn = match e.node { ast::ExprLit(ref lit) => { match lit.node { ast::LitStr(..) | ast::LitFloat(..) => general_const, _ => integral_const } } ast::ExprUnary(_, ref inner) | ast::ExprParen(ref inner) => self.classify(&**inner), ast::ExprBinary(_, ref a, ref b) => join(self.classify(&**a), self.classify(&**b)), ast::ExprTup(ref es) | ast::ExprVec(ref es) => join_all(es.iter().map(|e| self.classify(&**e))), ast::ExprStruct(_, ref fs, None) => { let cs = fs.iter().map(|f| self.classify(&*f.expr)); join_all(cs) } ast::ExprCast(ref base, _) => { let ty = ty::expr_ty(self.tcx, e); let base = self.classify(&**base); if ty::type_is_integral(ty) { join(integral_const, base) } else if ty::type_is_fp(ty) { join(general_const, base) } else { non_const } } ast::ExprField(ref base, _) => self.classify(&**base), ast::ExprTupField(ref base, _) => self.classify(&**base), ast::ExprIndex(ref base, ref idx) => join(self.classify(&**base), self.classify(&**idx)), ast::ExprAddrOf(ast::MutImmutable, ref base) => self.classify(&**base), // FIXME: (#3728) we can probably do something CCI-ish // surrounding nonlocal constants. But we don't yet. ast::ExprPath(_) => self.lookup_constness(e), ast::ExprRepeat(..) => general_const, ast::ExprBlock(ref block) => { match block.expr { Some(ref e) => self.classify(&**e), None => integral_const } } _ => non_const }; self.ccache.insert(did, cn); cn } fn lookup_constness(&self, e: &Expr) -> constness { match lookup_const(self.tcx, e) { Some(rhs) => { let ty = ty::expr_ty(self.tcx, &*rhs); if ty::type_is_integral(ty) { integral_const } else { general_const } } None => non_const } } } impl<'a, 'tcx, 'v> Visitor<'v> for ConstEvalVisitor<'a, 'tcx> { fn visit_expr_post(&mut self, e: &Expr) { self.classify(e); } } pub fn process_crate(tcx: &ty::ctxt) { visit::walk_crate(&mut ConstEvalVisitor { tcx: tcx, ccache: DefIdMap::new(), }, tcx.map.krate()); tcx.sess.abort_if_errors(); } // FIXME (#33): this doesn't handle big integer/float literals correctly // (nor does the rest of our literal handling). #[derive(Clone, PartialEq)] pub enum const_val { const_float(f64), const_int(i64), const_uint(u64), const_str(InternedString), const_binary(Rc >), const_bool(bool) } pub fn const_expr_to_pat(tcx: &ty::ctxt, expr: &Expr) -> P { let pat = match expr.node { ast::ExprTup(ref exprs) => ast::PatTup(exprs.iter().map(|expr| const_expr_to_pat(tcx, &**expr)).collect()), ast::ExprCall(ref callee, ref args) => { let def = tcx.def_map.borrow()[callee.id].clone(); if let Vacant(entry) = tcx.def_map.borrow_mut().entry(&expr.id) { entry.insert(def); } let path = match def { def::DefStruct(def_id) => def_to_path(tcx, def_id), def::DefVariant(_, variant_did, _) => def_to_path(tcx, variant_did), _ => unreachable!() }; let pats = args.iter().map(|expr| const_expr_to_pat(tcx, &**expr)).collect(); ast::PatEnum(path, Some(pats)) } ast::ExprStruct(ref path, ref fields, None) => { let field_pats = fields.iter().map(|field| codemap::Spanned { span: codemap::DUMMY_SP, node: ast::FieldPat { ident: field.ident.node, pat: const_expr_to_pat(tcx, &*field.expr), is_shorthand: false, }, }).collect(); ast::PatStruct(path.clone(), field_pats, false) } ast::ExprVec(ref exprs) => { let pats = exprs.iter().map(|expr| const_expr_to_pat(tcx, &**expr)).collect(); ast::PatVec(pats, None, vec![]) } ast::ExprPath(ref path) => { let opt_def = tcx.def_map.borrow().get(&expr.id).cloned(); match opt_def { Some(def::DefStruct(..)) => ast::PatStruct(path.clone(), vec![], false), Some(def::DefVariant(..)) => ast::PatEnum(path.clone(), None), _ => { match lookup_const(tcx, expr) { Some(actual) => return const_expr_to_pat(tcx, actual), _ => unreachable!() } } } } _ => ast::PatLit(P(expr.clone())) }; P(ast::Pat { id: expr.id, node: pat, span: expr.span }) } pub fn eval_const_expr(tcx: &ty::ctxt, e: &Expr) -> const_val { match eval_const_expr_partial(tcx, e) { Ok(r) => r, Err(s) => tcx.sess.span_fatal(e.span, s[]) } } pub fn eval_const_expr_partial(tcx: &ty::ctxt, e: &Expr) -> Result { fn fromb(b: bool) -> Result { Ok(const_int(b as i64)) } match e.node { ast::ExprUnary(ast::UnNeg, ref inner) => { match eval_const_expr_partial(tcx, &**inner) { Ok(const_float(f)) => Ok(const_float(-f)), Ok(const_int(i)) => Ok(const_int(-i)), Ok(const_uint(i)) => Ok(const_uint(-i)), Ok(const_str(_)) => Err("negate on string".to_string()), Ok(const_bool(_)) => Err("negate on boolean".to_string()), ref err => ((*err).clone()) } } ast::ExprUnary(ast::UnNot, ref inner) => { match eval_const_expr_partial(tcx, &**inner) { Ok(const_int(i)) => Ok(const_int(!i)), Ok(const_uint(i)) => Ok(const_uint(!i)), Ok(const_bool(b)) => Ok(const_bool(!b)), _ => Err("not on float or string".to_string()) } } ast::ExprBinary(op, ref a, ref b) => { match (eval_const_expr_partial(tcx, &**a), eval_const_expr_partial(tcx, &**b)) { (Ok(const_float(a)), Ok(const_float(b))) => { match op { ast::BiAdd => Ok(const_float(a + b)), ast::BiSub => Ok(const_float(a - b)), ast::BiMul => Ok(const_float(a * b)), ast::BiDiv => Ok(const_float(a / b)), ast::BiRem => Ok(const_float(a % b)), ast::BiEq => fromb(a == b), ast::BiLt => fromb(a < b), ast::BiLe => fromb(a <= b), ast::BiNe => fromb(a != b), ast::BiGe => fromb(a >= b), ast::BiGt => fromb(a > b), _ => Err("can't do this op on floats".to_string()) } } (Ok(const_int(a)), Ok(const_int(b))) => { match op { ast::BiAdd => Ok(const_int(a + b)), ast::BiSub => Ok(const_int(a - b)), ast::BiMul => Ok(const_int(a * b)), ast::BiDiv if b == 0 => { Err("attempted to divide by zero".to_string()) } ast::BiDiv => Ok(const_int(a / b)), ast::BiRem if b == 0 => { Err("attempted remainder with a divisor of \ zero".to_string()) } ast::BiRem => Ok(const_int(a % b)), ast::BiAnd | ast::BiBitAnd => Ok(const_int(a & b)), ast::BiOr | ast::BiBitOr => Ok(const_int(a | b)), ast::BiBitXor => Ok(const_int(a ^ b)), ast::BiShl => Ok(const_int(a << b as uint)), ast::BiShr => Ok(const_int(a >> b as uint)), ast::BiEq => fromb(a == b), ast::BiLt => fromb(a < b), ast::BiLe => fromb(a <= b), ast::BiNe => fromb(a != b), ast::BiGe => fromb(a >= b), ast::BiGt => fromb(a > b) } } (Ok(const_uint(a)), Ok(const_uint(b))) => { match op { ast::BiAdd => Ok(const_uint(a + b)), ast::BiSub => Ok(const_uint(a - b)), ast::BiMul => Ok(const_uint(a * b)), ast::BiDiv if b == 0 => { Err("attempted to divide by zero".to_string()) } ast::BiDiv => Ok(const_uint(a / b)), ast::BiRem if b == 0 => { Err("attempted remainder with a divisor of \ zero".to_string()) } ast::BiRem => Ok(const_uint(a % b)), ast::BiAnd | ast::BiBitAnd => Ok(const_uint(a & b)), ast::BiOr | ast::BiBitOr => Ok(const_uint(a | b)), ast::BiBitXor => Ok(const_uint(a ^ b)), ast::BiShl => Ok(const_uint(a << b as uint)), ast::BiShr => Ok(const_uint(a >> b as uint)), ast::BiEq => fromb(a == b), ast::BiLt => fromb(a < b), ast::BiLe => fromb(a <= b), ast::BiNe => fromb(a != b), ast::BiGe => fromb(a >= b), ast::BiGt => fromb(a > b), } } // shifts can have any integral type as their rhs (Ok(const_int(a)), Ok(const_uint(b))) => { match op { ast::BiShl => Ok(const_int(a << b as uint)), ast::BiShr => Ok(const_int(a >> b as uint)), _ => Err("can't do this op on an int and uint".to_string()) } } (Ok(const_uint(a)), Ok(const_int(b))) => { match op { ast::BiShl => Ok(const_uint(a << b as uint)), ast::BiShr => Ok(const_uint(a >> b as uint)), _ => Err("can't do this op on a uint and int".to_string()) } } (Ok(const_bool(a)), Ok(const_bool(b))) => { Ok(const_bool(match op { ast::BiAnd => a && b, ast::BiOr => a || b, ast::BiBitXor => a ^ b, ast::BiBitAnd => a & b, ast::BiBitOr => a | b, ast::BiEq => a == b, ast::BiNe => a != b, _ => return Err("can't do this op on bools".to_string()) })) } _ => Err("bad operands for binary".to_string()) } } ast::ExprCast(ref base, ref target_ty) => { // This tends to get called w/o the type actually having been // populated in the ctxt, which was causing things to blow up // (#5900). Fall back to doing a limited lookup to get past it. let ety = ty::expr_ty_opt(tcx, e) .or_else(|| ast_ty_to_prim_ty(tcx, &**target_ty)) .unwrap_or_else(|| { tcx.sess.span_fatal(target_ty.span, "target type not found for const cast") }); macro_rules! define_casts( ($val:ident, { $($ty_pat:pat => ( $intermediate_ty:ty, $const_type:ident, $target_ty:ty )),* }) => (match ety.sty { $($ty_pat => { match $val { const_bool(b) => Ok($const_type(b as $intermediate_ty as $target_ty)), const_uint(u) => Ok($const_type(u as $intermediate_ty as $target_ty)), const_int(i) => Ok($const_type(i as $intermediate_ty as $target_ty)), const_float(f) => Ok($const_type(f as $intermediate_ty as $target_ty)), _ => Err(concat!( "can't cast this type to ", stringify!($const_type) ).to_string()) } },)* _ => Err("can't cast this type".to_string()) }) ); eval_const_expr_partial(tcx, &**base) .and_then(|val| define_casts!(val, { ty::ty_int(ast::TyI) => (int, const_int, i64), ty::ty_int(ast::TyI8) => (i8, const_int, i64), ty::ty_int(ast::TyI16) => (i16, const_int, i64), ty::ty_int(ast::TyI32) => (i32, const_int, i64), ty::ty_int(ast::TyI64) => (i64, const_int, i64), ty::ty_uint(ast::TyU) => (uint, const_uint, u64), ty::ty_uint(ast::TyU8) => (u8, const_uint, u64), ty::ty_uint(ast::TyU16) => (u16, const_uint, u64), ty::ty_uint(ast::TyU32) => (u32, const_uint, u64), ty::ty_uint(ast::TyU64) => (u64, const_uint, u64), ty::ty_float(ast::TyF32) => (f32, const_float, f64), ty::ty_float(ast::TyF64) => (f64, const_float, f64) })) } ast::ExprPath(_) => { match lookup_const(tcx, e) { Some(actual_e) => eval_const_expr_partial(tcx, &*actual_e), None => Err("non-constant path in constant expr".to_string()) } } ast::ExprLit(ref lit) => Ok(lit_to_const(&**lit)), ast::ExprParen(ref e) => eval_const_expr_partial(tcx, &**e), ast::ExprBlock(ref block) => { match block.expr { Some(ref expr) => eval_const_expr_partial(tcx, &**expr), None => Ok(const_int(0i64)) } } ast::ExprTupField(ref base, index) => { // Get the base tuple if it is constant if let Some(&ast::ExprTup(ref fields)) = lookup_const(tcx, &**base).map(|s| &s.node) { // Check that the given index is within bounds and evaluate its value if fields.len() > index.node { return eval_const_expr_partial(tcx, &*fields[index.node]) } else { return Err("tuple index out of bounds".to_string()) } } Err("non-constant struct in constant expr".to_string()) } ast::ExprField(ref base, field_name) => { // Get the base expression if it is a struct and it is constant if let Some(&ast::ExprStruct(_, ref fields, _)) = lookup_const(tcx, &**base) .map(|s| &s.node) { // Check that the given field exists and evaluate it if let Some(f) = fields.iter().find(|f| f.ident.node.as_str() == field_name.node.as_str()) { return eval_const_expr_partial(tcx, &*f.expr) } else { return Err("nonexistent struct field".to_string()) } } Err("non-constant struct in constant expr".to_string()) } _ => Err("unsupported constant expr".to_string()) } } pub fn lit_to_const(lit: &ast::Lit) -> const_val { match lit.node { ast::LitStr(ref s, _) => const_str((*s).clone()), ast::LitBinary(ref data) => { const_binary(Rc::new(data.iter().map(|x| *x).collect())) } ast::LitByte(n) => const_uint(n as u64), ast::LitChar(n) => const_uint(n as u64), ast::LitInt(n, ast::SignedIntLit(_, ast::Plus)) | ast::LitInt(n, ast::UnsuffixedIntLit(ast::Plus)) => const_int(n as i64), ast::LitInt(n, ast::SignedIntLit(_, ast::Minus)) | ast::LitInt(n, ast::UnsuffixedIntLit(ast::Minus)) => const_int(-(n as i64)), ast::LitInt(n, ast::UnsignedIntLit(_)) => const_uint(n), ast::LitFloat(ref n, _) | ast::LitFloatUnsuffixed(ref n) => { const_float(n.get().parse::().unwrap() as f64) } ast::LitBool(b) => const_bool(b) } } fn compare_vals(a: T, b: T) -> Option { Some(if a == b { 0 } else if a < b { -1 } else { 1 }) } pub fn compare_const_vals(a: &const_val, b: &const_val) -> Option { match (a, b) { (&const_int(a), &const_int(b)) => compare_vals(a, b), (&const_uint(a), &const_uint(b)) => compare_vals(a, b), (&const_float(a), &const_float(b)) => compare_vals(a, b), (&const_str(ref a), &const_str(ref b)) => compare_vals(a, b), (&const_bool(a), &const_bool(b)) => compare_vals(a, b), (&const_binary(ref a), &const_binary(ref b)) => compare_vals(a, b), _ => None } } pub fn compare_lit_exprs(tcx: &ty::ctxt, a: &Expr, b: &Expr) -> Option { compare_const_vals(&eval_const_expr(tcx, a), &eval_const_expr(tcx, b)) }